
A Hierarchical Shrinking Decision Tree for Imbalanced Datasets

CHIEN-I LEE 1, CHENG-JUNG TSAI 2,*, CHIU-TING CHEN 1
1 Department of Information and Learning Technology

National University of Tainan
No. 33, Sec. 2, Shu-Lin St., Tainan 700

TAIWAN, ROC
2 Department of Computer Science

National Chiao Tung University
No. 1001, Ta Hsueh Rd., Hsinchu 30050,

TAIWAN, ROC

Abstract: - Since the real-world datasets are often predominately composed of majority examples with only a
small percentage of minority/interesting examples, data mining researchers have put more and more attention on
developing efficient approaches to handle the imbalanced datasets. In this paper, we proposed Hierarchical
Shrinking decision tree algorithm, called Hshrink, to solve the class imbalance problem. HShrink hierarchically
groups minority examples together by using the splitting function derived from geometric mean in each internal
node of the decision tree. Consequently, HShrink can accurately mine the rules of minority examples and reach
a higher predicted accurately.

Key-Words: -, data mining, classification, decision tree, imbalance

1 Introduction
Since the real-world datasets are often predominately
composed of majority class with only a small
percentage of minority/interesting class,
classification researchers have put more and more
attention on developing efficient solutions to deal
with the class imbalance problem [1]. The related
applications include fraudulent telephone calls [11],
detection of oil spills in satellite images [17],
telecommunications management [10], failures or
delays in a manufacturing process [23], rare
diagnoses [7], text classification [19] etc. The
proposed techniques for solving the class imbalance
problem so far could be classified into three main
categories [4]: a) sampling-based; b) cost-based; c)
developing an imbalance-insensitive approach.
However, sampling-based approaches would worsen
the computational burden or might throw away some
userful information; and cost-based methods would
suffer from determining a proper threshold when the
user is unfamiliar with the domain knowledge [4].
The third technique also has been proven to be more
effective and reasonable than the other two [16],
therfore, we fouse on the imbalance-insensitive
methods in this paper.
 Among the proposed imbalance-insensitive
approaches, some of them are limited to specific
dataset; some would take a lot of training time due to

the natural property of core techniques such as neural
network; and some are limited to a particular
application. Comparatively, SHRINK [17] is
applicable to most data domain and eliminates the
disadvantage described above. However, SHRINK
does not consider the condition that an numeric
attribute value might never appear in the training set
and therefore might produce an inappropriate best
interval. Besides, SHRINK establishes only a best
interval for each attribute. This property would
reduce the predicted accuracy when minority
examples distribute over several intervals of an
attribute.
 In this paper, we propose a Hierarchical Shrinking
decision tree algorithm, called HShrink, to improve
SHRINK. HShrink is a decision tree-based
approache and is motivated by the fact that compare
to other techniques developed for classification such
as Bayesian classification, neural networks, and
genetic algorithm, decision tree is more efficient and
easily interpreted by human and can reach a
comparable classification accuracy [14] [22]. The
rest part of the paper is organized as follows. In
Section 2, we survey some related works. Section 3 is
our Hierarchical Shrinking decision tree algorithm.
The experimental evaluation is presented in Section
4. Finally, Section 5 is the conclusion and
futurework.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 178

2 Related Work
In this secion, we will survey some proposed
approaches devote to the class imbalance problem.

2.1 Proposed Solutions
The proposed techniques aiming at the class
imbalance problem so far could be classified into
three categories as follows [4]:

 Sampling-based.
Over-sampling and under-sampling are two main
techniques in this category. Over-sampling could be
further classified into random over-sampling and
focused over-sampling [2][4][12][15]. Random
over-sampling approach over-samples the minority
class at random until it matches the size of the
majority class. Focused over-sampling approach
over-samples the minority class only with data close
to the boundaries between the minority class and the
majority class. Similarly, under-sampling could be
also classified into random under-sampling and
focused under-sampling [8][9]. The former approach
removes the majority class at random until it contains
as many examples as the minority class, and the latter
one removes the majority examples lying further
away. The main idea of focused under-sampling is to
remove the noise or outlier data and to reduce the size
of majority class by sampling. The combination of
over-sampling and under-sampling has also been
proposed [6][13]. However, over-sampling will
increase the training set size and therefore enlarge the
computational burden and the impact of noise data;
under-sampling has been proven to be ineffective
since it results in excluding some useful information
[4][16].

 Cost-based.
Cost-Modifying approach [5][21] reduces the
relative misclassification cost of the majority class
(or increasing that of the minority class) to make it
correspond to the size of the minority class. However,
it is hard for a user to assign a proper cost when
he/she is unfamiliar with the domain knowledge [16].

