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Abstract: - This paper presents the control of non-regular or singular nonlinear systems applying non-linear 
predictive controllers. The systems treated here have the relative degree not well defined thus feedback 
linearization is not applicable due to singularities in the input-output linearizing control law. An alternative 
controller capable of dealing with non-regular systems is the NCGPC (Nonlinear Continuous Time Generalized 
Predictive Control). The NCGPC is successfully applied to the standard “ball and beam” non-linear non-regular 
process. 
 
Key-Words: - Nonlinear control, Predictive Control, Switching Control, Singular Systems, Relative Degree, 
Continuous system.    
 
1   Introduction 
Predictive control and feedback linearization 
constitute two of the most important research lines in 
non linear control. Geometric linearization theory has 
permitted the applications of linear control algorithms 
to nonlinear systems. It is done by using feedback 
linearization techniques [1], through differential 
geometry approach to transform a nonlinear input-
output system into a linear system; then, a linear 
controller can be applied to the linearised model. 
However, the applicability of the linearization 
algorithm fails when the system has singular points. 
This happens when  0)(1 ≠− xhLL r

fg
 for 

0xx ≠  but 

0)( 0
1 =− xhLL r

fg
. This can be viewed as regions where 

the relative degree r can not be defined. Then is 
called a singular point of the nonlinear system and the 
system is known as a nonlinear system with ill-
defined relative degree. These systems are also called 
singular or non-regular nonlinear systems. The 
control problem of non-regular nonlinear systems 
was treated firstly by [2] using a switching control 
law, unfortunately following this approach the class 
of outputs that could be tracked is limited. A classical 
problem of non-regular systems is the non-linear 
process “beam and ball”. The beam and ball problem 
was treated in [3] by using an approximate system 

that is input-output linearisable, but exact asymptotic 
tracking was not possible. Also, in [4] a tracking 
control law which switches between an approximate 
tracking control law -close to singularities- and an 
exact tracking control law -away from singularities- 
was proposed. Meanwhile, within NMPC approaches 
[5], [6], [7]-[9], new control schemes are presented, 
but they can not deal with non-regular nonlinear 
systems. Moreover, the tracking control law used in 
[5], becomes unrealizable because the optimal control 
law given by 

0x

12
2

1 )(4)( kpxbxb −  becomes imaginary 
in a vicinity of the singular point .  0x
    The NCGPC, [10, 11] is an alternative nonlinear 
predictive controller capable of dealing with non-
regular or singular nonlinear systems. The NCGPC 
was developed in a different way than conventional 
nonlinear controllers. The NCGPC [10, 11] is based 
in the prediction of the system output and due to the 
fact that it was not derived with the objective of 
canceling nonlinearities, as feedback linearization 
techniques do, the NCGPC has three advantages: 
First, it can constrain the predicted control 
through -additionally the response becomes slow 
and the control is not very active-, and second, 
when , there is not zero dynamics 
cancellation and then the internal stability is 

uN

rNN yu −<
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preserved. Also, the NCGPC [12] provides a nice 
way of handling systems with unstable zero 
dynamics. And the last advantage is the control 
weightλ , it plays a very important role in the cost 
function.  In this paper, the non-regular nonlinear 
system is treated by using the last two advantages of 
the NCGPC. The application of the NCGPC to the 
standard non-regular nonlinear “beam and ball” 
system is shown in the following sections. 
 
 
2   General Formulation 
This paper considers nonlinear dynamics systems 
with the state-space representation:  

uxgxftx )()()( +=&     (1) 
)()( xhty =  

where , f g y h are differentiable times with respect 
to each argument.  is the vector of the state 
variables, is the manipulated input and 

yN
nRx∈

Ru∈ Ry∈  is 
the output to be controlled.        
 
 
2.1 Development of the NCGPC 
The development of the NCGPC [10, 11]was carried 
out following the receding horizon strategy of its 
linear counterpart [13], which principles can be 
summarised as follows: 
1. Predict the output over a range of future times. 
2. Assuming that the future setpoint is known, 

choose a set of future controls which minimize 
the future errors between the predicted future 
output and the future setpoint.  

3. Use the first element as a current input and 
repeat the whole procedure at the next time 
instant; that is, use a receding horizon strategy. 

)(tu

 
2.1.1   Prediction of the output  
In this section the output prediction is obtained 
following the idea of CGPC [13]. The output 
prediction is approximated for a Maclaurin series 
expansion of the system output as follows. 
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The predictor order  is chosen less than the number 
of the times that the output has to be differentiated in 
order to obtain terms not linear in  

yN

u
 
2.1.2   Prediction of the reference trajectory 
The objective of the control is to drive the predicted 
output along a desired smooth path to a set point. 
Such a path is called a reference trajectory.  The 
reference trajectory following [13] is given by  
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where is the set point, or rewriting this equation w
)(),(* tywTTtw rNr y
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where  
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and is given by (5) 
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2.1.3   Derivative emulation 
The NCGPC is based in taking the derivatives of the 
output, which are obtained as follows 
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Where represents the Lie derivative , and 

