
A Novel Model of Neural Networks for Fast Data Detection

Hazem M. El-Bakry

Faculty of Computer Science & Information Systems,
Mansoura University, EGYPT

Nikos Mastorakis

Department of Computer Science,
Military Institutions of University Education (MIUE) -

Hellenic Naval Academy, Greece

 Abstract- Neural networks have shown good results for
detection of a certain pattern in a given image. In our
previous paper, a fast algorithm for object/face detection was
presented. Such algorithm was designed based on cross
correlation in the frequency domain between the input image
and the weights of neural networks. In this paper, a simple
design for solving the problem of local subimage
normalization in the frequency domain is presented.
Furthermore, the effect of image normalization on the speed
up ratio of pattern detection is presented. Simulation results
show that local subimage normalization through weight
normalization is faster than subimage normalization in the
spatial domain. Moreover, the overall speed up ratio of the
detection process is increased as the normalization of
weights is done off line.

Keywords: Fast Neural Networks, Cross Correlation, Frequency
Domain, Subimage Normalization

I. Introduction

Pattern detection is a fundamental step before pattern recognition.
Its reliability and performance have a major influence in a whole
pattern recognition system. Nowadays, neural networks have
shown very good results for detecting a certain pattern in a given
image [3,6,10]. But the problem with neural networks is that the
computational complexity is very high because the networks have
to process many small local windows in the images [5,7]. In our
pervious papers, we presented fast neural networks based on
applying cross correlation in the frequency domain between the
input image and the input weights of neural networks. It was
proved that the speed of these networks is much faster than
conventional neural networks [1-4]. It was also proved that fast
neural networks introduced by previous authors [9,11,12] are not
correct. The reasons for this were given in [2].

The problem of subimage (local) normalization in the Fourier
space was presented in [8]. Here, a simple method for solving this
problem is presented. By using the proposed algorithm, the
number of computation steps required for weight normalization
becomes less than that needed for image normalization.
Furthermore, the effect of weight normalization on the speed up
ratio is theoretically and practically discussed. Mathematical
calculations prove that the new idea of weight normalization,
instead of image normalization, provides good results and
increases the speed up ratio. This is because weight normalization
requires fewer computation steps than subimage normalization.

Moreover, for neural networks, normalization of weights can be
easily done off line before starting the search process.

In section II, fast neural networks for pattern detection are
described. Subimage normalization in the frequency domain
through normalization of weights is presented in section III. The
effect of weight normalization on the speed up ratio is presented in
section IV.

II. Fast Neural Networks

Finding a certain pattern in the input image is a search problem.
Each subimage in the input image is tested for the presence or
absence of the required pattern. At each pixel position in the input
image each subimage is multiplied by a window of weights, which
has the same size as the subimage. The outputs of neurons in the
hidden layer are multiplied by the weights of the output layer. A
high output implies that the tested subimage contains the required
pattern and vice versa. Thus, we may conclude that this searching
problem is cross correlation between the image under test and the
weights of the hidden neurons.

The convolution theorem in mathematical analysis says that a
convolution of f with h is identical to the result of the following
steps: let F and H be the results of the Fourier transformation of f
and h in the frequency domain. Multiply F and H in the frequency
domain point by point and then transform this product into spatial
domain via the inverse Fourier transform [1]. As a result, these
cross correlations can be represented by a product in the frequency
domain. Thus, by using cross correlation in the frequency domain
a speed up in an order of magnitude can be achieved during the
detection process [1-4].

In the detection phase, a subimage X of size mxn (sliding window)
is extracted from the tested image, which has a size PxT, and fed
to the neural network. Let Wi be the vector of weights between the
input subimage and the hidden layer. This vector has a size of mxn
and can be represented as mxn matrix. The output of hidden
neurons h(i) can be calculated as follows:

���
����

���
=

+

�
=

=
m

1j ibk)k)X(j,(j,
n

1k
iWgih (1)

where g is the activation function and b(i) is the bias of each
hidden neuron (i). Eq.1 represents the output of each hidden
neuron for a particular subimage I. It can be computed for the
whole image Ψ as follows:

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

��	

���

 �
−=

�
−=

+++=
m/2

m/2j

n/2

n/2k
i bk)vj,(u

�
 k)(j,iWgv)(u,ih

(2)

Eq. (2) represents a cross correlation operation. Given any two
functions f and g, their cross correlation can be obtained by:




 �∞
∞−=

�∞
∞−=

++

=⊗

m n
n)n)g(m,ym,f(x

y)g(x,y)f(x,

 (3)

Therefore, Eq. (2) can be written as follows:

()ibiW
�

gih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v) is the
activity of the hidden unit (i) when the sliding window is located at
position (u,v) in the input image Ψ and (u,v)∈[P-m+1,T-n+1].