 Imbalance-insensitive.
This approach is more attractive and has been proven
to be more effective than the above two approachs
[16]. The main idea of this technique is to develop an
approach that is insensitive to the imbalance problem.
Proposed techniques including example weighting,
rule removing, attribute correlation analysis, etc.
[3][4][10][11][17][18]. Among the proposed

imbalance-insensitive approaches, some of them are
limited to specific dataset, some take a lot of training
time due to the natural property of neural network.
Comparatively, SHRINK [17] is applicable to most
data domain with numeric attribute data and
eliminates the disadvantage described above.

2.2 SHRINK
SHRINK was based on BRUTE [23] and proposed to
detect the oil spills in satellite radar images. It adopts
the geometric mean and therefore is applicable to an
imbalanced dataset. In the confusion matrix in Table
1, a denotes the number of correctly classified
majority examples, b denotes the number of wrongly
classified majority examples, and the remaining
fields are interpreted likewise. The traditional
decision tree algorithm such as C4.5 uses accuracy,
which is calculated as (a+d) / (a+b+c+d), as the
performance measure. However, such a performance
criteria is inappropriate while the dataset is
imbalanced. Therefore, SHRINK uses geometric
mean (g-mean) as its performance metric. The value
of g-mean is calculated as

 dc
d

ba
ag

+
×

+
=

.

Table 1. The confusion matrix.
prediction

true majority minority

majority a b
minority c d

 The main principle behinds SHRINK is that
g-mean can find the rule that not only best
summarizes the minority examples but also takes the
majority examples into account. SHRINK begins by
sorting all value of each numeric attribute in the
training data and then establishes a “best interval”
[minai; maxai] along each attribute i. Each best
interval is starting with the smallest interval
containing all minority examples, and then on every
iteration “shrinking” the interval by removing either
the left or right example, whichever results in a better
g-mean score. In other words, for each attribute this
procedure would produce a set of nested intervals
from which the one with the maximal g-mean is
selected as the test for unseen data. The test would
have the form [minai, maxai]. Let hi denotes the
output of this test, then hi = 1 if the test suggests a
minority class and hi = -1 otherwise. In other words,
the output of a test is 1 if the corresponding attribute
value of an unseen example lies in this interval [minai;
maxai]. Additionally, SHRINK assigns a weight wi =
log(gi/1-gi) to each test i. The reason is that a test with

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 179

smaller error should be given higher importance. To
ensure that all weight is larger than 0, the test with
g-mean < 0.5 is discarded. Finally, a classification
function produced by SHRINK algorithm could be
written as

CF =∑ .
i

ii h×w

A testing example is classified as minority class if CF
 0, and is classified as majority class otherwise.

An example of SHRINK built by the training dataset
in Table 2 is shown in Fig. 1, where the wrongly
classified examples are marked with shadows. The
classification function generated by SHRINK is

≥

CF = 0.279 × hage [43, 52]
 + 0.419 × hsalary [120000, 245000].

Table 2. A training dataset.

customer id age salary credit card
1 25 120000 golden
2 48 150000 golden
3 56 200000 normal
4 27 30000 normal
5 31 45000 normal
6 35 28000 normal
7 37 176000 normal
8 43 245000 golden
9 52 143000 golden

10 60 35000 normal
11 47 85000 normal
12 23 26000 normal
13 33 63200 normal
14 28 33000 normal
15 45 43000 normal
16 68 26400 golden
17 72 18900 golden
18 62 218000 normal
19 55 34000 normal
20 24 51200 normal

Fig. 1. The classified result obtained by SHRINK
with the training dataset in Table 1.

 3 Hierarchical Shrinking Decision
Tree Algorithm
The main limitation of SHRINK is that it computes
just a best interval for each attribute, and therefore
causes noticeable decline in the predict accuracy
when minority class distributes over several intervals
in an attribute. Take Fig. 1. as the example, it is
obvious that the error rate can be reduced if we
consider this and continue to split the leaf nodes.
Besides, SHRINK does not consider the crirical area,
which is caused by the attribute values that does not
apper in the training set, and therefore might produce
an inappropriate best interval. In this section, we
propose the Hierarchical Shrinking decision tree
algorithm, called HSrink, to solve these problems.

