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    Abstract- Neural networks have shown good results for 
detection of a certain pattern in a given image.  In our 
previous paper, a fast algorithm for object/face detection was 
presented. Such algorithm was designed based on cross 
correlation in the frequency domain between the input image 
and the weights of neural networks. In this paper, a simple 
design for solving the problem of local subimage 
normalization in the frequency domain is presented. 
Furthermore, the effect of image normalization on the speed 
up ratio of pattern detection is presented. Simulation results 
show that local subimage normalization through weight 
normalization is faster than subimage normalization in the 
spatial domain. Moreover, the overall speed up ratio of the 
detection process is increased as the normalization of 
weights is done off line.   

Keywords: Fast Neural Networks, Cross Correlation, Frequency 
Domain, Subimage Normalization 

I. Introduction 

Pattern detection is a fundamental step before pattern recognition. 
Its reliability and performance have a major influence in a whole 
pattern recognition system. Nowadays, neural networks have 
shown very good results for detecting a certain pattern in a given 
image [3,6,10]. But the problem with neural networks is that the 
computational complexity is very high because the networks have 
to process many small local windows in the images [5,7]. In our 
pervious papers, we presented fast neural networks based on 
applying cross correlation in the frequency domain between the 
input image and the input weights of neural networks. It was 
proved that the speed of these networks is much faster than 
conventional neural networks [1-4]. It was also proved that fast 
neural networks introduced by previous authors [9,11,12] are not 
correct. The reasons for this were given in [2]. 
 
The problem of subimage (local) normalization in the Fourier 
space was presented in [8]. Here, a simple method for solving this 
problem is presented. By using the proposed algorithm, the 
number of computation steps required for weight normalization 
becomes less than that needed for image normalization. 
Furthermore, the effect of weight normalization on the speed up 
ratio is theoretically and practically discussed. Mathematical 
calculations prove that the new idea of weight normalization, 
instead of image normalization, provides good results and 
increases the speed up ratio. This is because weight normalization 
requires fewer computation steps than subimage normalization. 

Moreover, for neural networks, normalization of weights can be 
easily done off line before starting the search process.  
 
In section II, fast neural networks for pattern detection are 
described. Subimage normalization in the frequency domain 
through normalization of weights is presented in section III.  The 
effect of weight normalization on the speed up ratio is presented in 
section IV. 

 
 

II. Fast Neural Networks  

Finding a certain pattern in the input image is a search problem. 
Each subimage in the input image is tested for the presence or 
absence of the required pattern. At each pixel position in the input 
image each subimage is multiplied by a window of weights, which 
has the same size as the subimage.  The outputs of neurons in the 
hidden layer are multiplied by the weights of the output layer. A 
high output implies that the tested subimage contains the required 
pattern and vice versa. Thus, we may conclude that this  searching 
problem is cross correlation between the image under test and the 
weights of the hidden neurons.   

The convolution theorem in mathematical analysis says that a 
convolution of f with h is identical to the result of the following 
steps: let F and H be the results of the Fourier transformation of f 
and h in the frequency domain. Multiply F and H in the frequency 
domain point by point and then transform this product into spatial 
domain via the inverse Fourier transform [1]. As a result, these 
cross correlations can be represented by a product in the frequency 
domain. Thus, by using cross correlation in the frequency domain 
a speed up in an order of magnitude can be achieved during the 
detection process [1-4].      

In the detection phase, a subimage X of size mxn (sliding window) 
is extracted from the tested image, which has a size PxT, and fed 
to the neural network. Let Wi be the vector of weights between the 
input subimage and the hidden layer. This vector has a size of mxn 
and can be represented as mxn matrix. The output of hidden 
neurons h(i) can be calculated as follows:  
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where g is the activation function and b(i) is the bias of each 
hidden neuron (i). Eq.1 represents the output of each hidden 
neuron for a particular subimage I. It can be computed for the 
whole image Ψ as follows: 
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Eq. (2) represents a cross correlation operation. Given any two 
functions f and g, their cross correlation can be obtained by: 
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Therefore, Eq. (2) can be written as follows: 
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where hi is the output of the hidden neuron (i) and hi (u,v) is the 
activity of the hidden unit (i) when the sliding window is located at 
position (u,v) in the input image Ψ and (u,v)∈[P-m+1,T-n+1].  

