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1   Introduction 
The k-nearest neighbour algorithm (kNN) is a 
popular machine learning method. kNN 
considers every instance to be a point in an n-
dimensional space, where n is the number of 
input attributes. kNN is trained by simply 
storing training examples and it classifies a 
query instance q based on the k training 
examples that are closest to q.  Three methods 
of life-long learning through knowledge transfer 
using kNN have previously been proposed 
(Caruana, 1993, Thrun, 1995, Silver, 2000).  
Knowledge is selectively transferred based on 
structural measures of relatedness at the task 
level. This paper introduces a method of 
selective knowledge transfer in the context of 
kNN, which is based on functional measures 
and at the classification level using virtual 
training instances. 

 
In many applications the relationship between 

the attribute set and the class variable is non-
deterministic. In other words, the class label of 
a test record cannot be predicted with certainty 
even though its attribute set is identical to some 
of training examples. This situation may arise 
because of noisy data or the presence of certain 
confounding factors that classification but are 
not included in the analysis. For example, 
consider the task of predicting whether a person 
is at risk for heard disease based on the person’s 
diet and workout frequency.  In the paper we 
use an approach for modeling probabilistic 
relationships between the attribute set and the 
class variable. Bayes theorem—a statistical 

principle for combining prior knowledge of the 
classes with new evidence gathered from data is 
explained and the Bayesian belief network is 
used.   

 
Machine learning systems often 

encounter insufficient training examples per 
task to develop a sufficiently accurate 
hypothesis. For example, a hospital may have 
records on only 100 patients with a particular 
type of heart disease. One approach to 
overcoming the deficiency of training examples 
is to utilize knowledge that has been acquired 
during the learning of previous tasks that are 
related. For example, assuming we have learned 
a model of identifying patients with high blood 
pressure; we can use its knowledge to help us to 
identify patients with heat disease. The process 
is to transfer the previously acquired knowledge 
(high blood pressure diagnosis) to the new and 
related learning task (heart disease diagnosis). 

A thorough discussion of the 
fundamental theory of knowledge transfer has 
been provided along with a method of selective 
knowledge transfer in the context of kNN 
(Silver, 2000). In other papers, two similar 
methods are discussed and tested (Caruana, 
1993, Thrun, 1995). All of these methods use 
the similarity between the distance metric (a 
structural measure) used in each task and do not 
consider the functional relationship between the 
output values of the tasks.  

Only a few people have looked at 
knowledge transfer in the context of the kNN 
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algorithm and all methods previously proposed 
transfer based on structural measures at the task 
level. The paper [Sun, Yuan 2004] develops a 
new functional measure of relatedness at the 
classification level and uses the measure to 
achieve knowledge transfer between kNN tasks. 
The shortcoming is a naïve method is adopted 
to deal with duplicated instance, which are 
instances sharing the same set of input attributes 
from two or more tasks. In our paper we use 
Bayesian network to calculate the conditional 
probabilities. 
 

2   SELECTIVE KNOWLEDGE TRANSFER 
FROM KNN TASKS  

 kNN doesn’t explicitly generalize the training 
examples to form a hypothesis. The knowledge 
of a kNN system is represented by a pool of 
instances. Therefore, the most natural way to 
transfer knowledge from previously learned 
kNN tasks is to utilize training instances from 
those tasks.  

The functional similarity between the 
training instances of two tasks describes a degree of 
relatedness between the tasks. This relatedness can 
also be represented by conditional probabilities. For 
the example, let P(T0 = + | T1 = +) equal the 
probability that an instance of T0 is positive given 
that an instance of T1 is positive. Then we can 
express the relatedness of T1 to T0 by the conditional 
probabilities P(T0 = + | T1 = +), P(T0 = - | T1 = +), 
P(T0 = + | T1 = -) and P(T0 = - | T1 = -). We do not 
know the exact value of these conditional 
probabilities but they can be estimated by observing 
the primary task and secondary task training 
instances. 

