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Abstract: - Since the real-world datasets are often predominately composed of majority examples with only a 
small percentage of minority/interesting examples, data mining researchers have put more and more attention on 
developing efficient approaches to handle the imbalanced datasets. In this paper, we proposed Hierarchical 
Shrinking decision tree algorithm, called Hshrink, to solve the class imbalance problem. HShrink hierarchically 
groups minority examples together by using the splitting function derived from geometric mean in each internal 
node of the decision tree. Consequently, HShrink can accurately mine the rules of  minority examples and reach 
a higher predicted accurately. 
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1   Introduction 
Since the real-world datasets are often predominately 
composed of majority class with only a small 
percentage of minority/interesting class, 
classification researchers have put more and more 
attention on developing efficient solutions to deal 
with the class imbalance problem [1]. The related 
applications include fraudulent telephone calls [11], 
detection of oil spills in satellite images [17], 
telecommunications management [10], failures or 
delays in a manufacturing process [23], rare 
diagnoses [7], text classification [19] etc. The 
proposed techniques for solving the class imbalance 
problem so far could be classified into three main 
categories [4]: a) sampling-based; b) cost-based; c) 
developing an imbalance-insensitive approach. 
However, sampling-based approaches would worsen 
the computational burden or might throw away some 
userful information; and cost-based methods would 
suffer from determining a proper threshold when the 
user is unfamiliar with the domain knowledge [4]. 
The third technique also has been proven to be more 
effective and reasonable than the other two [16], 
therfore, we fouse on the imbalance-insensitive 
methods in this paper.  
     Among the proposed imbalance-insensitive 
approaches, some of them are limited to specific 
dataset; some would take a lot of training time due to 

the natural property of core techniques such as neural 
network; and some are limited to a particular 
application. Comparatively, SHRINK [17] is 
applicable to most data domain and eliminates the 
disadvantage described above. However, SHRINK 
does not consider the condition that an numeric 
attribute value might  never appear in the training set 
and therefore might produce an inappropriate best 
interval. Besides, SHRINK establishes only a best 
interval for each attribute. This property would 
reduce the predicted accuracy when minority 
examples distribute over several intervals of an 
attribute.  
     In this paper, we propose a Hierarchical Shrinking 
decision tree algorithm, called HShrink, to improve 
SHRINK. HShrink is a decision tree-based 
approache and is motivated by the fact that compare 
to other techniques developed for classification such 
as Bayesian classification, neural networks, and 
genetic algorithm, decision tree is more efficient and 
easily interpreted by human and can reach a 
comparable classification accuracy [14] [22]. The 
rest part of the paper is organized as follows. In 
Section 2, we survey some related works. Section 3 is 
our Hierarchical Shrinking decision tree algorithm. 
The experimental evaluation is presented in Section 
4. Finally, Section 5 is the conclusion and 
futurework. 
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2   Related Work  
In this secion, we will survey some proposed 
approaches devote to the class imbalance problem. 
 
 
2.1   Proposed Solutions  
The proposed techniques aiming at the class 
imbalance problem so far could be classified into 
three categories as follows [4]:  
 

 Sampling-based. 
Over-sampling and under-sampling are two main 
techniques in this category. Over-sampling could be 
further classified into random over-sampling and 
focused over-sampling [2][4][12][15]. Random 
over-sampling approach over-samples the minority 
class at random until it matches the size of the 
majority class. Focused over-sampling approach 
over-samples the minority class only with data close 
to the boundaries between the minority class and the 
majority class. Similarly, under-sampling could be 
also classified into random under-sampling and 
focused under-sampling [8][9]. The former approach 
removes the majority class at random until it contains 
as many examples as the minority class, and the latter 
one removes the majority examples lying further 
away. The main idea of focused under-sampling is to 
remove the noise or outlier data and to reduce the size 
of majority class by sampling. The combination of 
over-sampling and under-sampling has also been 
proposed [6][13]. However, over-sampling will 
increase the training set size and therefore enlarge the 
computational burden and the impact of noise data; 
under-sampling has been proven to be ineffective 
since it results in excluding some useful information 
[4][16].  
 

 Cost-based. 
Cost-Modifying approach [5][21] reduces the 
relative misclassification cost of the majority class 
(or increasing that of the minority class) to make it 
correspond to the size of the minority class. However, 
it is hard for a user to assign a proper cost when 
he/she is unfamiliar with the domain knowledge [16]. 
 

