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Abstract : A feasibility study has been achieved concerning the raising of indecision on a distance value 
measured by a phase-shift laser rangefinder, by implementing a Neural Network in the optical head. The NN 
role is to give an approximation of the distance to measure, using the output signal amplitude of the 
rangefinder, in order to remove the indecision modulo 2π due to the phase shift measurement. Thus, the neural 
network has to be able to achieve the function "1/D1/2" in order to invert the "1/D²" law relative to the evolution 
of the photoelectric output signal amplitude of the rangefinder according to the distance D. Thanks to this 
system, it is possible to obtain a very high resolution on the distance measurement for a range three times wider 
than the one limited by the 2kπ indecision. Behavioural computer simulations of the system has shown very 
satisfying results. That is the reason why an analog implementation of the neural network is currently achieved. 
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1 Introduction 
Main application domains of neural network 

(NN) [1-2] are classification and detection [3-4] 
and approximation of non-linear functions in order 
to model or to linearise some physical phenomenon 
[5]. Among the different kinds of NN, Multi-Layers 
Perceptrons (MLP) networks have the advantage to 
be simple and to be able to linearise continuously 
some functions. MLP application domains are very 
wide, from the help for the handwritten character 
recognition [6-7] to the linearisation of non-linear 
data transfer of high-power amplifiers for satellites 
telecommunications [5,8], or pattern detection [9]. 

In order to achieve real-time distance 
measurement thanks to a phase-shift laser 
rangefinder, data processing has to be fast and 
continuous. Furthermore, the system has to be 
trained in various simulation conditions, such as 
defocalisation, temperature changes or crosstalk, in 
order to avoid bad data processing. That is the 
reason why it has been chosen to design a MLP-
type NN, with analog circuits for speed, chip size 
and consumption reasons. Indeed, analog neural 
network (ANN) allows faster data processing 
because signals are analog from the rangefinder 
output up to the NN output. Thus, all bandwidth 
limitation due to analog-to-digital converters is 
prevented. Moreover, obtaining the same precision 
with a digital NN with regards to an analog one 
would require a high number of bits and transistors 
for achieving exactly the same operations, 
especially for sigmoid functions. Thus, analog 

implementation leads to interesting space and 
consumption gain. 

The complete system is presented in part 2. The 
calibration phase and the design of the neural 
network are presented in part 3. 
 
 
2 System description 
2.1 Phase-Shift Laser Rangefinder with 
heterodyne mixing 

Laser ranging is an optoelectronic way used for 
achieving distance measurement [10-12]. Distance 
value can be deduced from the time-of-flight 
measurement. Time-of-flight methods can be 
divided into three categories: pulsed technique [13], 
Frequency Modulation Continuous Wave (FMCW) 
method [14-16], and phase-shifting measurement 
[17]. The last studies achieved in the laboratory has 
shown that the phase-shift laser rangefinder is very 
promising [18]. That is the reason why the 
improvement of the method by increasing easily the 
measurement range is interesting. 

The phase-shift laser rangefinder principle is 
given in Fig.1. A c.w. sinusoidal modulation of the 
light power emitted by the laser diode is used, with 
a constant frequency fRF. The phase-shift ∆ϕ 
existing between the emitted wave and the received 
one is measured. This phase-shift ∆ϕ is linked to 
the time of flight following the relationship: 

DRFπf2∆ τ=ϕ       (1) 

where c
D2τD =  is the time of flight, with D the 

distance to measure and c the celerity of light in 
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vacuum (c = 3.108 m/s). As distance is determined 
from a phase-shift, and as phase-shift is measured 
modulo 2π, distance value is given with a "2kπ-
indecision". Thus, the maximum measurement 
range Λ without indecision is: 

RFf2
cΛ=       (2) 

Indeed, the fRF frequency must be high so that the 
resolution of the measurement is good. The 
distance resolution δD is given by: 

ϕ= δ2
c

πf2
1δD

RF
     (3) 