Now, the above cross correlation can be expressed in terms of the
Fourier Transform:

() ()()iW*FF1FiW
� �

•−=⊗ (5)

(*) means the conjugate of the FFT for the weight matrix. Hence,
by evaluating this cross correlation, a speed up ratio can be
obtained comparable to conventional neural networks. Also, the
final output of the neural network can be evaluated as follows:

����������
=

+=
q

1i
obv)(u,ih (i)oWgv)O(u, (6)

where q is the number of neurons in the hidden layer. O(u,v) is the
output of the neural network when the sliding window located at
the position (u,v) in the input image Ψ. Wo is the weight matrix
between hidden and output layer.

The complexity of cross correlation in the frequency domain can
be analyzed as follows:

1. For a tested image of NxN pixels, the 2D-FFT requires a number
equal to N2log2N

2 of complex computation steps. Also, the same
number of complex computation steps is required for computing
the 2D-FFT of the weight matrix for each neuron in the hidden
layer.

2. At each neuron in the hidden layer, the inverse 2D-FFT is
computed. So, q backward and (1+q) forward transforms have to
be computed. Therefore, for an image under test, the total number
of the 2D-FFT to compute is (2q+1)N2log2 N

2.

3. The input image and the weights should be multiplied in the
frequency domain. Therefore, a number of complex computation
steps equal to qN2 should be added.

4. The number of computation steps required by the faster neural
networks is complex and must be converted into a real version. It
is known that the two dimensions Fast Fourier Transform requires
(N2/2)log2N

2 complex multiplications and N2log2N
2 complex

additions [13,14]. Every complex multiplication is realized by six
real floating point operations and every complex addition is
implemented by two real floating point operations. So, the total
number of computation steps required to obtain the 2D-FFT of an
NxN image is:

ρ=6((N2/2)log2N
2) + 2(N2log2N

2) (7)

which may be simplified to:

ρ=N2log2N
2 (8)

Performing complex dot product in the frequency domain also
requires 6qN2 real operations.

5. In order to perform cross correlation in the frequency domain,
the weight matrix must have the same size as the input image. So,
a number of zeros = (N2-n2) must be added to the weight matrix.
This requires a total real number of computation steps = q(N2-n2)
for all neurons. Moreover, after computing the 2D-FFT for the
weight matrix, the conjugate of this matrix must be obtained. So, a
real number of computation steps =qN2 should be added in order to
obtain the conjugate of the weight matrix for all neurons. Also, a
number of real computation steps equal to N is required to create
butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These
(N/2) complex numbers are multiplied by the elements of the input
image or by previous complex numbers during the computation of
the 2D-FFT. To create a complex number requires two real
floating point operations. So, the total number of computation
steps required for the faster neural networks becomes:

σ=(2q+1)(5N2log2N
2) +6qN2+q(N2-n2)+qN2 +N (9)

which can be reformulated as:

σ=(2q+1)(5N2log2N
2) +q(8N2-n2) +N (10)

6. Using a sliding window of size nxn for the same image of NxN
pixels, q(2n2-1)(N-n+1)2 computation steps are required when
using traditional neural networks for face/object detection process.
The theoretical speed up factor η can be evaluated as follows:

 N)2n-2q(8N)2N2log21)(5N(2q

 2 1)n-1)(N-2q(2n�
+++

+= (11)

The theoretical speed up ratio (Eq. 11) with different sizes of the
input image and different in size weight matrices is listed in Table
1. Practical speed up ratio for manipulating images of different
sizes and different in size weight matrices is listed in Table 2 using
700 MHz processor and MATLAB ver 5.3.
In practical implementation, the multiplication process consumes
more time than the addition one. The effect of the number of
multiplications required for conventional neural networks in the
speed up ratio (Eq. 11) is more than the number of of

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

multiplication steps required by the faster neural networks. In
order to clear this, the following equation (ηm) describes the
relation between the number of multiplication steps required by
conventional and faster neural networks:

22
2

2

22

6qN)Nlog1)(3N(2q

1)n(Nqn
m
�

++
+−= (12)

The results listed in Table 3 prove that the effect of the number of
multiplication steps in case of conventional neural networks is
more than faster neural networks and this the reason why practical
speed up ratio is larger than theoretical speed up ratio.