 Imbalance-insensitive.  
This approach is more attractive and has been proven 
to be more effective than the above two approachs 
[16]. The main idea of this technique is to develop an 
approach that is insensitive to the imbalance problem. 
Proposed techniques including example weighting, 
rule removing, attribute correlation analysis, etc. 
[3][4][10][11][17][18]. Among the proposed 

imbalance-insensitive approaches, some of them are 
limited to specific dataset, some take a lot of training 
time due to the natural property of neural network. 
Comparatively, SHRINK  [17] is applicable to most 
data domain with numeric attribute data and 
eliminates the disadvantage described above. 
      
2.2   SHRINK  
SHRINK was based on BRUTE [23] and proposed to 
detect the oil spills in satellite radar images. It adopts 
the geometric mean and therefore is applicable to an 
imbalanced dataset. In the confusion matrix in Table 
1, a denotes the number of correctly classified 
majority examples, b denotes the number of wrongly 
classified majority examples, and the remaining 
fields are interpreted likewise. The traditional 
decision tree algorithm such as C4.5 uses accuracy, 
which is calculated as (a+d) / (a+b+c+d), as the 
performance measure. However, such a performance 
criteria is inappropriate while the dataset is 
imbalanced. Therefore, SHRINK uses geometric 
mean (g-mean) as its performance metric. The value 
of g-mean is calculated as 

 dc
d

ba
ag

+
×

+
=

. 
 

Table 1. The confusion matrix. 
prediction 

true majority minority 

majority a b 
minority c d 

 
     The main principle behinds SHRINK is that 
g-mean can find the rule that not only best 
summarizes the minority examples but also takes the 
majority examples into account. SHRINK begins by 
sorting all value of each numeric attribute in the 
training data and then establishes a “best interval” 
[minai; maxai] along each attribute i. Each best 
interval is starting with the smallest interval 
containing all minority examples, and then on every 
iteration “shrinking” the interval by removing either 
the left or right example, whichever results in a better 
g-mean score. In other words, for each attribute this 
procedure would produce a set of nested intervals 
from which the one with the maximal g-mean is 
selected as the test for unseen data. The test would 
have the form [minai, maxai]. Let hi denotes the 
output of this test, then hi = 1 if the test suggests a 
minority class and hi = -1 otherwise. In other words, 
the output of a test is 1 if the corresponding attribute 
value of an unseen example lies in this interval [minai; 
maxai]. Additionally, SHRINK assigns a weight wi = 
log(gi/1-gi) to each test i. The reason is that a test with 
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smaller error should be given higher importance. To 
ensure that all weight is larger than 0, the test with 
g-mean < 0.5 is discarded. Finally, a classification 
function produced by SHRINK algorithm could be 
written as 

CF =∑ . 
i

ii h×w

A testing example is classified as minority class if CF 
 0, and is classified as majority class otherwise.      

An example of SHRINK built by the training dataset 
in Table 2 is shown in Fig. 1, where the wrongly 
classified examples are marked with shadows. The 
classification function generated by SHRINK is 

≥

CF = 0.279 × hage [43, 52] 
 + 0.419 × hsalary [120000, 245000]. 

      
Table 2. A training dataset. 

customer id age salary credit card 
1 25 120000 golden 
2 48 150000 golden 
3 56 200000 normal 
4 27 30000 normal 
5 31 45000 normal 
6 35 28000 normal 
7 37 176000 normal 
8 43 245000 golden 
9 52 143000 golden 

10 60 35000 normal 
11 47 85000 normal 
12 23 26000 normal 
13 33 63200 normal 
14 28 33000 normal 
15 45 43000 normal 
16 68 26400 golden 
17 72 18900 golden 
18 62 218000 normal 
19 55 34000 normal 
20 24 51200 normal 

 

 
Fig. 1. The classified result obtained by SHRINK 
with the training dataset in Table 1. 

 
 3 Hierarchical Shrinking Decision 
Tree Algorithm 
The main limitation of SHRINK is that it computes 
just a best interval for each attribute, and therefore 
causes noticeable decline in the predict accuracy 
when minority class distributes over several intervals 
in an attribute. Take Fig. 1. as the example, it is 
obvious that the error rate can be reduced if we 
consider this and continue to split the leaf nodes. 
Besides, SHRINK does not consider the crirical area, 
which is caused by the attribute values that does not 
apper in the training set, and therefore might produce 
an inappropriate best interval. In this section, we 
propose the Hierarchical Shrinking decision tree 
algorithm, called HSrink, to solve these problems.  
 