Now, the above cross correlation can be expressed in terms of the 
Fourier Transform: 

( ) ( )( )iW*FF1FiW
� �

•−=⊗             (5) 

(*) means the conjugate of the FFT for the weight matrix. Hence, 
by evaluating this cross correlation, a speed up ratio can be 
obtained comparable to conventional neural networks. Also, the 
final output of the neural network can be evaluated as follows:  
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where q is the number of neurons in  the hidden layer. O(u,v) is the 
output of the neural network when the sliding window located at 
the position (u,v) in the input image Ψ. Wo is the weight matrix 
between hidden and output layer. 

The complexity of cross correlation in the frequency domain can 
be analyzed as follows: 

1. For a tested image of NxN pixels, the 2D-FFT requires a number 
equal to N2log2N

2 of complex computation steps. Also, the same 
number of complex computation steps is required for computing 
the 2D-FFT of the weight matrix for each neuron in the hidden 
layer.  

2. At each neuron in the hidden layer, the inverse 2D-FFT is 
computed. So, q backward and (1+q) forward transforms have to 
be computed. Therefore, for an image under test, the total number 
of the 2D-FFT to compute is (2q+1)N2log2 N

2. 

3. The input image and the weights should be multiplied in the 
frequency domain. Therefore, a number of complex computation 
steps equal to qN2 should be added.  

4. The number of computation steps required by the faster neural 
networks is complex and must be converted into a real version. It 
is known that the two dimensions Fast Fourier Transform requires 
(N2/2)log2N

2 complex multiplications and N2log2N
2 complex 

additions [13,14]. Every complex multiplication is realized by six 
real floating point operations and every complex addition is 
implemented by two real floating point operations. So, the total 
number of computation steps required to obtain the 2D-FFT of an 
NxN image is: 

ρ=6((N2/2)log2N
2) + 2(N2log2N

2)             (7) 

which may be simplified to: 

ρ=N2log2N
2                        (8) 

Performing complex dot product in the frequency domain also 
requires 6qN2 real operations. 

5. In order to perform cross correlation in the frequency domain, 
the weight matrix must have the same size as the input image. So, 
a number of zeros = (N2-n2) must be added to the weight matrix. 
This requires a total real number of computation steps = q(N2-n2) 
for all neurons. Moreover, after computing the 2D-FFT for the 
weight matrix, the conjugate of this matrix must be obtained. So, a 
real number of computation steps =qN2 should be added in order to 
obtain the conjugate of the weight matrix for all neurons.  Also, a 
number of real computation steps equal to N is required to create 
butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These 
(N/2) complex numbers are multiplied by the elements of the input 
image or by previous complex numbers during the computation of 
the 2D-FFT. To create a complex number requires two real 
floating point operations. So, the total number of computation 
steps required for the faster neural networks becomes: 

σ=(2q+1)(5N2log2N
2) +6qN2+q(N2-n2)+qN2 +N      (9) 

which can be reformulated as: 

σ=(2q+1)(5N2log2N
2) +q(8N2-n2) +N        (10) 

6. Using a sliding window of size nxn for the same image of NxN 
pixels, q(2n2-1)(N-n+1)2 computation steps are required when 
using traditional neural networks for face/object detection process. 
The theoretical speed up factor η can be evaluated as follows: 

   N )2n-2q(8N )2N2log21)(5N(2q

 2 1)n-1)(N-2q(2n�
+++

+=    (11) 

The theoretical speed up ratio (Eq. 11) with different sizes of the 
input image and different in size weight matrices is listed in Table 
1. Practical speed up ratio for manipulating images of different 
sizes and different in size weight matrices is listed in Table 2 using 
700 MHz processor and MATLAB ver 5.3.  
In practical implementation, the multiplication process consumes 
more time than the addition one. The effect of the number of 
multiplications required for conventional neural networks in the 
speed up ratio (Eq. 11) is more than the number of of 

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)



multiplication steps required by the faster neural networks. In 
order to clear this, the following equation (ηm) describes the 
relation between the number of multiplication steps required by 
conventional and faster neural networks: 
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The results listed in Table 3 prove that the effect of the number of 
multiplication steps in case of conventional neural networks is 
more than faster neural networks and this the reason why practical 
speed up ratio is larger than theoretical speed up ratio. 