, are some functions of  
iS iJ

iI x  (and not ). These 
output derivatives are obtains from the system of 
equation (1) and  is chosen less than the number 
of the times that the output has to be differentiated in 
order to obtain terms not linear in u , 

u

yN

r  is the relative 
degree. Output and its derivatives can be rewritten by 
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2.1.4   Cost function minimization 
The function is not defined with respect current time, 
but respect a moving frame, which origin is in time t . 
Where is the future variable. Given a predicted 
output over a time frame the CGPC calculates the 
future controls. The first element  of the predicted 
controls is then applied to the system and the same 
procedure is repeated at the next time instant. This 
makes the predicted output depend on the input 

and its derivatives, and the future controls being 
function of and its -derivatives. The cost 
function is: 

T

)(tu

)(tu
)(tu uN

dTtTwTtyuJ r

T

T
N y

2** )],(),([)(
2

1

∫ −=    (12) 

With the substitution of equations (3) and (7) the cost 
function becomes 
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As explained above, just the first element of is 

applied. Then, the first row of, which will be called, 
the control law is given by  
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3   Special Cases of NCGPC  
In this section in order to control the non-regular 
nonlinear systems, two special cases of NCGPC [11] 
are developed making use of the three advantages of 
the NCGPC. 
 
 
3.1 Case when NCGPC has control weight 
The control weightλ plays a very important role in 
the cost function. In this case, it is assumed that the 
system described by (1) has stable zero dynamics,  

 and  and the reference trajectory is 
the output of the reference model [5] represented by 
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r ∈∈∈∈∈ ××× ,,,, 11 . In 
order to define the predicted output of the reference 
trajectory, a truncated Taylor series is used, 
obtaining: 
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Where the derivatives are easy to obtain from the 
reference model simulation. Rewriting this equation 
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The cost function is given by 
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and the minimization results in the following control 
law:  
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In order to see, the role of the λ some 
approximations made by [2] are recalled: 

• As λ>>− )(
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relatively far from any singular point, then, 
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system is very close to any singular point, we 
have 

     0)( ≈tu  
 

3.1.1   Simulation results 
In order to show the effectiveness of the special case 
of NCGPC simulation of an example is presented. 
The following example has singular point when 

5.02 −=x   
2
231 xxx −=&  
uxx −−= 22&  

uxxx +−= 3
2
13&      (25) 

where the output and its derivatives are given by 
1)( xty =  

2
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.
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Fig. 1 shows the states and that the output tracks the 
references. Fig. 2 shows the control input. It is 
possible to see that when the systems is very close to 
the singular point 5.02 −=x the control input is 
approximately zero, and when is far from this point 
the input becomes the equation (24), this is done 
thanks to 001.=λ . 
 
3.2 Case when rNN yu −< is considered  
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Figure 1. System states 

 

 
Figure 2. u(t)-note notch when is close to 0.5 2x

 
When , there is not zero dynamics 
cancellation and then the internal stability is 
preserved. Also, the NCGPC [12] provides a nice 
way of handling systems with unstable zero 
dynamics. Here, this condition will be used en order 
to get a special case of NCGPC for non-regular 
nonlinear “ball and Beam”, which was described and 
treated by [3, 4] 
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The exact input-output linearization is not defined 
when . In order to get the predictive control, 
the output derivatives are gotten until  
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If =0 in the third derivative the relative 
degree is not well defined and exact linearization [1] 

fails. In [2] this term was neglected and the 
derivatives proposed were: 
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With this approximation the well known feedback 
linearization is used. 
In the NCGPC the linearization is not achieved, the 
output is predicted by using the output and its 
derivatives. Here the term which contains  is 
neglected as in [3]. The control law obtained by 
taking account the term and minimizing the 
quadratic cost function obtained in [5] is not possible 
applied in the problem of  “beam and ball” because 

2u
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It is possible to see that the two last derivatives have 

terms of and , but as the 

contributions of  are not considered. The 
parameters of the algorithm are chosen as  
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the control law is obtained by substitution in 
equations (15) and (16). 
 
3.2.1   Simulation results 
In order to show the effectiveness of the special case 
of NCGPC simulation of the “beam and ball” 
example is presented. 
Fig. 3  shows the output system and the reference 
Fig.4 shows the states. Fig. 5 shows the control input. 
The parameters of the algorithm are chosen as 

4=yN , 3=r , 0=uN , , 01 =T 7.02 =T and 

)2(2 += sRR dn . As mentioned above 
, then the control law will not have 

singular points, due to the exact linearization is not 
achieved.  
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4   Conclusion 
This paper presents the control of non-regular or 
singular nonlinear systems applying special cases of 
NCGPC. 
The first case was developed by making use of the 
control weight λ . This case a switching control, 
which switches between 0)( ≈tu when is close to 
singularities and an exact linearization when is away 
from singularities.  
As mentioned in [10, 11], when the 
NCGPC becomes in an exact linearization law as [1]. 
But, when the linearization is not 
achieved. The NCGPC can deal with non minimum 
phase nonlinear systems and non-regular nonlinear 
systems by using the three advantages mentioned 
above. The proposed controller  exact asymptotic 
tracking is not possible as in [3, 4]. The NCGPC is an 
alternative nonlinear predictive controller capable of 
dealing with non-regular or singular nonlinear 
systems.   

rNN yu −=

rNN yu −<

 
Figure 3. Output System and reference trajectory 

 

 
Figure 4. System states 

 

 
Figure 5. Input u(t) 
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