
A comparison of classical, neural and fuzzy control  

for an underwater vehicle  

KLEANTHIS NEOKLEOUS 
Research Associate, Department of Informatics 

University of Cyprus 
75 Kallipoleos, 1678, POBox 20537, Nicosia 

CYPRUS 
 

COSTAS NEOCLEOUS 
Research Affiliate, Department of Informatics 

University of Cyprus 
75 Kallipoleos, 1678, POBox 20537, Nicosia 

CYPRUS  

 
CHRISTOS SCHIZAS 

Professor, Department of Informatics 
University of Cyprus 

75 Kallipoleos, 1678, POBox 20537, Nicosia 
CYPRUS 

 
 
 

Abstract: - A comparative study for the automatic control of an underwater vehicle has been conducted. The 
vessel had only three thrusters for the control of its position, something that made the problem very difficult. 
Furthermore the system is highly non-linear. A control system has been simulated for the regulation of the 
marine thrusters so that they stabilize the vehicle at a desired position, irrespective of external disturbances. The 
dynamical equations of a model of the vessel, when disturbed by cable forces and by the thrusts generated by the 
propellers, are described. The various vehicle parameters needed to describe its dynamics (mass, center of mass, 
added coefficients) have been estimated. The control schemes implemented were the classical PID, neural 
control, and fuzzy control. It was found that a combination of classical and intelligent control gave the best 
results. 
 
Key-Words: - Artificial Neural Network Control, Fuzzy Control, Nonlinear Systems. Underwater Vehicle 
Control 
 

 
1 Introduction 
 
Remotely operated underwater vehicles, both 
autonomous and non-autonomous, can be used 
in diverse missions. They are especially useful in 
areas that are dangerous for human operations, 
and in locations where the accessibility is 
restricted. Also in the cases where the hazards 
are diverse and serious such as in underwater 
monitoring, positioning, surveyance etc. The 

development of simple and efficient control 
systems for such remotely operated vessels is not 
an easy task. A number of studies have been 
done on the control of non-holonomic vehicles 
(Hunt et al., 1992; Narendra and Muk-
hopadhyay, 1997; Tanner and Kyriakopoulos, 
2001; Li et al., 2004).  

For the particular problem on the control of 
a remotely operated manipulator that has been 
examined and reported in this paper, there were 
no constraints in the motion of the vehicle. The 
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problem though is quite difficult because there 
were only three actuators available to guide the 
vessel to the desired position and maintain it in 
this location. The available actuators were: a) 
two small thrusters at the stern, one at port and 
the other at starboard that could be used to 
control the forward, backward and yaw of the 
vessel b) a top thruster that could be used to 
control the underwater motion along the vertical 
direction. 
 
 
2 Dynamics of the underwater vehicle 
 
The system has been modeled as a mass that is 
affected by various external forces as it is free to 
move in the 3D space. The external forces are 
quite complicated to estimate as they are non 
linear and may include inertia effects from the 
so-called added mass and damping. The 
dynamics that have been used are mainly based 
on the analysis presented by various researchers 
(Fossen, 1995; Buckham et al., 2002; Ridley et 
al., 2002; Smallwood and Whitcomb, 2004). 
They are described by a system of six coupled 
non-linear differential equations. 

The general form of the dynamical equa-
tions describing the motion of the vehicle, with 
respect to an inertial frame of reference, is given 
by (Fossen, 1995) as: 

 
extMv + Cv + Dv + g = F                                  (1) 

where, 
Μ = Matrix of the system masses and the added 

masses. 
C = Matrix whose elements are the centripetal 

acceleration and the Coriolis components of 
acceleration. 

D = Matrix whose elements are the components 
of damping. 

Fext = External force vector. 
v = Velocity vector. 
g = Vector whose elements are the gravitational 

and buoyancy forces.  
In general the elements of g are dependent 

on the position of the vessel, while the elements 
of M, C and D, on the velocity components. 

The system of equations 1 can be expanded 
in a more convenient form that is more suitable 
for modeling on MATLAB-SIMULINK and for 
the necessary simulations. To do this, we used 
the Euler angle formalism as well as the rotation 
matrix J shown in equation 2. 