For general fast cross correlation the speed up ratio becomes in the 
following form: 
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where τ is a small number depends on the size of the weight 
matrix. General cross correlation means that the process starts 
from the first element in the input matrix. The  theoretical speed up 
ratio for general fast cross correlation Eq. (13) is shown in Table 4. 
Compared with MATLAB cross correlation function (xcorr2), 
experimental results show that the our proposed algorithm is faster 
than this function as shown in Table 5. 

The authors in [9,11,12] have proposed a multilayer perceptron 
(MLP) algorithm for fast face/object detection. The same authors 
claimed incorrect equation for cross correlation between the input 
image and the weights of the neural networks. They introduced 
formulas for the number of computation steps needed by 
conventional and faster neural networks. Then, they established an 
equation for the speed up ratio. Unfortunately, these formulas 
contain many errors which lead to invalid speed up ratio. Other 
authors developed their work based on these incorrect equations 
[1,2]. So, the fact that these equations are not valid must be cleared 
to all researchers. It is not only very important but also urgent to 
notify other researchers not to do research based on wrong 
equations.  

The authors in [9,11,12] analyzed their proposed fast neural 
network as follows: For a tested image of NxN pixels, the    2D-
FFT requires O(N2(log2N)2) computation steps. For the weight 
matrix Wi, the 2D-FFT can be computed off line since these are 
constant parameters of the network independent of the tested 
image. The 2D-FFT of the tested image must be computed. As a 
result, q backward and one forward transforms have to be 
computed. Therefore, for a tested image, the total number of the 
2D-FFT to compute is (q+1)N2(log2N)2 [9,12]. In addition, the 
input image and the weights should be multiplied in the frequency 
domain. Therefore, computation steps of (qN2) should be added. 
This yields a total of O((q+1)N2(log2N)2+qN2) computation steps 
for the fast neural network [9,11]. 

 Using sliding window of size nxn, for the same image of NxN 
pixels, qN2n2 computation steps are required when using 
traditional neural networks for the face detection process. They 
evaluated theoretical speed up factor η as follows [9]: 

N21)log(q
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The speed up factor introduced in [9] and given by Eq.14 is not 
correct for the following reasons: 

a) The number of computation steps required for the 2D-FFT is 
O(N2log2N

2) and not O(N2log2N) as presented in [9,11].  Also, 
this is not a typing error as the curve in Fig.2 in [9] realizes 
Eq.7, and the curves in Fig.15 in [11] realize Eq.31 and Eq.32 
in [11]. 

b) Also, the speed up ratio presented in [9] not only contains an 
error but also is not precise. This is because for faster neural 
networks, the term (6qN2) corresponds to complex dot product 
in the frequency domain must be added. Such term has a great 
effect on the speed up ratio. Adding only qN2 as stated in [11] 
is not correct since a one complex multiplication requires six 
real computation steps. 

c) For conventional neural networks, the number of operations is 
(q(2n2-1)(N-n+1)2) and not (qN2n2). The term n2 is required for 
multiplication of n2 elements (in the input window) by n2 
weights which results in another new n2 elements. Adding 
these n2 elements, requires another (n2-1) steps. So, the total 
computation steps needed for each window is (2n2-1). The 
search operation for a face in the input image uses a window 
with nxn weights. This operation is done at each pixel in the 
input image. Therefore, such process is repeated (N-n+1)2 

times and not N 2 as stated in [9,12]. 

d) Before applying cross correlation, the 2D-FFT of the weight 
matrix must be computed. Because of the dot product, which is 
done in the frequency domain, the size of weight matrix should 
be increased to be the same as the size of the input image. 
Computing the 2D-FFT of the weight matrix off line as stated 
in [9,11,12] is not practical. In this case, all of the input images 
must have the same size. As a result, the input image will have 
only a one fixed size. This means that, the testing time for an 
image of size 50x50 pixels will be the same as that image of 
size 1000x1000 pixels and of course, this is unreliable. 

e) It is not valid to compare number of complex computation steps 
by another of real computation steps directly. The number of 
computation steps given by pervious authors [9,11,12] for 
conventional neural networks is for real operations while that 
is required by the faster neural networks is for complex 
operations. To obtain the speed up ratio, the authors in 
[9,11,12] have divided the two formulas directly without 
converting the number of computation steps required by the 
faster neural networks into a real version.  

