
FPGA Implementation of a Neural Network Control System for a
Helicopter

M. Zheng, M. Tarbouchi, D. Bouchard, J. Dunfield,
Department of Electrical and Computer Engineering,

Royal Military College of Canada,
Kingston, Ontario, Canada, K7K 7B4

Abstract – In this paper the design and development of an
intelligent controller based on artificial neural networks (ANN)
on a Field Programmable Gate Array (FPGA), for a four-
rotor helicopter to be capable of achieving vertical take off
and to be able to sustain a specified attitude, is presented. To
overcome challenges due to the complexities of creating a
Neural Networks Controller to work in real-time, a hardware-
friendly training algorithm is chosen. The ANN is
implemented on a Virtex-II Pro XC2VP30 FPGA from
Xilinx. Simulation results are analyzed to highlight the
performance of the hardware.

1. Introduction

This work is a continuation of a research work on a Neural
Network Based Control of a Four Rotor Helicopter [1]. The
device used was a helicopter of a four-rotor configuration
(Figure 1). A neural network controller aimed to
autonomously control the roll, pitch and yaw of the four
rotor helicopter system. With the addition of height control,
the helicopter would be able to hover. By the use of offsets
in the control feedback loop, the helicopter could then be
made to travel horizontally. If navigation and a behaviour
capability were then added, the helicopter would become a
fully autonomous hoverable robot. This paper focuses on
the neural network control aspects and challenges of
performing this work on a Field Programmable Gate Array
(FPGA).

Figure 1: Four-rotor Configuration

Originally, the helicopter came with a manual controller,
and requires an experienced operator to manipulate the
controller. In [1], Dunfield et al. developed a neural
network control system on a microcontroller to
autonomously control the roll, pitch and yaw axis of the
four rotor helicopter system (see Figure. 2).

Figure 2: Helicopter Control System

The neural network developed in [1] was a 2-layer feed-
forward network, with 6 hidden layer neurons and 3 output
layer neurons. The electrical sensors and compass installed
on the helicopter detected the position of the helicopter, and
collected the signal data for off-line training of a neural
network. The neural network simulates the activity of the
operator, and, in accordance with the current position and
movement, it sends out a control command. The training
was done off-line due to hardware limitations of the
microcontroller.
The neural network trained off-line [2,3,4] had the
following limitations: (1) due to the sampling method and
process, the training data contained errors; and, (2) the
amount of off-line training data was limited.
With on-line training, data can be sampled and collected in
any real-time scenarios, allowing the neural network to
learn tasks for which it has not been previously trained. An
FPGA is well suited for this task. In addition, the typical
computational characteristics of ANNs such as parallelism,
modularity and dynamic adaptation can be realized in
hardware.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp7-10)

2. Theory of the Algorithm

In order to perform on-line training, the NN architecture
and training algorithm must be implemented on an FPGA
chip [5,6]. In this paper a fast, robust, and hardware-
friendly training algorithm is used, based on a technique
presented by Gadea et al. [7].

2.1 Forward Computation

The computation performed by each neuron (in the hidden
layer) is as follows:

)1(()()
)()1(

1

)()()(
1

s
k

s
j

N

j

s
kj

s
k

s
k owfHfo

s

θ+== −

=
∑

−

where k=1, … , N and s=1, … , M, and,
M : Number of the layers in a Neural Network;
N : Number of the neurons in a layer;

)(s
kH : Weighted sum;

)(s
kjw : Synaptic weight;

)(s
kθ : Bias.

)(s
ko : Neuron output;

)()(s
kHf = Activation function.

The activation function is logsig:

)2(
)exp(1

1)(log x
xf sig −+

=

2.2 Backward Computation

The local gradients)(s

jδ was calculated as follows:

)3(,...,1)()()()(MsHf s
k

s
k

s
k =′=εδ

The error term)(s
kε was calculated as follows:

1,...,11

1
11

)(
)(

−=
=

 −

= ∑ +

=
++ ms

ms
w

ot
sN

j
s
j

s
jk

s
kks

k δ
ε

where)()(s
kHf ′ : the derivative of the activation function.

2.3 Weight Update

The weight changes for all the weights were calculated as
follows:

)4()1()()(−=∆ s
j

s
k

s
kj ow ηδ

All the weights were updated as follows:

)()()1()()(nwnwnw s
kj

s
kj

s
kj +∆=+

where k = 1, … , sN and j = 1, … , 1−sN , and,

)1(+nws
kj = Updated synaptic weight (or bias);

)()(nw s
kj∆

= Change in synaptic weight (or bias);

)()(nw s
kj = Old synaptic weight (or bias);

3. Hardware Design

3.1 Xilinx System Generator Based Design Flow

Figure 3 shows System Generator Based design flow [2].
First of all, in this approach, the design process uses a
unique platform for both simulation and implementation. In
addition, the implementation phase does not build the
algorithm repetitively, because the simulation model
represents in every detail the design to be implemented in
the FPGA. After the hardware-in- the loop verification, the
design can be converted directly into hardware without
further debugging and testing. Thus the design process can
be accelerated.