3.1 Critical Area
SHRINK uses g-mean to establish the best interval
[minai, maxai] as shown in Fig. 2.(a) for each
attribute i. HSrink further extends this idea by taking
critical area as shown in Fig. 2.(b) into account. The
critical area of a best interval i is the area between the
minai and aip, where aip denotes the attribute value of
example p with the order prior to attribute value
minai. Similarly, [maxai, aiq] is another critical area
for best interval i, where aip denotes the attribute
value of example q with the order posterior to
attribute value maxai. The reason is that when
predicting the unseen data, the output hi of an
example with attribute value lies in the critical area is
unclear. Continuing with the example in Fig. 1, the
best interval of salary is [120000, 245000] and
therefore suggests that a golden card application
would be approved if the applicant’s salary ranges
from 120000 to 245000. However, this training data
in Table 1 contains no information about an applicant
whose salary is between 120000 and 85000. So it is
indefinite to approve or reject a new application with
salary between this critical area [85000, 120000].
HShrink considers this and therefore defines the best
interval as [0.5(aip + minai), 0.5(aiq+ maxai)].

age salary card
25 120000 golden
48 150000 golden
56 200000 normal
37 176000 normal
43 245000 golden
52 143000 golden
62 218000 normal

CF ≥ 0 CF < 0

age salary card
27 30000 normal
31 45000 normal
35 28000 normal
60 35000 normal
47 85000 normal
23 26000 normal
33 63200 normal
28 33000 normal
45 43000 normal
68 26400 golden
72 18900 golden
55 34000 normal
24 51200 normal

 In addition, when g-mean of a best interval is equal
to 1, SHRINK algorithm will get errors since the
weight for this test is incomputable (i.e. log0 is
incomputable). Obviously, such a condition occurs
only when an attribute have a “perfect interval”.
(That is, all the minority examples lie in this best
interval without any majority examples). Therefore,
HShrink assigns this test with weight = 1.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 180

ipa

imaxa

(b)

(c)

imina

imina imaxa

imaxa iqa

+- - - - - -++ + +

+- - - - - -++ + +

+- - - - - -++ + +
imina

(a)

Fig. 2. For attribute i, (a) the best interval established
by SHRINK; (b) the critical area; (c) the best interval
established by HShrink, where “+” represents the
minority example and “-” represents the majority.

3.2 Hierarchical Shrinking Decisioin Tree
As illustrated in Fig. 3(a), SHRINK establishes only
a best interval for each attribute. In the real condition,
there might contain several good splitting intervals of
an attribute while minority examples distribute over
this attribute. We illustrate such a condition in Fig.
3(b). Therefore, HShrink establishes the best
intervals of each attribute “hierarchically” to solve
this problem. The pseudo-code of HShrink is shown
in Fig. 4. In summary, HShrink uses the classification
function derived form g-mean as its splitting function
in each node to build the prediction model. On each
iteration, after the splitting function is established,
the training data with splitting function value lager
than 0 is classified to the left child node in next level,
and is classified to the right child node otherwise.
This process continues until a node can not be further
partitioned, or the number of examples in a node is
less than a threshold.

i1mina

- - - - - - + + + + - - - + + + - - - - -

- - - - - - + + + + - - - + + + - - - - -

imina imaxa

i1maxa i2mina i2maxa

(a)

(b)
Fig. 3. (a) The best interval established by SHRINK,
where “+” represents a minority example and “-”
represents a majority example; (b) The best intervals
established by HShrink.

Fig. 4. The pseudo-code of HShrink.

HShrink(D)
/* D denotes the examples classified to this node
*/
Begin

 To make reader clear understand our idea, here we
use Fig. 5 to illustrate why HShrink can more
accurately mine the minority examples. In Fig. 5,
HShrink classifies the example lie in the shape as
minority examples by only one split, but a standard
decision tree algorithm requires four or more splits to
obtain such a result. More importantly, a standard
decision tree would misclassify the minority because
of its small size compared to the majority. Continuing

If D is pure or D < θ /* θ is set to be 5 as
default

Return;
Else

Initial Left_D = ∅, Right_D =∅;
For every numeric attribute i

Sort all examples according their value;
 For each minority example j

Calculate the best interval [0.5(ajp +
minaj), 0.5(ajq+ maxaj)] ;

 Calculate the gi of the interval;
 Shrinking;
 Select the best interval whose gi is the
maximal;
 If the value of gi of this attribute i < 0.5
then

 Discard this attribute;
Elseif gi =1 then

 wi =1;
Else

wi = log(gi /1- gi);
End if

Return the best interval and its weight wi;
Splitting function SF = ∑hi×wi;
For each training example t∈D

If SF(t) ≥ 0
Left_D = Left_D t; ∪

 Else
Right_D = Right t; ∪

End if
Call HShrink (Left_D);
Call HShrink (Right_D);

End If
For each leaf node /* determine the target class

*/
If it is a left_child leaf node then

The class label of this node is minority;
Elseif it is a right_child leaf node then

The class label of this node is majority;
End if

End

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 181

with Fig. 5, when HShrink accurately calssify all
minority examples, all examples in the left-middle
area would be classified as majority class in a
standard decision tree. Finally, HShrink uses a simple
pre-pruning method to stop the building step when
the examples in a node are less than a thresholdθ (θ
is set to be 5 as default). As you will see in our
experiments, this simple method does work.