f) Furthermore, there are critical errors in Eq.4 (equation of cross 
correlation) in [9] and also Eq.13 in [11]. Eq. 4 in [9] which 
was defined by:  
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      is not correct because the definition of cross correlation is as 
given by Eq.3 here in this paper. Then, Eq.4 given by those 
authors in [9,11,12] which is: 
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      is also not correct and should be written as Eq. 4 given here in 
this paper. Therefore, the cross correlation in the frequency 
domain given by (Eq.5 in their paper [9]) does not represent 
Eq. 16 (Eq.4 in their paper [9]) This is because the fact that the 
operation of cross correlation is not commutative (W⊗Ψ )  
Ψ⊗W). As a result, Eq. 16 (Eq.4 in their paper [9]) does not 
give the same correct results as conventional neural networks. 
This error leads the researchers who consider the references 
[9,11,12] to think about how to modify the operation of cross 
correlation so that Eq. 16 (Eq.4 in their paper [9]) can give the 
same correct results as conventional neural networks. 
Therefore, errors in these equations must be cleared to all the 
researchers. In [2], the authors proved that a symmetry 
condition must be found in input matrices (images and the 
weights of neural networks) so that faster neural networks can 
give the same results as conventional neural networks. In case 
of symmetry W⊗Ψ=Ψ⊗W, the cross correlation becomes 
commutative and this is a valuable achievement. In this case, 
the cross correlation is performed without any constrains on 
the arrangement of matrices. As presented in [1], this 
symmetry condition is useful for reducing the number of 
patterns that neural networks will learn. This is because the 
image is converted into symmetric shape by rotating it down 
and then the up image and its rotated down version are tested 
together as one (symmetric) image. If a pattern is detected in 
the rotated down image, then, this means that this pattern is 
found at the relative position in the up image. So, if 
conventional neural networks are trained for up and rotated 
down examples of the pattern, faster neural networks will be 
trained only to up examples. As the number of trained 
examples is reduced, the number of neurons in the hidden 
layer will be reduced and the neural network will be faster in 
the test phase compared with conventional neural networks.  

g) Moreover, the authors in [9,11,12] stated that the activity of 
each neuron in the hidden layer Eq. 16 (Eq.4 in their paper [9]) 
can be expressed in terms of convolution between a bank of 
filter (weights) and the input image. This is not correct because 
the activity of the hidden neuron is a cross correlation between 
the input image and the weight matrix. It is known that the 
result of cross correlation between any two functions is 
different from their convolution. As we proved in [1,2] the two 
results will be the same, only when the two matrices are 
symmetric or at least the weight matrix is symmetric.  

h) Images are tested for the presence of a face (object) at different 
scales by building a pyramid of the input image which 
generates a set of images at different resolutions. The face 
detector is then applied at each resolution and this process 
takes much more time as the number of processing steps will 

be increased. In [9,11,12], the authors stated that the Fourier 
transforms of the new scales do not need to be computed. This 
is due to a property of the Fourier transform. If z(x,y) is the 
original and a(x,y) is the sub-sampled by a factor of 2 in each 
direction image then: 

z(2x,2y)y)a(x, =                           (17) 
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      This implies that we do not need to recompute the Fourier 

transform of the sub-sampled images, as it can be directly 
obtained from the original Fourier transform. But experimental 
results have shown that Eq.17 is valid only for images in the 
following form: 

000
000
000
00

1

2

333
333
333
33

4

5

=

............Y.........YXXSS

............Y.........YXXSS

.

.

.

.

....................CCBBAA

....................CCBBAA

6
          (20) 

      In [9], the author claimed that the processing needs 
O((q+2)N2log2N) additional number of computation steps. 
Thus the speed up ratio will be [9]: 

N2)log(q

qn
2

27
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      Of course this is not correct, because the inverse of the Fourier 
transform is required to be computed at each neuron in the 
hidden layer (for the resulted matrix from the dot product 
between the Fourier matrix in two dimensions of the input 
image and the Fourier matrix in two dimensions of the 
weights, the inverse of the Fourier transform must be 
computed). So, the term (q+2) in Eq.21 should be (2q+1) 
because the inverse 2D-FFT in two dimensions must be done 
at each neuron in the hidden layer. In this case, the number of 
computation steps required to perform 2D-FFT for the faster 
neural networks will be: 