Figure 3: System Generator Based Design Flow

3.2 Hardware Design

Figure 4 shows the whole neural network. It has 9 inputs (6
input data, 3 training data), 6 hidden layer neurons, 3 output
layer neurons, and 3 outputs. There are 2 directions of data
flow in the network: forward computation and backward
propagation.

Figure 4: Neural Network

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp7-10)

4. FPGA Implementation

Figure 5 shows the completed design diagram of the neural
network with peripheral components. It has 3 inputs, 1
output, and 4 modules, where: nn_4_1_clk_wrapper is the
Neural Network Module, uarts is the UART Module,
CLKDLL is the Clock Divider Module, applic is the
Cooperation Module.

Figure 5: System with Peripheral Component

The completed design was guided though the operations of
synthesis and implementation, in order to generate the bit-
stream for FPGA configuration. At the final step, the design
was downloaded to the FPGA using.

5. Results

5.1 Hardware Simulation Results

Figure 6 shows the hardware simulation results. There are 3
curves in this graph: Initial Output Curve, Target Curve,
and On-line Training Curve.
From the Figure 6-6, several conclusions can be drawn: (1)
The On-line Training Curve is different from the Initial
Output Curve, meaning that the on-line training took place
during the process. (2) The On-line Training Curve is
different from the Target Curve, meaning that the NN had
not been over-trained. (3) After the transfer of the design
into hardware, the system can still achieve a stable state and
convergence result.

Figure 6: Hardware Simulation Results

4.2 FPGA Implementation Results
Table 1 shows the area report of FPGA implementation
results.

Table 1: Summary of the Area Report

Table 2 shows the timing report. The minimum period of
one forward and back-propagation calculation is less than
100 ns. Compared to the software neural network that took
approximately 20 ms to finish a forward calculation (i.e.,
200,000 times longer), this is really a breakthrough.

Table 2: Summary of the Timing Report

5.2 Design Verification

Using the hardware-in-the-loop technology, the FPGA can
be accessed from the Simulink interface. The hardware-in-
the-loop block can be looked at as a Simulink block. But
different from the software simulation, during the test, the
program is actually running on the hardware and the data is
transferred between the PC and FPGA board.
To test the design, the input vectors and the target vectors
were sent to the NN implemented on the FPGA for one
epoch training process. The real-world training data was
tested on the FPGA board. The output data was then
received by the PC and presented on a Simulink Scope
block. The result is consistent with the On-line Training
Curve in Figure 6. The design was therefore tested and
verified.

6. Conclusion

In this paper, an on-line training neural network was
designed and implemented on an FPGA chip. The major
conclusions are as follows:
(1) A hardware-friendly on-line training algorithm was
chosen for the neural network. Based on a mathematical
analysis, on-line training can improve system performance.
(2) The hardware data representation needs to be of the
fixed-point type. The integer type was unsuitable for the
FPGA, since the data values in the back propagation
network are much smaller than in the feed-forward
network.
(3) Compared to the software NN in the microcontroller,
the FPGA provided an increase in processing speed of 5 to
6 orders of magnitude.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp7-10)

(4) Xilinx System Generator design tool bridges the gap
between control system design and hardware design. It
makes the whole research possible, without writing
challenging VHDL code.

References

[1] Dunfied J., Tarbouchi M., Labonte G., Neural network

based control of a four rotor helicopter, Industrial
Technology, 2004. IEEE ICIT '04. 2004 IEEE
International Conference on Volume 3, 8-10 Dec.
2004 Page(s):1543 - 1548 vol. 3.

[2] Ricci F., Hoang Le-Huy, An FPGA-based rapid

prototyping platform for variable-speed drives, IECON
02 [Industrial Electronics Society, IEEE 2002 28th
Annual Conference of the] Volume 2, 5-8 Nov. 2002
Page(s):1156 - 1161 vol.2.

[3] Kishan M., Chilukuri M., Ranka S., Elements of
Artificial Neural Networks, MIT Press 2000, Page 5.

[4] Heemskerk J.N.H., Overview of Neural Hardware,
Unit of Experimental and Theoretical Psychology,
Leiden University, The Netherlands, 1995.

[5] Foo S.K., Saratchandran P., Sundararajan N., Parallel

implementation of backpropagation on transputers,
Neural Networks, 1993. IJCNN '93-Nagoya.
Proceedings of 1993 International Joint Conference on
Volume 3, 25-29 Oct. 1993 Page(s):3058 - 3061 vol.3.

[6] Rose J., Gamal A. El, Sangiovanni-Vincentelli A.,

Architecture of field-programmable gate arrays,
Proceedings of the IEEE, vol. 81, no. 7, pp. 1013-1029,
July 1993.

[7] Gadea R., Cerda J., Ballester F., Macholi A., Artificial
neural network implementation on a single FPGA of a
pipelined on-line backpropagation, System Synthesis,
2000. Proceedings. The 13th International Symposium
on 20-22 Sept. 2000 Page(s):225 - 230.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp7-10)

