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Abstract – In this paper the design and development of an 
intelligent controller based on artificial neural networks (ANN) 
on a Field Programmable Gate Array (FPGA), for a four-
rotor helicopter to be capable of achieving vertical take off 
and to be able to sustain a specified attitude, is presented.  To 
overcome challenges due to the complexities of creating a 
Neural Networks Controller to work in real-time, a hardware-
friendly training algorithm is chosen. The ANN is 
implemented on a Virtex-II Pro XC2VP30 FPGA from 
Xilinx. Simulation results are analyzed to highlight the 
performance of the hardware. 
  
1. Introduction 
 
This work is a continuation of a research work on a Neural 
Network Based Control of a Four Rotor Helicopter [1]. The 
device used was a helicopter of a four-rotor configuration 
(Figure 1). A neural network controller aimed to 
autonomously control the roll, pitch and yaw of the four 
rotor helicopter system. With the addition of height control, 
the helicopter would be able to hover.  By the use of offsets 
in the control feedback loop, the helicopter could then be 
made to travel horizontally.  If navigation and a behaviour 
capability were then added, the helicopter would become a 
fully autonomous hoverable robot.  This paper focuses on 
the neural network control aspects and challenges of 
performing this work on a Field Programmable Gate Array 
(FPGA). 
 

 
 

Figure 1: Four-rotor Configuration 

Originally, the helicopter came with a manual controller, 
and requires an experienced operator to manipulate the 
controller. In [1], Dunfield et al. developed a neural 
network control system on a microcontroller to 
autonomously control the roll, pitch and yaw axis of the 
four rotor helicopter system (see Figure. 2). 

 
 

Figure 2: Helicopter Control System 
 
The neural network developed in [1] was a 2-layer feed-
forward network, with 6 hidden layer neurons and 3 output 
layer neurons. The electrical sensors and compass installed 
on the helicopter detected the position of the helicopter, and 
collected the signal data for off-line training of a neural 
network. The neural network simulates the activity of the 
operator, and,  in accordance with the current position and 
movement, it sends out a control command. The training 
was done off-line due to hardware limitations of the 
microcontroller. 
The neural network trained off-line [2,3,4] had the 
following limitations: (1) due to the sampling method and 
process, the training data contained errors; and, (2) the 
amount of off-line training data was limited. 
With on-line training, data can be sampled and collected in 
any real-time scenarios, allowing the neural network to 
learn tasks for which it has not been previously trained. An 
FPGA is well suited for this task. In addition, the typical 
computational characteristics of ANNs such as parallelism, 
modularity and dynamic adaptation can be realized in 
hardware. 
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2. Theory of  the Algorithm 
 
In order to perform on-line training, the NN architecture 
and training algorithm must be implemented on an FPGA 
chip [5,6]. In this paper a fast, robust, and hardware-
friendly training algorithm is used, based on a technique 
presented by Gadea et al. [7]. 
 
2.1 Forward Computation 
 
The computation performed by each neuron (in the hidden 
layer) is as follows: 
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where k=1, … , N and s=1, … , M, and, 
M : Number of the layers in a Neural Network; 
N  : Number of the neurons in a layer; 
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The activation function is logsig: 
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2.2 Backward Computation 
 
The local gradients )(s

jδ  was calculated as follows: 
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The error term )(s
kε  was calculated as follows: 
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where )( )(s
kHf ′ : the derivative of the activation function. 

 
2.3 Weight Update 
 
The weight changes for all the weights were calculated as 
follows: 
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All the weights were updated as follows: 
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where    k = 1, … , sN  and j = 1, … , 1−sN , and,  

)1( +nws
kj = Updated synaptic weight (or bias); 
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= Change in synaptic weight (or bias); 

)()( nw s
kj = Old synaptic weight (or bias); 

3. Hardware Design 
 
3.1 Xilinx System Generator Based Design Flow 
 
Figure 3 shows System Generator Based design flow [2]. 
First of all, in this approach, the design process uses a 
unique platform for both simulation and implementation. In 
addition, the implementation phase does not build the 
algorithm repetitively, because the simulation model 
represents in every detail the design to be implemented in 
the FPGA. After the hardware-in- the loop verification, the 
design can be converted directly into hardware without 
further debugging and testing. Thus the design process can 
be accelerated. 
 