Thus, the higher the frequency fRF is, the better 

the sensitivity ϕ= δ
δDSD  is, but the smaller the 

measurement range is. In our case, we choose      
fRF = 166MHz; that leads to a very good resolution 
δD of 50µm on the distance measurement, 
considering a reasonable resolution on the phase 
measurement of δϕ = 0.02°, but for a measurement 
range Λ of only 0.9m. As realising a phase-shift 
measurement is not easy at high frequencies, a 
heterodyne technique is used, which allows to 
make phase measurement at an intermediate 
frequency  fIF = |fRF – fLO| (Fig.1). We consider that 
the frequency mixing keeps the same phase-shift. 
The photoelectric signal received by the avalanche 
photodiode (APD) at frequency fRF(∆ϕ) is mixed 
with a reference signal which is supplied from a 
local oscillator and whose frequency is fLO. The 
output signal of the mixer is the sum of two signals, 
whose respective frequencies are fRF(∆ϕ)+fLO = 
fHF(∆ϕ) and fRF(∆ϕ)-fLO = fIF(∆ϕ) the intermediate 
frequency. In order to delete high frequency fHF(ϕ) 
and to obtain the best signal to noise ratio, a band-
pass filter tuned on fIF(∆ϕ) is used. For measuring 
the phase-shift ∆ϕ , the fIF output signal of the 
band-pass filter is compared with a reference signal 
at the frequency fIF. This reference signal is 
provided by the output of another band-pass filter 
centred on fIF that received at its input the mixing 
of both signals coming from the RF and LO 
oscillators (Fig.1). 
 

 
Fig.1: Block diagram of the phase shift laser range finder using 

a heterodyne technique. Pass band filters tuned to the 
intermediate frequency enhance the signal-to-noise ratio of the 
photoelectric signal. A transimpedance amplifier is placed at 

the output of the APD. 
 

2.2 Determination of the function  g  that 
has to be approximated by the ANN  

Our objective is to use the amplitude of the a.c. 
photoelectric signal after the pass-band filter and 
the approximation properties of neural networks for 
raising the indecision on the distance measurement 
and thus being able to increase the distance 
measurement range from 1m to 4m with the same 
resolution. For that, the neural network has to 
achieve a function so that its output is a voltage 
proportional to the distance: 

DKVoutNN 0=       (4) 
Let us call  g  the function achieved by the NN. 

)VinNNg(VoutNN= .     (5) 
From a structural point of view, the NN must 

have one single input (relative to the signal 
amplitude VinNN at the output of the band pass 
filter) and one single output (whose voltage 
VoutNN has to be proportional to the distance to 
measure). For the number of neurons placed on the 
hidden layer, the discussion will be developed 
subsequently.  

As the illuminated zone is considered to be 
smaller than the non-cooperative target surface and 
the source is supposed lambertian, the a.c. output 
photoelectric current of the APD has an amplitude 
that varies according to the inverse of the square 
distance D [19]. The photoelectric signal amplitude 
at the transimpedance output follows: 

²D
)cos(

K)D(fiZVoutTRANS 0
1APDt

θ
===    (6) 

with  Zt  the transfer function of the transimpedance 
amplifier,  θ0  the laser beam incidence angle 
according to the perpendicular to the target surface, 
and  K1  a proportionality coefficient relative to the 
emitter, the optical transfer, and the APD response. 

RLDtR1 APMZSTTK
π
ρ= λλ

    (7) 

where Tλ is the emitter transmission coefficient for 
a given laser wavelength, TR the receiver 
transmission coefficient of the optics, Sλ the APD 
spectral response of the primary photocurrent, M 
the photoelectric gain of the APD, ρ the diffusing 
reflection coefficient of a non-cooperative target, 
PLD the modulated power of the transmitted laser 
beam and AR the surface of the APD. 

For a painted wall as target, theoretical and 
measured curves relative to the photoelectric signal 
amplitude between 0.5m and 3.5m are shown in 
Fig.2. 
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Fig.2: Representation in log-log scale of the output voltage 

amplitude of the APD as a function of the distance. The ideal 
characteristic curve is dashed; the measurement points are 

joined by the solid curve. 
 

The photoelectric signal amplitude  VoutBP 
observed at the band-pass filter output is 
proportional to the transimpedance output 
amplitude  VoutTRANS. As both curves are close, 
(6) is verified. Thus, as the neural network input  
VinNN  receives a signal relative to the pass-band 
filter output amplitude  VoutBP, the function  g  to 
be achieved by the neural network in order to 
obtain  VoutNN  as a linear function according to 
the distance  D  is : 

VinNN
K

VoutNN)VoutBP(g)VinNN(g 2===   

   DK

²D
)cos(K

K
0

01

2 =
θ

=
    (8) 

The complete system is shown in Fig.3. 
 

 
 

Fig.3: Function  g  that has to be achieved by the ANN in order 
to obtain an output voltage linear with respect to the distance 

(θ  is considered to be constant). 
 

In order to simplify the system, and with the idea 
to use a feedforward neural network (static, without 
feedback on the weights), the a.c. signal is 
converted into a d.c. voltage proportional to the 
r.m.s. of the IF photoelectric signal (Fig.4). This 
d.c. voltage is then injected into the neural network. 
 