The method pf knowledge transfer in the 
context of KNN concept learning tasks is extended 
to multi-class learning problems.  The rationale is 
the same, i.e. use conditional probabilities to 
determine the relatedness of virtual instances to the 
primary task. The only difference between concept 
learning tasks and multi-class tasks is the number of 
classes.  
 Conditional Probability Distribution for Multi-class 
Tasks  

 

Though we can still use the classic 
definition of conditional probability distribution, a 
new form is required for purpose of the multi-class 
problem. Formally: 
 
Definition: Conditional Probability Distribution for 
Multi-Class Tasks 
First, define the conditional probability distribution 
per classification, )|( 0

i
mi OTTCPDC =  as a 

function that takes the mth element of set M, which 
contains all possible class values of Ti, as the input 
and outputs the set: 

}1),|(|{ 0
0

0 NnOTOTPOSS i
minn ≤<==×=

 
where 0

nO  is the nth element of the set N, which 
contains all possible class values possible output 
values of T0  

Then, define )|( 10 TTCPDC as a function that takes 
Ti as the input and outputs the matrix: 

}1),|(|{ 0 MmOTTCPDCOSS i
mi

i
m ≤<=×=

 
where M is the number of possible output values of 
Ti. 

Essentially, CPDC is the conditional 
probability distribution and CPDT is the joint 
probability distribution.  They are different from the 
classical definition of the conditional probability 
distribution in that both CPDC and CPDT output the 
actual class value with which the probability is 
associated. 

As an example, the conditional probability 
distributions for the example in Section 3.2 can be 
expressed as:  

CPDC(T0 | T1 = +) = {{+, 0}, {-, 1}},  
CPDC(T0 | T1 = -) = {{+, 0.8}, {-, 0.2}} and  
CPDT(T0 | T1) = {{+, {{+, 0}, {-, 1}}}, {-, 

{{+, 0.8}, {-, 0.2}}}}. 
 
In general, the output value of virtual 

instances of T0, which are generated from instances 
with class value v in T1, is CPDC(T0 | T1 = v). 
 
3  Duplicated instances 
In Paper (Sun Yuan, 2004), a naïve method is 
adopted to deal with duplicated instances, 
which are instances sharing the same set of 
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input attributes from two or more tasks.  Bayes 
Networks are used to calculate the conditional 
probabilities here. For example, the more 
complex conditional probabilities have to be 
calculated such as P(T0 | T1 = + ∩ T2 = -). The 
major research question is to find out a fast 
enough way to estimate the conditional 
probabilities with reasonable accuracy. 

 
 

4 Empirical Studies  
 

A. Experiment 1: Variation in Transfer from More 
and Less Related Tasks 

This experiment examines the transfer of 
knowledge from two related tasks to the primary 
task, where one secondary task is more related to the 
primary task than the other. We expect the more 
related secondary task to benefit the primary task the 
most by generating the greater positive inductive 
bias. This should result in better generalization 
accuracy for primary task. 
1) Tasks 

T3 of Bitmap domain is the primary task. 
T0 and T1 are used as the previously learned 
secondary tasks. T3 has 200 training examples and a 
test set of 800 instances. T1 and T0 were previously 
trained using 1000 instances for each task. Based on 
the discussion of the Bitmap domain, T3 is 
considered more related to T0 than to T1. 
2)  Method 

The experiment consisted of 10 repeated 
trials where each trial had the following steps: 

     1. Generate random training and test sets for T3 
     2.Train the kNN system by loading the training 
instances. 

3.Test the generalization accuracy of kNN for T3 
using the test set with k =3 

      4.Transfer knowledge from T0 by generating virtual 
instances for T0. The acceptance threshold of relatedness 
was set to 0.001 based on preliminary testing. 

5. Test the generalization accuracy of kNN for T3 
using the test set with k =3 

6. Transfer knowledge from T1 by generating 
virtual instances for T0. The acceptance 
threshold of relatedness was set to 0.001 based 
on preliminary testing. 

7. Test the generalization accuracy of kNN for T3 
using the test set with k =3 

3)  Results 
Table 1 and Figure 1 show that both 

secondary tasks improve the generalization accuracy 
of T3. T0 provides the most positive inductive bias to 
the T3’s hypotheses with an accuracy of 0.788 (p = 
0.000) as compared to the hypotheses developed 
with the aid of T1 with an accuracy of 0.771 (p = 
0.066).  We conclude that knowledge transferred 
from the more related task, T0 is of greater value 
than that of T1. 
 