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2       (22) 

      In addition, a number of computation steps equal to 
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the number 
of computation steps required by the faster neural networks. 
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III. Subimage Normalization in the Frequency Domain 

In [6], the authors stated that image normalization to avoid weak 
or strong illumination could not be done in the frequency space. 
This is because the image normalization is local and not easily 
computed in the Fourier space of the whole image. Here, a simple 
method for image normalization is presented. Normalizing the 
image can be obtained by centering and normalizing the weights as 
follows: 

Let X rc

_
 be the zero-mean centered subimage located at (r,c) in 

the input image ψ: 

rcxrcXrcX −=                     (23) 

where, xrc  is the mean value of the sub image located at position 
(r,c). We are interested in computing the dot multiplication 

between the subimage Xrc  and the weights Wi the of hidden 
layer as follows: 

iWrcxiWrcXiWrcX •−•=•          (24) 

where,  

2n

n

1jk,
j)(k,

rc
X

rcx

8
==                 (25) 

The dot multiplication denoted by (•) is not a matrix multiplication 
but is done element-wise (multiply each element in the first matrix 
by its corresponding element at the same position in the second 
matrix and sum up the results to obtain a one final value). 
 
Combining Eq. (24) and Eq. (25), we get the following expression: 

iW2n
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−•=•         (26) 

For any two matrices with the same size, multiplying the first 
matrix dot by the mean of the second and summing the results the 
same as multiplying the second matrix dot by the mean of the first 
one and summing the results of multiplication. Therefore, Eq. (26) 
can be written as: 
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The zero mean weights are given by: 
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Also, Eq. (27) can be written as: 
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So, we may conclude that: 

iWrcXiWrcX •=•                (30) 

which means that multiplying a normalized image with a non-
normalized weight matrix dot multiplication is equal to the dot 
multiplication of the non – normalized image with the non-
normalized weight matrix. 
 
 

IV. Effect of Weight Normalization on the Speed up 
Ratio 

Normalization of subimages in the spatial domain (in case of using 
traditional neural networks) requires 2n2(N-n+1)2 computation 
steps. On the other hand, normalization of subimages in the 
frequency domain through normalizing the weights of the neural 
networks requires 2qn2 operations. This proves that local image 
normalization in the frequency domain is faster than that in the 
spatial one. By using weight normalization, the speed up ratio for 
image normalization Γ can be calculated as:  

 

q
1)n(NC 2+−

=                     (31) 

The speed up ratio of the normalization process for images of 
different sizes is listed in Table 6. As a result, we may conclude 
that: 

1- Using this technique, normalization in the frequency domain 
can be done through normalizing the weights in spatial domain.  

2- Normalization of an image through normalization of weights is 
faster than normalization of each subimage.  

3- Normalization of weights can be done off line. So, the speed up 
ratio in the case of weight normalization can be calculated as 
follows: 

 
a) For Conventional Neural Networks:  

The speed up ratio equals the number of computation steps 
required by conventional neural networks with image 
normalization divided by the number of computation steps needed 
by conventional neural networks with weight normalization, which 
is done off line. The speed up ratio D c in this case can be given by: 

22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2nE
+−−
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=     (32) 

which can be simplified to: 
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b) For Fast Neural Networks: 

The over all speed up ratio equals the number of computation steps 
required by conventional neural networks with image 
normalization divided by the number of computation steps needed 
by fast neural networks with weight normalization, which is done 
off line. The over all speed up ratio D o can be given by: 
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which can be simplified to: 
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The relation between the speed up ratio before ( I ) and after ( I o) 
the normalization process can be summed up as: 

   N)n-q(8N)Nlog1)(5N(2q
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The overall speed up ratio (Eq. 36) with images of different sizes 
and different sizes of windows is listed in Table 7. We can easily 
note that the speed up ratio in case of image normalization through 
weight normalization is larger than the speed up ratio (without 
normalization) listed in Table 1. This means that the search 
process with normalized faster neural networks is done faster than 
conventional neural networks with or without normalization of the 
input image. The overall practical speed up ratio (Eq. 36) after 
normalization of weights off line is listed in Table 8.  