 
 

Fig.4: Conversion of the alternative voltage at the output of the 
band-pass filter. 

3 Achievement of the ANN for a 
linear distance measurement  
3.1 Structure 

For summarising, the structure of the NN to 
achieve is a feedforward single-input single-output 
MLP-type NN. The number of neurons in the 
hidden layer is fixed at 3 (Fig.5). This number is 
sufficient for having a good approximation without 
having a too complex structure. When simulations 
are done with more neurons, the precision of 
simulation results is a little bit better, for a 
calculation time a little bit longer, but for a 
structure more complex. For two neurons on the 
hidden layer, the algorithm cannot converge. Every 
weight and bias value has been determined by 
Matlab simulations in order to calibrate the ANN. 
 

 
 

Fig.5: Structure of the ANN developed: It is constituted by 
three layers, with one neuron in the input layer, one in the 

output layer and three in the hidden layer. 
 
3.2 Determination of weight and bias values - 
Calibration phase 

To calculate weights and biases, the method 
described in Fig.6 is used.  

 
Fig.6: Description of the method used in order to calculate 

weights and biases. 
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First, in order to train the ANN, a set of random 
NN input values is determined. VinNN(k) is the 
NN input voltage at iteration k, corresponding to a 
certain kind of target with a certain incidence angle 
for a random distance D(k) from a defined number 
of distances between 1m and 4m. 

Then the different equations that take place into 
the ANN are described. Each intermediate output 
of the ANN is called ai (Fig.5). Each ai is a vector 
of three values aij (with j∈[1;3]), relative to the fact 
that there are three neurons present in the hidden 
layer. Weights w1(k,:) (respectively biases b1(k,:) 
and weights w2(k,:)) corresponds to the three 
values w1j (respectively b1j and w2j) at the iteration 
k. b2(k) is the bias value b2 at iteration k. 

 

a1=Ka1*VinNN(k)*w1(k,:); % Output of the 
multipliers between input neuron and hidden layer 
a2=a1+Ka2*b1(k,:);       % Output of the hidden 
layer adders 
a3=Ka3*tanh(Kth*a2);    % Output of the 
hyperbolic tangents of the hidden layer 
a4=Ka4*a3*w2(k,:);        % Output of the 
multipliers between hidden layer and output neuron 
VoutNN(k)=sum(a4)+b2(k);    % Output of the last 
adder / ANN output  
 

Thus, for every Kai and Kth taken equal to 1, 
VoutNN(k)=b2(k)+

)).k(b)k(VinNN).k(wtanh().k(w i1i1

3

1i
i2 +∑

=

   (9) 

Then the iterative part is described, which allows 
to update weights and biases at each iteration, so 
that they converge to a definitive value. If we look 
at Fig.6, at the end of the first iteration, NN output 
VoutNN(k=1) is compared to the ideal output value 
VoutNNid(k=1). This comparison leads to a 
difference e(k=1) between both values, that is used 
to calculate the new weight and bias values with the 
help of an algorithm called error backpropagation 
algorithm. The algorithm type used is the gradient 
algorithm. The weights and biases update is done 
by subtracting a present value of weight or bias to 
the error gradient corresponding to the considered 
weight or bias ((10) to (14)). 
b2(k+1)=b2(k)+µ_b2. ))k(e(grad 2b  

=b2(k)+µ_b2.
2b
)k(e

∂
∂               (10) 

w2(k+1)=w2(k)+µ_w2. ))k(e(grad 2w  

=w2(k)+µ_w2.
2w
)k(e

∂
∂               (11) 

b1(k+1)=b1(k)+µ_b1. ))k(e(grad 1b  

=b1(k)+µ_b1.
1b
)k(e

∂
∂               (12) 

w1(k+1)=w1(k)+µ_w1. ))k(e(grad 1w  

=w1(k)+µ_w1.
1w
)k(e

∂
∂               (13) 

with e(k)=VoutNNid(k) - VoutNN(k) 
and VoutNN(k) =  

[b2(k)+ ))k(b)k(VinNN).k(wtanh().k(w j1j1

3

1j
j2 +∑

=

](14) 

µ_w1, µ_b1, µ_w2 and µ_b2 are called convergence 
speed, associated to each weight and bias. Once the 
update is done, the second iteration begins, with a 
new input value and a new ideal associated output 
value (Fig.6 – 2nd iteration). 

Iterations stop as soon as the function achieved 
by the NN is considered to be close enough to the 
ideal output, in the desired input interval. For that, 
the Signal-to-Error-Ratio (SER) is calculated with 
the help of a chosen number of the last output 
values VoutNN(k) and associated error e(k). SER 
allows to quantify the aptitude of the NN to 
approximate the desired function (15). 