For general fast cross correlation the speed up ratio becomes in the
following form:

�)(N)2n-2�)q(8(N)2�)(N2log2�)1)(5(N(2q

21)N2q(2n

�
+++++++

−

=

 (13)

where τ is a small number depends on the size of the weight
matrix. General cross correlation means that the process starts
from the first element in the input matrix. The theoretical speed up
ratio for general fast cross correlation Eq. (13) is shown in Table 4.
Compared with MATLAB cross correlation function (xcorr2),
experimental results show that the our proposed algorithm is faster
than this function as shown in Table 5.

The authors in [9,11,12] have proposed a multilayer perceptron
(MLP) algorithm for fast face/object detection. The same authors
claimed incorrect equation for cross correlation between the input
image and the weights of the neural networks. They introduced
formulas for the number of computation steps needed by
conventional and faster neural networks. Then, they established an
equation for the speed up ratio. Unfortunately, these formulas
contain many errors which lead to invalid speed up ratio. Other
authors developed their work based on these incorrect equations
[1,2]. So, the fact that these equations are not valid must be cleared
to all researchers. It is not only very important but also urgent to
notify other researchers not to do research based on wrong
equations.

The authors in [9,11,12] analyzed their proposed fast neural
network as follows: For a tested image of NxN pixels, the 2D-
FFT requires O(N2(log2N)2) computation steps. For the weight
matrix Wi, the 2D-FFT can be computed off line since these are
constant parameters of the network independent of the tested
image. The 2D-FFT of the tested image must be computed. As a
result, q backward and one forward transforms have to be
computed. Therefore, for a tested image, the total number of the
2D-FFT to compute is (q+1)N2(log2N)2 [9,12]. In addition, the
input image and the weights should be multiplied in the frequency
domain. Therefore, computation steps of (qN2) should be added.
This yields a total of O((q+1)N2(log2N)2+qN2) computation steps
for the fast neural network [9,11].

 Using sliding window of size nxn, for the same image of NxN
pixels, qN2n2 computation steps are required when using
traditional neural networks for the face detection process. They
evaluated theoretical speed up factor η as follows [9]:

N21)log(q

2qn
+

= (14)

The speed up factor introduced in [9] and given by Eq.14 is not
correct for the following reasons:

a) The number of computation steps required for the 2D-FFT is
O(N2log2N

2) and not O(N2log2N) as presented in [9,11]. Also,
this is not a typing error as the curve in Fig.2 in [9] realizes
Eq.7, and the curves in Fig.15 in [11] realize Eq.31 and Eq.32
in [11].

b) Also, the speed up ratio presented in [9] not only contains an
error but also is not precise. This is because for faster neural
networks, the term (6qN2) corresponds to complex dot product
in the frequency domain must be added. Such term has a great
effect on the speed up ratio. Adding only qN2 as stated in [11]
is not correct since a one complex multiplication requires six
real computation steps.

c) For conventional neural networks, the number of operations is
(q(2n2-1)(N-n+1)2) and not (qN2n2). The term n2 is required for
multiplication of n2 elements (in the input window) by n2
weights which results in another new n2 elements. Adding
these n2 elements, requires another (n2-1) steps. So, the total
computation steps needed for each window is (2n2-1). The
search operation for a face in the input image uses a window
with nxn weights. This operation is done at each pixel in the
input image. Therefore, such process is repeated (N-n+1)2

times and not N 2 as stated in [9,12].

d) Before applying cross correlation, the 2D-FFT of the weight
matrix must be computed. Because of the dot product, which is
done in the frequency domain, the size of weight matrix should
be increased to be the same as the size of the input image.
Computing the 2D-FFT of the weight matrix off line as stated
in [9,11,12] is not practical. In this case, all of the input images
must have the same size. As a result, the input image will have
only a one fixed size. This means that, the testing time for an
image of size 50x50 pixels will be the same as that image of
size 1000x1000 pixels and of course, this is unreliable.