 
 

Figure 3: System Generator Based Design Flow 
 
3.2 Hardware Design 
 
Figure 4 shows the whole neural network. It has 9 inputs (6 
input data, 3 training data), 6 hidden layer neurons, 3 output 
layer neurons, and 3 outputs. There are 2 directions of data 
flow in the network: forward computation and backward 
propagation.  

 
 

Figure 4: Neural Network 
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4. FPGA Implementation 
 
Figure 5 shows the completed design diagram of the neural 
network with peripheral components. It has 3 inputs, 1 
output, and 4 modules, where: nn_4_1_clk_wrapper is the 
Neural Network Module, uarts is the UART Module, 
CLKDLL is the Clock Divider Module, applic is the 
Cooperation Module. 
 

 

 
 

Figure 5: System with Peripheral Component 
 
The completed design was guided though the operations of 
synthesis and implementation, in order to generate the bit-
stream for FPGA configuration. At the final step, the design 
was downloaded to the FPGA using. 
 
5. Results 
 
5.1 Hardware Simulation Results 
 
Figure 6 shows the hardware simulation results. There are 3 
curves in this graph: Initial Output Curve, Target Curve, 
and On-line Training Curve. 
From the Figure 6-6, several conclusions can be drawn: (1) 
The On-line Training Curve is different from the Initial 
Output Curve, meaning that the on-line training took place 
during the process. (2) The On-line Training Curve is 
different from the Target Curve, meaning that the NN had 
not been over-trained. (3) After the transfer of the design 
into hardware, the system can still achieve a stable state and 
convergence result.  
 

 

Figure 6: Hardware Simulation Results 

 
 
4.2 FPGA Implementation Results 
Table 1 shows the area report of FPGA implementation 
results. 
 

 
 

Table 1: Summary of the Area Report 
 
Table 2 shows the timing report. The minimum period of 
one forward and back-propagation calculation is less than 
100 ns. Compared to the software neural network that took 
approximately 20 ms to finish a forward calculation (i.e., 
200,000 times longer), this is really a breakthrough. 
 

 
 

Table 2: Summary of the Timing Report 
 
5.2 Design Verification 
 
Using the hardware-in-the-loop technology, the FPGA can 
be accessed from the Simulink interface. The hardware-in-
the-loop block can be looked at as a Simulink block. But 
different from the software simulation, during the test, the 
program is actually running on the hardware and the data is 
transferred between the PC and FPGA board. 
To test the design, the input vectors and the target vectors 
were sent to the NN implemented on the FPGA for one 
epoch training process. The real-world training data was 
tested on the FPGA board. The output data was then 
received by the PC and presented on a Simulink Scope 
block. The result is consistent with the On-line Training 
Curve in Figure 6. The design was therefore tested and 
verified. 
 
6. Conclusion 
 
In this paper, an on-line training neural network was 
designed and implemented on an FPGA chip. The major 
conclusions are as follows:  
(1) A hardware-friendly on-line training algorithm was 
chosen for the neural network. Based on a mathematical 
analysis, on-line training can improve system performance. 
(2) The hardware data representation needs to be of the 
fixed-point type. The integer type was unsuitable for the 
FPGA, since the data values in the back propagation 
network are much smaller than in the feed-forward 
network.  
(3) Compared to the software NN in the microcontroller, 
the FPGA provided an increase in processing speed of 5 to 
6 orders of magnitude.  
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(4) Xilinx System Generator design tool bridges the gap 
between control system design and hardware design. It 
makes the whole research possible, without writing 
challenging VHDL code. 
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