SER=10.log10(

∑

∑

−=

−=
npts

nptsSERnptsk

npts

nptsSERnptsk

)k(e

)k(VoutNN
)             (15) 

with npts the algorithm iterations number and 
nptsSER the number of values chosen at the end of 
the algorithm to calculate the SER. Precision is 
determined by the user through SER value. Higher 
the SER is, better the function to approximate is 
fitted. When SER has reached the desired value, 
iterations stop, and weight and bias values are set 
(Fig.6 – end of the nth iteration).  

Fig.7 shows an example of convergence of the 
algorithm. 250000 iterations were achieved for 
obtaining a SER equal to 40dB. The 5000 last 
iterations have been plotted in Fig.7. Fig.7-a to 7-d 
show that the weights and biases have converged to 
a definitive value. Fig.7-f shows the input voltage 
values relative to the different random distances 
from 0.5m to 4m represented in Fig.7-e. The solid 
curve of Fig.7-g represents the ANN output for the 
different input voltage values plotted in Fig.7-f, 
with the weights and biases set plotted in Fig.7-a to 
7-d. This curve can hardly been distinguished from 
the dashed ideal curve VoutNNid, that is a linear 
representation of Fig.7-e relative to the different 
distance values (VoutNNid = D/10). Thus the ANN 
achieves quite perfectly the function  g  with the set 
of weight and bias values represented in Fig.7-a to 
7-d. Fig.7-h shows that the absolute value of the 
error is less than 5mV for the 50 last iterations. 
Thus, the network calibrated with the set of weight 
and bias values represented in Fig.7-a to 7-d is able 
to achieve function  g  in order to obtain an ANN 
output voltage proportional to the distance.
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Fig.7: From a) to d) : Weights and biases variation during the 5000 last iterations;  e) Random distance values between target and 

rangefinder;  f) The corresponding input DC value VinNN;  g) ANN output voltage VoutNN with the weights and biases set represented in 
a) to d) (solid) and the ideal output (dash). There is to note that both are superimposed;  h) Error between both curves represented in g)

The ANN test is represented in Fig.8, with the 
final values of weights and biases found in Fig.7-a 
to 7-d, for distance values that vary linearly from 
0.5m to 4m. ANN output plotted in Fig.8-b is 
almost linear with respect to the distance. The 
absolute value of the error between ideal and real 
ANN output curves shown in Fig.8-c is less than 
6mV on the whole distance range. The relative 
error shown in Fig.8-d is less than 5% between 
0.6m and 4m. That is sufficient to have a good 
distance approximation and to raise the 2kπ 
indecision of the phase-shift rangefinder. Thus 
these simulations with Matlab software justify the 
fact that it is possible to achieve a precise distance 
measurement for a distance range three times wider 
thanks to the NN. 

 
Fig.8: a) Input voltage variation VinNN according to the 

distance, from 0.5m to 4m; 
 b) ANN output voltage with the final weights and biases 

determined at the last iteration of the algorithm (solid) and the 
ideal output (dash); 

c) Error between both previous curves; 
d) Relative error. 

3.3 Conception of the circuit with PSpice 
software 

Once the network has been trained with Matlab 
and that the final set of weight and bias values is 
fixed, so that we can obtain a good approximation 
of the function, electronic simulations are achieved 
with PSpice. First, behavioural simulations are 
performed, using ideal multiplier, adder and 
hyperbolic tangent cells. Each weight or bias value 
found with Matlab is injected in its corresponding 
cell. These behavioural electronic simulations give 
identical results compared to the ones found with 
Matlab (Fig.9). 
 

 
Fig.9: Example of simulation results. Ideal Output: 

VoutNN=D/10. Error is less than 6mV. 
 

Thus, hardware integration of the ANN will 
allow to improve the distance measurement range 
by a factor approximately equal to three, with the 
same high resolution. 
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4. Conclusion and perspectives 
This study is the first one achieved for the 

implementation of an analog neural network into a 
phase-shift laser rangefinder. Our objective is to 
easily remove the 2kπ indecision on the phase 
measurement and thus to obtain a measurement 
range three times wider without using multiple 
modulation frequencies of the laser diode. Matlab 
software simulations give a SER higher than 40dB 
and a relative error smaller than 5% on the whole 
interval of distance from 0.6m to 4m. The 
performances obtained allow to reach a very good 
approximation of equation (8) and yield to an ANN 
output voltage proportional to the distance. As 
behavioural electronic simulations have confirmed 
the expected functioning of the network, the next 
step of the study is the design and the integration in 
an ASIC. 
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