e) It is not valid to compare number of complex computation steps
by another of real computation steps directly. The number of
computation steps given by pervious authors [9,11,12] for
conventional neural networks is for real operations while that
is required by the faster neural networks is for complex
operations. To obtain the speed up ratio, the authors in
[9,11,12] have divided the two formulas directly without
converting the number of computation steps required by the
faster neural networks into a real version.

f) Furthermore, there are critical errors in Eq.4 (equation of cross
correlation) in [9] and also Eq.13 in [11]. Eq. 4 in [9] which
was defined by:

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

!!"
#$$%& '∞

∞−=

'∞
∞−=

++=⊗
m n

n)ym,n)g(xf(m,y)g(x,y)f(x,

(15)

 is not correct because the definition of cross correlation is as
given by Eq.3 here in this paper. Then, Eq.4 given by those
authors in [9,11,12] which is:

 ()ib
(

iWgih +⊗= (16)

 is also not correct and should be written as Eq. 4 given here in
this paper. Therefore, the cross correlation in the frequency
domain given by (Eq.5 in their paper [9]) does not represent
Eq. 16 (Eq.4 in their paper [9]) This is because the fact that the
operation of cross correlation is not commutative (W⊗Ψ)
Ψ⊗W). As a result, Eq. 16 (Eq.4 in their paper [9]) does not
give the same correct results as conventional neural networks.
This error leads the researchers who consider the references
[9,11,12] to think about how to modify the operation of cross
correlation so that Eq. 16 (Eq.4 in their paper [9]) can give the
same correct results as conventional neural networks.
Therefore, errors in these equations must be cleared to all the
researchers. In [2], the authors proved that a symmetry
condition must be found in input matrices (images and the
weights of neural networks) so that faster neural networks can
give the same results as conventional neural networks. In case
of symmetry W⊗Ψ=Ψ⊗W, the cross correlation becomes
commutative and this is a valuable achievement. In this case,
the cross correlation is performed without any constrains on
the arrangement of matrices. As presented in [1], this
symmetry condition is useful for reducing the number of
patterns that neural networks will learn. This is because the
image is converted into symmetric shape by rotating it down
and then the up image and its rotated down version are tested
together as one (symmetric) image. If a pattern is detected in
the rotated down image, then, this means that this pattern is
found at the relative position in the up image. So, if
conventional neural networks are trained for up and rotated
down examples of the pattern, faster neural networks will be
trained only to up examples. As the number of trained
examples is reduced, the number of neurons in the hidden
layer will be reduced and the neural network will be faster in
the test phase compared with conventional neural networks.

g) Moreover, the authors in [9,11,12] stated that the activity of
each neuron in the hidden layer Eq. 16 (Eq.4 in their paper [9])
can be expressed in terms of convolution between a bank of
filter (weights) and the input image. This is not correct because
the activity of the hidden neuron is a cross correlation between
the input image and the weight matrix. It is known that the
result of cross correlation between any two functions is
different from their convolution. As we proved in [1,2] the two
results will be the same, only when the two matrices are
symmetric or at least the weight matrix is symmetric.

h) Images are tested for the presence of a face (object) at different
scales by building a pyramid of the input image which
generates a set of images at different resolutions. The face
detector is then applied at each resolution and this process
takes much more time as the number of processing steps will

be increased. In [9,11,12], the authors stated that the Fourier
transforms of the new scales do not need to be computed. This
is due to a property of the Fourier transform. If z(x,y) is the
original and a(x,y) is the sub-sampled by a factor of 2 in each
direction image then:

z(2x,2y)y)a(x, = (17)

y))FT(z(x,v)Z(u, = (18)

*+,-./
==

2
v

,
2
u

Z
4
1

v)A(u,y))FT(a(x, (19)

 This implies that we do not need to recompute the Fourier

transform of the sub-sampled images, as it can be directly
obtained from the original Fourier transform. But experimental
results have shown that Eq.17 is valid only for images in the
following form:

000
000
000
00

1

2

333
333
333
33

4

5

=

............Y.........YXXSS

............Y.........YXXSS

.

.

.

.