 
3.1   Critical Area  
SHRINK uses g-mean to establish the best interval 
[minai, maxai] as shown in Fig. 2.(a) for each 
attribute i. HSrink further extends this idea by taking 
critical area as shown in Fig. 2.(b) into account. The 
critical area of a best interval i is the area between the 
minai and aip, where aip denotes the attribute value of 
example p with the order prior to attribute value 
minai. Similarly, [maxai, aiq] is another critical area 
for best interval i, where aip denotes the attribute 
value of example q with the order posterior to 
attribute value maxai. The reason is that when 
predicting the unseen data, the output hi of an 
example with attribute value lies in the critical area is 
unclear. Continuing with the example in Fig. 1, the 
best interval of salary is [120000, 245000] and 
therefore suggests that a golden card application 
would be approved if the applicant’s salary ranges 
from 120000 to 245000. However, this training data 
in Table 1 contains no information about an applicant 
whose salary is between 120000 and 85000. So it is 
indefinite to approve or reject a new application with 
salary between this critical area [85000, 120000]. 
HShrink considers this and therefore defines the best 
interval as [0.5(aip + minai), 0.5(aiq+ maxai) ].  

age salary card 
25 120000 golden 
48 150000 golden 
56 200000 normal 
37 176000 normal 
43 245000 golden 
52 143000 golden 
62 218000 normal 

CF ≥ 0 CF < 0 

age salary card 
27 30000 normal 
31 45000 normal 
35 28000 normal 
60 35000 normal 
47 85000 normal 
23 26000 normal 
33 63200 normal 
28 33000 normal 
45 43000 normal 
68 26400 golden 
72 18900 golden 
55 34000 normal 
24 51200 normal 

   In addition, when g-mean of a best interval is equal 
to 1, SHRINK algorithm will get errors since the 
weight for this test is incomputable (i.e. log0 is 
incomputable). Obviously, such a condition occurs 
only when an attribute have a “perfect interval”. 
(That is, all the minority examples lie in this best 
interval without any majority examples). Therefore, 
HShrink assigns this test with weight = 1. 
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Fig. 2. For attribute i, (a) the best interval established 
by SHRINK; (b) the critical area; (c) the best interval 
established by HShrink, where “+” represents the 
minority example and “-” represents the majority. 
 
3.2 Hierarchical Shrinking Decisioin Tree 
As illustrated in Fig. 3(a), SHRINK establishes only 
a best interval for each attribute. In the real condition, 
there might contain several good splitting intervals of 
an attribute while minority examples distribute over 
this attribute. We illustrate such a condition in Fig. 
3(b). Therefore, HShrink establishes the best 
intervals of each attribute “hierarchically” to solve 
this problem. The pseudo-code of HShrink is shown 
in Fig. 4. In summary, HShrink uses the classification 
function derived form g-mean as its splitting function 
in each node to build the prediction model. On each 
iteration, after the splitting function is established, 
the training data with splitting function value lager 
than 0 is classified to the left child node in next level, 
and is classified to the right child node otherwise. 
This process continues until a node can not be further 
partitioned, or the number of examples in a node is 
less than a threshold.  
   

i1mina

- - - - - - + + + + - - - + + + - - - - -

- - - - - - + + + + - - - + + + - - - - -

imina imaxa

i1maxa i2mina i2maxa

(a)

(b)  
Fig. 3. (a) The best interval established by SHRINK, 
where “+” represents a minority example and “-” 
represents a majority example; (b) The best intervals 
established by HShrink. 
 

 
Fig. 4. The pseudo-code of HShrink. 