Because of the constraints imposed by the 
fact that only three actuators are available to 
guide the vessel, as well as the symmetry of the 
vessel, its motion is confined to be in the three 
principal directions x, y, and z of a body frame, 
as well as rotation about the z axis. Rotations 
about the x and y axes cannot exist, so that they 
are not included in the equations of the system 
that are finally used. Thus, the system of 
equations (1) for the 4-degree of freedom vessel, 
which is the case for the vessel we examined, are 
modified as (3), where the usual notation for 
transposition and inversion is used. 
The terms ,  ,  ,  u v w rX Y Z N are the added 
coefficients that have been calculated for the 
particular vessel we examined. Also, the terms 
E1, E2, E3, denote the forces originating from the 
three thrusters, while Kx, Ky and Kz are the cable 
forces. 
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The system of equations (3) has been 
implemented in a series of models in MATLAB 
and SIMULINK and simulated to verify its 
credibility, as well as to try and compare 
different control schemes. 

Three major groups of control schemes have 
been attempted and compared. In each scheme 
various parameters were systematically tried. 
The control schemes used are a) Three different 

classic PID controllers, one for each propeller, b) 
A Model Predictive Neural Network control 
system, c) A Fuzzy Inference System based on 
the MATLAB Fuzzy Logic Toolbox. 

Many SIMULINK models have been built 
to simulate the system, its constituent 
components and the various control schemes. As 
an example, Figure 1 shows an expanded 
structure of the underwater vehicle subsystem.

  

 
Figure 1. The underwater subsystem. 
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3 Results of simulations for different 
controller paradigms  

 
The first control system model that has been tried is 
the one in which three different classic PID 
controllers have been used, one for each propeller. 
Figure 2 shows the typical results obtained when the 
vessel was commanded to move from an initial 
position of (xi, yi, zi, ψi)T= (0, 0, 0, 0)T to a desired 
new position of (xd, yd, zd, ψd)T = (2, 3, -5, 0)T. As can 
be seen from this Figure, the results were not 
satisfactory, especially with regards to the y 
positioning. 

 The second model that has been used is a 
Model Predictive Neural Network as it is available in 
the neural networks toolbox of MATLAB, but 
suitably adapted to accommodate our case. The 

results, again were not very good, as shown in Figure 
3. 

In the third case a Fuzzy Inference System 
based on the MATLAB Fuzzy Logic System has 
been employed. Due to the constraint having to 
maintain the paper short, some of the rules that have 
been used are indicatively displayed in Figure 4. 

The results are show in Figure 5. In this case, a 
combination of a classical and a fuzzy controller has 
been used. The classic PID controller is used to 
regulate the vertical propeller generating a thrust 
perpendicular to the body of the vessel. The other two 
thrusters are controlled by the fuzzy inference 
controller system. 

It is quite clear that this case is much better than 
the previous two. 
 

 

 
 
Figure 2. Simulation results for the case of using three PID controllers.  

   The initial position is at 0. The desired position vector is xd = [2 3 -5 0]T.  
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Figure 3. Simulation results for the case of using neural network controllers.  

   The initial position is at 0. The desired position vector is xd = [2 3 -5 0]T.  
 

 
 
Figure 4. Some of the rules that have been used in the Fuzzy Inference System. 
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Figure 5. Simulation results for the case of the hybrid PID-Fuzzy controller system.  

   The initial position is at 0. The desired position vector is xd = [2 3 -5 0]T.  
 
 

4   Conclusion 
The basic conclusion of this work is that when a 
vessel has limited actuators and highly non-linear 
dynamics as in our case, it is very difficult to control. 
One has to explore alternative schemes, and 
combinations of various approaches. 

From the three general approaches we used, the 
best approach was a combination of PID and a fuzzy 
inference system. If we had actual experimental data 
on the dynamics of the vessel, as well as real 
feedback, the results of the neural network approach 
could have been better. This will be investigated in 
future work. 
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