....................CCBBAA

....................CCBBAA

6
 (20)

 In [9], the author claimed that the processing needs
O((q+2)N2log2N) additional number of computation steps.
Thus the speed up ratio will be [9]:

N2)log(q

qn
2

27
+

= (21)

 Of course this is not correct, because the inverse of the Fourier
transform is required to be computed at each neuron in the
hidden layer (for the resulted matrix from the dot product
between the Fourier matrix in two dimensions of the input
image and the Fourier matrix in two dimensions of the
weights, the inverse of the Fourier transform must be
computed). So, the term (q+2) in Eq.21 should be (2q+1)
because the inverse 2D-FFT in two dimensions must be done
at each neuron in the hidden layer. In this case, the number of
computation steps required to perform 2D-FFT for the faster
neural networks will be:

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2 (22)

 In addition, a number of computation steps equal to
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the number
of computation steps required by the faster neural networks.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

III. Subimage Normalization in the Frequency Domain

In [6], the authors stated that image normalization to avoid weak
or strong illumination could not be done in the frequency space.
This is because the image normalization is local and not easily
computed in the Fourier space of the whole image. Here, a simple
method for image normalization is presented. Normalizing the
image can be obtained by centering and normalizing the weights as
follows:

Let X rc

_
 be the zero-mean centered subimage located at (r,c) in

the input image ψ:

rcxrcXrcX −= (23)

where, xrc is the mean value of the sub image located at position
(r,c). We are interested in computing the dot multiplication

between the subimage Xrc and the weights Wi the of hidden
layer as follows:

iWrcxiWrcXiWrcX •−•=• (24)

where,

2n

n

1jk,
j)(k,

rc
X

rcx

8
== (25)

The dot multiplication denoted by (•) is not a matrix multiplication
but is done element-wise (multiply each element in the first matrix
by its corresponding element at the same position in the second
matrix and sum up the results to obtain a one final value).

Combining Eq. (24) and Eq. (25), we get the following expression:

iW2n

n

1jk,
j)(k,rcX

iWrcXiWrcX •

9
=

−•=• (26)

For any two matrices with the same size, multiplying the first
matrix dot by the mean of the second and summing the results the
same as multiplying the second matrix dot by the mean of the first
one and summing the results of multiplication. Therefore, Eq. (26)
can be written as:

2
n

n

1jk,

j)(k,iW

rcXiWrcXiWrcX

:
=

•−•=• (27)

The zero mean weights are given by:

2
n

n

1jk,

j)(k,iW

iWiW

;
=

−= (28)

Also, Eq. (27) can be written as:

<<<
<<<
<

=

>

???
???
?

@

A B
=

−•=•
2

n

n

1jk,

j)(k,iW

iWrcXiWrcX (29)

So, we may conclude that:

iWrcXiWrcX •=• (30)

which means that multiplying a normalized image with a non-
normalized weight matrix dot multiplication is equal to the dot
multiplication of the non – normalized image with the non-
normalized weight matrix.

IV. Effect of Weight Normalization on the Speed up
Ratio

Normalization of subimages in the spatial domain (in case of using
traditional neural networks) requires 2n2(N-n+1)2 computation
steps. On the other hand, normalization of subimages in the
frequency domain through normalizing the weights of the neural
networks requires 2qn2 operations. This proves that local image
normalization in the frequency domain is faster than that in the
spatial one. By using weight normalization, the speed up ratio for
image normalization Γ can be calculated as:

q
1)n(NC 2+−

= (31)

The speed up ratio of the normalization process for images of
different sizes is listed in Table 6. As a result, we may conclude
that:

1- Using this technique, normalization in the frequency domain
can be done through normalizing the weights in spatial domain.

2- Normalization of an image through normalization of weights is
faster than normalization of each subimage.

3- Normalization of weights can be done off line. So, the speed up
ratio in the case of weight normalization can be calculated as
follows:

a) For Conventional Neural Networks:

The speed up ratio equals the number of computation steps
required by conventional neural networks with image
normalization divided by the number of computation steps needed
by conventional neural networks with weight normalization, which
is done off line. The speed up ratio D c in this case can be given by:

22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2nE
+−−

+−++−−
= (32)

which can be simplified to:

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

1)q(2n
2n

1F
2

2

c −
+= (33)

b) For Fast Neural Networks:

The over all speed up ratio equals the number of computation steps
required by conventional neural networks with image
normalization divided by the number of computation steps needed
by fast neural networks with weight normalization, which is done
off line. The over all speed up ratio D o can be given by:

 N)n-q(8N)Nlog1)(5N(2q

1)n-(N2n1)n1)(Nq(2n G
222

2
2

2222

o +++
+++−−= (34)

which can be simplified to:

 N)n-q(8N)Nlog1)(5N(2q

)2n1)q(2n (1)n(NH
222

2
2

222

o
+++

+−+−
= (35)

The relation between the speed up ratio before (I) and after (I o)
the normalization process can be summed up as:

 N)n-q(8N)Nlog1)(5N(2q

1)n(N2nJJ
222

2
2

22

o +++
+−+= (36)

The overall speed up ratio (Eq. 36) with images of different sizes
and different sizes of windows is listed in Table 7. We can easily
note that the speed up ratio in case of image normalization through
weight normalization is larger than the speed up ratio (without
normalization) listed in Table 1. This means that the search
process with normalized faster neural networks is done faster than
conventional neural networks with or without normalization of the
input image. The overall practical speed up ratio (Eq. 36) after
normalization of weights off line is listed in Table 8.

V. Conclusion
Normalized neural networks for fast pattern detection in a given
image have been presented. It has been proved mathematically and
practically that the speed of the detection process becomes faster
than conventional neural networks. This has been accomplished by
applying cross correlation in the frequency domain between the
input image and the normalized input weights of the neural
networks. Furthermore, a new general formulas for fast cross
correlation as well as the speed up ratio have been given. Also, the
problem of local subimage normalization in the frequency space
has been solved. Moreover, it has been generally proved that the
speed up ratio in the case of image normalization through
normalization of weights is faster than subimage normalization in
the spatial domain. This speed up ratio is faster than the one
obtained without normalization. Simulation results have confirmed
the theoretical computations by using MATLAB. The proposed

approach can be applied to detect the presence/absence of any
other object in an image.

References

[1] Hazem M. El-Bakry, “Fast Sub-Image Segmentation Using
Parallel Neural Processors and Image Decomposition,” Proc.
of the SPIE Vol. 5960, the International Symposium on Visual
Communication and Image Processing (VCIP), 12-15 July,
2005, Beijing, China, pp. 1712-1722.

 [2] Hazem M. El-Bakry, "Comments on Using MLP and FFT for
Fast Object/Face Detection," Proc. of IEEE IJCNN'03,
Portland, Oregon, pp. 1284-1288, July, 20-24, 2003.

[3] Hazem M. El-Bakry, "Human Iris Detection Using Fast
Cooperative Modular Neural Networks and Image
Decomposition," Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[4] Hazem M. El-Bakry, "Face detection using fast neural
networks and image decomposition," Neurocomputing
Journal, vol. 48, 2002, pp. 1039-1046.

[5] S. Srisuk and W. Kurutach, "A New Robust Face Detection in
Color Images", Proc. of IEEE Computer Society International
Conference on Automatic Face and Gesture Recognition
(AFGR'02), Washington D.C., USA, May 20-21, 2002, pp.
306-311.

[6] Hazem M. El-Bakry, "Automatic Human Face Recognition
Using Modular Neural Networks," Machine Graphics &
Vision Journal (MG&V), vol. 10, no. 1, 2001, pp. 47-73.

[7] Ying Zhu, Stuart Schwartz, and Michael Orchard, "Fast Face
Detection Using Subspace Discriminate Wavelet Features,"
Proc. of IEEE Computer Society International Conference on
Computer Vision and Pattern Recognition (CVPR'00), South
Carolina, June 13 - 15, 2000, vol.1, pp. 1636-1643.

[8] R. Feraud, O. Bernier, J. E. Viallet, and M. Collobert, "A Fast
and Accurate Face Detector for Indexation of Face Images,"
Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, Grenoble, France,
28-30 March, 2000.

[9] S. Ben-Yacoub, B. Fasel, and J. Luettin, "Fast Face Detection
using MLP and FFT," in Proc. of the Second International
Conference on Audio and Video-based Biometric Person
Authentication (AVBPA'99)", 1999.

[10] S. Baluja, H. A. Rowley, and T. Kanade, "Neural Network -
Based Face Detection," IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 20, No. 1, pp. 23-38, 1998.

[11] Beat Fasel, "Fast Multi-Scale Face Detection," IDIAP-Com
98-04, 1998.

[12] S. Ben-Yacoub, "Fast Object Detection using MLP and FFT,"
IDIAP-RR 11, IDIAP, 1997.