 

V. Conclusion 
Normalized neural networks for fast pattern detection in a given 
image have been presented. It has been proved mathematically and 
practically that the speed of the detection process becomes faster 
than conventional neural networks. This has been accomplished by 
applying cross correlation in the frequency domain between the 
input image and the normalized input weights of the neural 
networks. Furthermore, a new general formulas for fast cross 
correlation as well as the speed up ratio have been given. Also, the 
problem of local subimage normalization in the frequency space 
has been solved. Moreover, it has been generally proved that the 
speed up ratio in the case of image normalization through 
normalization of weights is faster than subimage normalization in 
the spatial domain. This speed up ratio is faster than the one 
obtained without normalization. Simulation results have confirmed 
the theoretical computations by using MATLAB. The proposed 

approach can be applied to detect the presence/absence of any 
other object in an image. 
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Table 1: The theoretical speed up ratio for images with different sizes. 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 

 

Table 2: Practical Speed up ratio for images with different sizes Using MATLAB ver 5.3. 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 

 

Table 3: A comparison between the number of multiplication steps required for conventional and faster neural networks to manipulate images 
with different sizes (n=20, q=30). 

Image size Conventional Neural Nets Fast Neural Nets Speed up ratio (ηm) 

100x100 7.8732e+007 2.6117e+007 3.01 
200x200 3.9313e+008 1.1911e+008 3.30 
300x300 9.4753e+008 2.8726e+008 3.29 
400x400 1.7419e+009 5.3498e+008 3.26 
500x500 2.7763e+009 8.6537e+008 3.21 
600x600 4.0507e+009 1.2808e+009 3.16 
700x700 5.5651e+009 1.7832e+009 3.12 
800x800 7.3195e+009 2.3742e+009 3.08 
900x900 9.3139e+009 3.0552e+009 3.05 

1000x1000 1.1548e+010 3.8275e+009 3.02 

 

Table 4: The theoretical speed up ratio for the general fast cross correlation algorithm. 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 5.59 8.73 11.95 
200x200 4.89 7.64 10.75 
300x300 4.56 7.12 10.16 
400x400 4.35 6.80 9.68 
500x500 4.20 6.56 9.37 
600x600 4.08 6.38 9.13 
700x700 4.00 6.24 8.94 
800x800 3.92 6.12 8.77 
900x900 3.85 6.02 8.63 

1000x1000 3.79 5.93 8.51 
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Table 5:  Simulation results of the speed up ratio for the general fast cross correlation compared with the MATLAB cross correlation function 
(xcorr2). 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 10.14  13.05   16.49  
200x200 9.17  11.92  14.33   
300x300 8.25  10.83  13.41  
400x400 7.91  9.62  12.65  
500x500 6.77  9.24  11.77  
600x600 6.46  8.89  11.19  
700x700 5.99  8.47  10.96  
800x800 5.48  8.74  10.32  
900x900 5.31  8.43  10.66  

1000x1000 5.91  8.66  10.51  
 

Table 6:  The speed up ratio of the normalization process for images of different sizes (n=20,q=30). 

Image size Speed up ratio  

100x100 219 
200x200 1092  
300x300 2632 
400x400 4839  
500x500 7712 
600x600 11252 
700x700 15459 
800x800 20332 
900x900 25872 

1000x1000 32079 
 

Table 7: Theoretical results for the speed up ratio in case of image normalization by normalizing the input weights. 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 3.79 5.21 6.55 
200x200 4.14 6.12 8.32 
300x300 4.13 6.23 8.65 
400x400 4.08 6.21 8.70 
500x500 4.02 6.15 8.67 
600x600 3.96 6.08 8.61 
700x700 3.90 6.01 8.53 
800x800 3.86 5.95 8.46 
900x900 3.81 5.89 8.39 

1000x1000 3.77 5.84 8.32 
 

Table 8: Simulation results for the speed up ratio in case of image normalization by normalizing the input weights. 

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 8.91 12.03 16.74 
200x200 7.43 10.42 15.39 
300x300 6.72 9.72 14.45 
400x400 5.99 8.61 13.59 
500x500 5.75 8.32 12.94 
600x600 5.61 8.09 11.52 
700x700 5.49 7.97 11.04 
800x800 5.41 7.83 10.74 
900x900 5.32 7.71 10.56 

1000x1000 5.29 7.58 10.45 
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