+

++
+

-
-

-

-

-
-

-
-

-

-
- -

--
- -

-

-

-

-
--

-

-
-

+

+

+

+

+

salary

age

-

-
-

-

-

--

Fig. 5. A splitting result obtained by HSrink, where
“+” represents a minority example and “-” represents
a majority example.

4 Experiment and Evaluation
In this section, we implement SHRINK and HShrink
and then evaluate their performance. The traditional
decision tree algorithm C4.5 is also used as a baseline
for users to understand the imbalance problem more
clearly.

4.1 UCI Datasets
We select five UCI datasets [20] with different
imbalance rate, which denotes the percentage of
minority examples to all examples, as the
experimental data. Among five datasets, datasets 2
contain two-class data when all the others are
multi-classes. For the purpose of experiment, all
datasets are transformed into two-class problems. We
take the class with the fewest examples as minority
class and transform all the other examples into
majority class. The details about the five datasets are
shown in Table 3.

Table 3. The UCI datasets.
id dataset example minority imbalance rate attribute

1 letter-a 20000 789 3.95% 17

2 Hypothyroid 3162 150 4.74% 25

3 pendigits-3 7494 719 9.59% 17

4 segment-b 2310 330 14.29% 20

5 Vehicle-van 846 199 23.52% 19

 4.2 The Comparison of Error Rate
Here, we compare the error rate of minority examples
among HShrink, SHRINK and C4.5. Note that C4.5
would obtain different results with different pruning
threshold. To make the comparison fair, we stop the
building phase of both C4.5 and HShrink while the
examples in a node are less than five, and then we use
the testing data to calculate the error rate. Five-fold
cross validation was employed to generate proper
training and testing data. The results are shown in Fig.
6. As expected, HShrink outperforms SHRINK and
C4.5 in all cases. Note that in dataset 1, C4.5 reaches
a lower error rate than SHRINK. This is caused by
the fact that minority examples might distribute over
several good splitting intervals as mentioned in
Section 3.2.

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%

1 2 3 4 5
UCI dataset

er
ro

r r
ate SHRINK
C4.5
Hsrink

Fig. 6. The compassion of minjority examples’ error
rate among C4.5,HShrink, and SHRINK.

5 Conclusions and Future Work
The class imbalance problem is an important issue in
classification of Data mining. In this paper, we have
proposed a tree-based approach called HShrink to
solve this problem. Compared with C4.5 and
SHRINK, the experimental results have showed that
HShrink can attain a higher accuracy of the
minority/interesting examples. However, as
SHRINK, HShrink can not handle a categorical
attribute. Besides, the rules produced by HShrink are
more complicated than that produced by a standard
decision tree. In our future research direction, we will
extned our HShrink to handle the categorical attribute.
Developing an efficient rule extraction approach to
improve the readability of the produced rules is also
considered.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 182

Acknowledgments
This resaerch was partially supported by the National
Science Council of Republic of China under Grant
No. NSC-95-2520-S-024-002.

References:
[1] Nitesh V. Chawla, Data Mining for Imbalanced

Datasets: An Overview, The Data Mining and
Knowledge Discovery Handbook, 2005, pp.
853-867.

[2] D. Aha, D. Kibler and M.K. Albert,
Instance-Based Learning Algorithms, Machine
Learning, Vol.6, No.1, 1991, pp. 37-66.

[3] S.N. Anto, K. Susumu and I. Akira, Fog
Forecasting Using Self Growing Neural
Network CombNET-II - A Solution for
Imbalanced Training Sets Problem,
Proceedings of the International Joint
Conference on Neural Networks, 2000.

[4] R. Barandela, J.S. Sanchez, V. Garcia and E.
Rangel, Strategies for Learning in Class
Imbalance Problems, Pattern Recognition,
Vol.36, No. 3, 2003, pp.849-851.