 
Table 1. Results of Experiment 1. The 
generalization accuracy of T0 before and after 
the knowledge transfer with k = 3 

ne h T0 h T1 
23 26 
04 4 36 
84 98 2 
31 75 81 
12 65 81 
39 59 65 
12 36 7 
31 65 32 
61 11 36 
12 29 9 
16 97 33 

onf 06 02 82 
01 4 61 

 
Figure 1. Results of Experiment 1. Mean 
generalization accuracy of T3 before and after 
the knowledge transfer from either T0 or T1. 
B.  Experiment 2: Knowledge Transfer from 
Multiple Tasks 

Previous experiments focused on 
transferring knowledge from one secondary task to a 
primary task. In this experiment, we examine the 
effect of transferring knowledge from several 
secondary tasks to a primary task, where the 
secondary tasks vary in their degree of relatedness.  

Experiment   1 

0.72

0.74

0.76

0.78

0.8

T3 alone With T0 With T1 

Accuracy

Mean
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1)  Tasks 
T3 of the Bitmap domain is the primary task. 

T0, T1 and T2 in the same task domain are the 
previously learned secondary tasks. T3 had 200 
training instances and a test set of 800 instances. T0, 
T1 and T2 were previously trained by 1000 instances 
for each task to an accuracy of 0.85. We expect that 
T3 will receive a net benefit from the transfer, 
because the method will promote positive inductive 
bias from related tasks and mitigate the negative 
inductive bias from unrelated tasks. 
2)  Method 

The experiment consisted of 10 repeated 
trials where each trial had the following steps: 

1. Generate random 
training and test 
sets for T3 

2. Train the kNN 
system by loading 
the training 
instances. 

3. Test the 
generalization 
accuracy of kNN 
for T0, T1 and T2 
using the test set 
with k = 3 

4. Transfer 
knowledge from 
T2 by generating 
virtual instances 
for T0. The 
acceptance 
threshold of 
relatedness was 
set to 0.001 based 
on preliminary 
testing. 

5. Test the 
generalization 
accuracy of kNN 
for T0 using the 
test set with k =3 

3)  Results 
Table 2 and figure 2 

show that the generalization 
accuracy of T0 is improved after 
transferring knowledge from all 
secondary tasks (p = 0.000). In 

addition, there is also some 
evidence to suggest that 
knowledge transfer from all 
three tasks improved the 
generalization accuracy of T3 
more than the knowledge 
transfer from just T0  (p = 
0.162).  

Table 2. Results of Experiment 2. The 
generalization accuracy of T0 before and 
after the knowledge transfer with k = 3 

Trials T3 alone With ALL With T0 
1 0.796504 0.815231 0.815231
2 0.762797 0.826467 0.803995
3 0.771536 0.787765 0.799001
4 0.765293 0.795256 0.791511
5 0.741573 0.780275 0.774032
6 0.751561 0.801498 0.789014
7 0.742821 0.813983 0.812734
8 0.765293 0.792759 0.790262
9 0.746567 0.766542 0.781523

10 0.776529 0.820225 0.805243
Stdev 0.01715 0.019068 0.01334
95%Conf 0.010629 0.011819 0.008268
Mean 0.762047 0.8 0.796255

 
Figure 2. Results of Experiment 2. Mean 
generalization accuracy of T3 before and after the 
knowledge transfer 

 

 
4   Conclusion 

Weighted distance. ND-kNN algorithm 
can be easily extended to a weighted distance 
version. Using the weighted distance version, 
the virtual instance can be further weighted by 
its distance to the query instance. Therefore, the 
nearer a virtual instance is to a query instance, 
the more strongly it can affect the accuracy of 

Experiment 2 
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classification. One would have to consider the 
over-amplification of virtual instances by 
placing a limit on the maximum distance 
weight. 

Density of virtual instances. kNN 
derives decision boundaries from training 
examples. One important factor that greatly 
affects the shape of the decision boundary is the 
density of instances. If the existing decision 
boundary happens to be the optimal one, one 
more example may decrease the generation 
accuracy; this is similar to overtraining in ANN. 
To accommodate this situation, the virtual 
instances could be generated in such a way that 
the density of instances is constant throughout 
the input space. Other techniques such as 
Model-based kNN (Guo, Wang, Bell, Bi, & 
Greer, 2003) would also help. 

Combining structural and functional 
measures of relatedness.  The measure of 
relatedness suggested by previous research 
captures the structure similarity between two 
kNN tasks while the CPDT captures the 
functional similarity.  It would seem important 
to consider both methods when transferring 
knowledge between tasks. Future research could 
investigate a combination of these two methods. 
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