HShrink(D)    
/* D denotes the examples classified to this node 
*/ 
Begin 

 
     To make reader clear understand our idea, here we 
use Fig. 5 to illustrate why HShrink can more 
accurately mine the minority examples. In Fig. 5, 
HShrink classifies the example lie in the shape as 
minority examples by only one split, but a standard 
decision tree algorithm requires four or more splits to 
obtain such a result. More importantly, a standard 
decision tree would misclassify the minority because 
of its small size compared to the majority. Continuing 

If D is pure or D < θ  /* θ  is set to be 5 as 
default 

Return;  
Else 

Initial Left_D = ∅, Right_D =∅; 
For every numeric attribute i 

Sort all examples according their value; 
       For each minority example j 

Calculate the best interval [0.5(ajp + 
minaj), 0.5(ajq+ maxaj) ] ; 

               Calculate the gi of the interval; 
               Shrinking; 
           Select the best interval whose gi is the 
maximal; 
           If the value of gi of this attribute i < 0.5 
then 

             Discard this attribute; 
Elseif gi =1 then  

               wi =1; 
Else    

wi = log(gi /1- gi); 
End if  

Return the best interval and its weight wi; 
Splitting function SF = ∑hi×wi; 
For each training example t∈D 

If SF(t) ≥ 0 
Left_D = Left_D t; ∪

    Else 
Right_D = Right t; ∪

End if 
Call HShrink (Left_D ); 
Call HShrink (Right_D); 

End If 
For each leaf node  /* determine the target class 

*/ 
If it is a left_child leaf node then  

The class label of this node is minority; 
Elseif it is a right_child leaf node then 

The class label of this node is majority; 
End if  

End 
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with Fig. 5, when HShrink accurately calssify all 
minority examples, all examples in the left-middle 
area would be classified as majority class in a 
standard decision tree. Finally, HShrink uses a simple 
pre-pruning method to stop the building step when 
the examples in a node are less than a thresholdθ  (θ  
is set to be 5 as default). As you will see in our 
experiments, this simple method does work.  
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Fig. 5. A splitting result obtained by HSrink, where 
“+” represents a minority example and “-” represents 
a majority example. 
 
 
4   Experiment and Evaluation 
In this section, we implement SHRINK and HShrink 
and then evaluate their performance. The traditional 
decision tree algorithm C4.5 is also used as a baseline 
for users to understand the imbalance problem more 
clearly.  
 
 
4.1   UCI Datasets 
We select five UCI datasets [20] with different 
imbalance rate, which denotes the percentage of 
minority examples to all examples, as the 
experimental data. Among five datasets, datasets 2 
contain two-class data when all the others are 
multi-classes. For the purpose of experiment, all 
datasets are transformed into two-class problems. We 
take the class with the fewest examples as minority 
class and transform all the other examples into 
majority class. The details about the five datasets are 
shown in Table 3.  
      

Table 3. The UCI datasets. 
id dataset example minority imbalance rate attribute

1 letter-a 20000 789 3.95% 17 

2 Hypothyroid 3162 150 4.74% 25 

3 pendigits-3 7494 719 9.59% 17 

4 segment-b 2310 330 14.29% 20 

5 Vehicle-van 846 199 23.52% 19 

 

 4.2   The Comparison of Error Rate 
Here, we compare the error rate of minority examples 
among HShrink, SHRINK and C4.5. Note that C4.5 
would obtain different results with different pruning 
threshold. To make the comparison fair, we stop the 
building phase of both C4.5 and HShrink while the 
examples in a node are less than five, and then we use 
the testing data to calculate the error rate.  Five-fold 
cross validation was employed to generate proper 
training and testing data. The results are shown in Fig.  
6. As expected, HShrink outperforms SHRINK and 
C4.5 in all cases. Note that in dataset 1, C4.5 reaches 
a lower error rate than SHRINK. This is caused by 
the fact that minority examples might distribute over 
several good splitting intervals as mentioned in 
Section 3.2. 
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Fig. 6. The compassion of minjority examples’ error 
rate among C4.5,HShrink, and SHRINK. 
 
 
5   Conclusions and Future Work 
The class imbalance problem is an important issue in 
classification of Data mining. In this paper, we have 
proposed a tree-based approach called HShrink to 
solve this problem. Compared with C4.5 and 
SHRINK, the experimental results have showed that 
HShrink can attain a higher accuracy of the 
minority/interesting examples. However, as 
SHRINK, HShrink can not handle a categorical 
attribute. Besides, the rules produced by HShrink are 
more complicated than that produced by a standard 
decision tree. In our future research direction, we will 
extned our HShrink to handle the categorical attribute. 
Developing an efficient rule extraction approach to 
improve the readability of the produced rules is also 
considered.  
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