[13] James W. Cooley and John W. Tukey, "An algorithm for the
machine calculation of complex Fourier series," Math.
Comput. 19, 297–301 (1965).

[14] J.P. Lewis, “Fast Normalized Cross Correlation”, Available
from:<http://www.idiom.com/~zilla/
Papers/nvisionInterface/nip.html >

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

Table 1: The theoretical speed up ratio for images with different sizes.

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 3.67 5.04 6.34
200x200 4.01 5.92 8.05
300x300 4.00 6.03 8.37
400x400 3.95 6.01 8.42
500x500 3.89 5.95 8.39
600x600 3.83 5.88 8.33
700x700 3.78 5.82 8.26
800x800 3.73 5.76 8.19
900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05

Table 2: Practical Speed up ratio for images with different sizes Using MATLAB ver 5.3.

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 7.88 10.75 14.69
200x200 6.21 9.19 13.17
300x300 5.54 8.43 12.21
400x400 4.78 7.45 11.41
500x500 4.68 7.13 10.79
600x600 4.46 6.97 10.28
700x700 4.34 6.83 9.81
800x800 4.27 6.68 9.60
900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46

Table 3: A comparison between the number of multiplication steps required for conventional and faster neural networks to manipulate images
with different sizes (n=20, q=30).

Image size Conventional Neural Nets Fast Neural Nets Speed up ratio (ηm)

100x100 7.8732e+007 2.6117e+007 3.01
200x200 3.9313e+008 1.1911e+008 3.30
300x300 9.4753e+008 2.8726e+008 3.29
400x400 1.7419e+009 5.3498e+008 3.26
500x500 2.7763e+009 8.6537e+008 3.21
600x600 4.0507e+009 1.2808e+009 3.16
700x700 5.5651e+009 1.7832e+009 3.12
800x800 7.3195e+009 2.3742e+009 3.08
900x900 9.3139e+009 3.0552e+009 3.05

1000x1000 1.1548e+010 3.8275e+009 3.02

Table 4: The theoretical speed up ratio for the general fast cross correlation algorithm.

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 5.59 8.73 11.95
200x200 4.89 7.64 10.75
300x300 4.56 7.12 10.16
400x400 4.35 6.80 9.68
500x500 4.20 6.56 9.37
600x600 4.08 6.38 9.13
700x700 4.00 6.24 8.94
800x800 3.92 6.12 8.77
900x900 3.85 6.02 8.63

1000x1000 3.79 5.93 8.51

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

Table 5: Simulation results of the speed up ratio for the general fast cross correlation compared with the MATLAB cross correlation function
(xcorr2).

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 10.14 13.05 16.49
200x200 9.17 11.92 14.33
300x300 8.25 10.83 13.41
400x400 7.91 9.62 12.65
500x500 6.77 9.24 11.77
600x600 6.46 8.89 11.19
700x700 5.99 8.47 10.96
800x800 5.48 8.74 10.32
900x900 5.31 8.43 10.66

1000x1000 5.91 8.66 10.51

Table 6: The speed up ratio of the normalization process for images of different sizes (n=20,q=30).

Image size Speed up ratio

100x100 219
200x200 1092
300x300 2632
400x400 4839
500x500 7712
600x600 11252
700x700 15459
800x800 20332
900x900 25872

1000x1000 32079

Table 7: Theoretical results for the speed up ratio in case of image normalization by normalizing the input weights.

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 3.79 5.21 6.55
200x200 4.14 6.12 8.32
300x300 4.13 6.23 8.65
400x400 4.08 6.21 8.70
500x500 4.02 6.15 8.67
600x600 3.96 6.08 8.61
700x700 3.90 6.01 8.53
800x800 3.86 5.95 8.46
900x900 3.81 5.89 8.39

1000x1000 3.77 5.84 8.32

Table 8: Simulation results for the speed up ratio in case of image normalization by normalizing the input weights.

Image size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 8.91 12.03 16.74
200x200 7.43 10.42 15.39
300x300 6.72 9.72 14.45
400x400 5.99 8.61 13.59
500x500 5.75 8.32 12.94
600x600 5.61 8.09 11.52
700x700 5.49 7.97 11.04
800x800 5.41 7.83 10.74
900x900 5.32 7.71 10.56

1000x1000 5.29 7.58 10.45

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp144-151)