[5] T. Landgrebe, P. Paclík, D.M.J. Tax, S.
Verzakov and R.P.W. Duin, Cost-Based
Classifier Evaluation for Imbalanced Problems,
SSPR/SPR, 2004, pp. 762-770

[6] Z.H. Zhou and X. Y. Liu, Training
Cost-Sensitive Neural Networks with Methods
Addressing the Class Imbalance Problem, IEEE
Trans. Knowl. Data Eng, Vol.18, No.1, 2006, pp.
63-77.

[7] G. Cohen, M. Hilario, H. Sax and S. Hugonnet,
Data Imbalance in Surveillance of Nosocomial
Infections, ISMDA 2003, 2003, pp. 109-117.

[8] J. Dehmeshki, M. Karakoy and M.V. Casique, A
Rule-Based Scheme for Filtering Examples
from Majority Class in an Imbalanced Training
Set, MLDM 2003, 2003, pp. 215-223.

[9] E. Derouin, J. Brown, H. Beck, L. Fausett and
M. Schneider, Neural Network Training on
Unequally Represented Classes, Intelligent
Engineering Systems Through Artificial Neural
Networks, 1991, pp.135-145.

[10] K.J. Ezawa, M. Singh and S.W. Norton,
Learning Goal Oriented Bayesian Networks for
Telecommunications Management, Proceeding
of the International Conference on Machine
Learning. Bari, Italy, Morgan Kaufmann, 1996,
pp. 139-147.

[11] T. Fawcett, and F. Provost, Combining Data
Mining and Machine Learning for Effective
User Profiling, In Proceedings of the 2th

International Conference on Knowledge
Discovery and Data Mining, 1996, pp. 8-13.

[12] S. Floyd and M. Warmuth, Sample
Compression, Learnability, and the Vapnik-
Chervonenkis Dimension, Machine Learning,
Vol.21, 1995, pp. 269-304.

[13] G. Cohen, M. Hilario, H. Sax, S. Hugonnet and
A. Geissbühler, Learning from imbalanced data
in surveillance of nosocomial infection,
Artificial Intelligence in Medicine, Vol. 37, No.
1, 2006, pp. 7-18.

[14] J. Han, and M. Kamber, Data Mining: Concepts
and Techniques, Morgan Kaufmann, 2000.

[15] H. Han, W. Wang and B.H. Mao, Borderline-
SMOTE: A New Over-Sampling Method in
Imbalanced Data Sets Learning, ICIC, Vol.1,
2005, pp. 878-887.

[16] N. Japkowicz and S. Stephen, The Class
Imbalance Problem: A Systematic Study,
Intelligent Data Analysis, Vol.6, No.5, 2002, pp.
429-450.

[17] M. Kubat, R. Holte and S. Matwin, Machine
Learning for the Detection of Oil Spills in
Satellite Radar Images, Machine Learning,
Vol.30, No. 2/3, 1998, pp. 195-215.

[18] S. Lawrence, I. Burns, A.D. Back, A.C. Tsoi,
and C.L. Giles, Neural Network Classification
and Unequal Class Probabilities. Tricks of the
Trade, Lecture Notes in Computer Science, 1998,
pp. 299-314.

[19] D. Mladenic and M. Grobelnik, Feature
Selection for Unbalanced Class Distribution and
Naive Bayes, Proceedings of the 16th
International Conference on Machine Learning ,
1999, pp. 258-267.

[20] P. Murphy and D. Aha, UCI Repository of
Machine Learning Databases, Technical Report,
University of California, Irvine, 1998.

[21] M. Pazzani, C. Merz, P. Murphy, K. Ali, T.
Hume and C. Brunk, Reducing
Misclassification Costs, Proceedings of the 11th
International Conference on Machine Learning ,
1994, pp. 217-225.

[22] Rastogi, R. and Shim, K. (1998). PUBLIC: A
Decision Tree Classifier that Integrates
Building and Pruning. Proceedings of the 24th
International Conference on Very Large
Databases (pp. 404-415).

[23] P. Riddle, R. Segal and O. Etzioni,
Representation Design and Brute Force
Induction in a Boeing Manufacturing Domain,
Applied Artificial Intelligence, Vol.8, 1994,
pp.125-147.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 183

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Chawla:Nitesh_V=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Cohen:Gilles.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hilario:Melanie.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sax:Hugo.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hugonnet:St=eacute=phane.html
http://www.informatik.uni-trier.de/~ley/db/conf/ismda/ismda2003.html#CohenHSH03
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dehmeshki:Jamshid.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Karak=ouml=y:Mustafa.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Casique:Manlio_Valdivieso.html
http://www.informatik.uni-trier.de/~ley/db/conf/mldm/mldm2003.html#DehmeshkiKC03

