
Sequential Adaptive Networks for Feed Forward Control of Fed-batch 
Bioprocesses 

 
RAJIB NAYAK, JAMES GOMES 

Department of Biochemical Engineering and Biotechnology 
Indian Institute of Technology, Delhi 

Hauz Khas, New Delhi, 110016 
INDIA 

 
 
 

Abstracts: - The development of Sequential Adaptive Networks (SAN) for on-line control of bioprocesses is 
presented. SAN architecture is an assembly of networks arranged chronologically with each sub-network assigned 
to a specific sampling interval of the process. The sub-network can have any desired architecture. For the fed-batch 
yeast fermentation process, each sub-network is a three-layered feed-forward network with outer layer intra 
connections from the Dissolved Oxygen (DO) node to the other nodes. The information of the metabolic state of 
the process obtained from DO measurement is used to update the SAN, enabling an on-line adaptation to changing 
process dynamics. Two different feed-forward controllers, a mechanistic and a heuristic, are used in combination 
with SAN for on-line control of the fermentation process. SAN exhibits accurate prediction of unmeasured states, 
and a robust and stable tracking of the control trajectory. A comparative study of its performance is presented.  
 
Key-Words: - Sequential Adaptive Networks, Neural Networks, Hybrid Modeling, On-line Adaptation, Fed-batch 
Bioprocess, Feed forward Controller, Yeast cultivation. 
 
1 Introduction 
 Control strategies for bioprocess should be stable, 
robust and capable of precisely tracking the control 
objective because biological products must conform 
to strict regulations laid down by various governing 
agencies. The more recent and innovative products 
have extremely high value and every effort needs to 
be made to maximize economic benefits. It is already 
well known that biological processes exhibits strong 
nonlinear properties and must be treated with special 
care. To address issues arising because of the 
inherent nonlinear nature of bioprocesses, many 
methods have been used including nonlinear system 
theory [1, 2] and neural networks [3, 4]. Often neural 
networks methods are preferred over other methods 
since a meaningful mathematical representation of 
bioprocesses becomes unnecessarily complex. 
Another attractive feature of neural networks is that, 
it can be used in various ways for control 
implementation either independently or in 
combination with mechanistic process model. 

In this work, we present the detailed 
development of SAN and its performance analysis in 
hybrid feed-forward control systems. A fed-batch 
yeast fermentation process is used as model system 

for on-line control implementation. Dissolved 
Oxygen measurements at every sampling instant are 
used to adapt SAN to changing physiological states 
of the process. A comparison of the performance of 
the heuristic feed-forward control and mechanistic 
feed-forward control based on SAN is presented. 
 
 
2 SAN Architecture and Derivation of 

Adaptation Algorithm 
The physiological state of the cell population and the 
process conditions in fermentation varies at different 
phases of cell growth; therefore, it is not possible for 
single neural network to store information about all 
physiological states of process. Also, these networks 
are more effective in predicting data similar to the 
more recent training data and less effective in 
predicting past trends. The SAN architecture 
presented here, addresses this problem. Sub-networks 
assigned to each sampling interval enable a 
distribution of memory for various physiological 
states occurring over these smaller time frames. Each 
of these networks in turn are adapted to changing 
process conditions based on on-line measurements 
that guide the entire ensemble along the evolution of 
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the process. The connections between the layers of 
different nodes are of the feed forward type. The 
process variables s, x, cl and Et (glucose, biomass, 
DO and ethanol concentrations respectively) and the 
volume of the reactor, V are inputs to each of the sub-
networks. 

The training for SAN has been described with the 
help of Fig. 1a. Here, Δt = tn – tn-1 for any instant n. 
The network is trained such that it is able to predict 
the output variables at time t+Δt, if input variables 
are supplied at time t. Here Δt is the sampling time 
interval for which network has been trained. 

 Each sub-network considered has the same 
architecture as is shown schematically in Fig. 1b. The 
mathematical formulation is described by the 
following equations. 

Considering the hidden layer input (Hj in) and 
output (Hj out), we obtain the relations 

j ij i j
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Considering the output layer input (Ok in) and output 
(Ok out), we obtain the relations 
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Error with respect to the desired values is given by 
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and the total mean square error (mth dataset, for the 
particular sampling interval) 
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Total error of m datasets is therefore   

∑=
m

mEE                                                       (7)  

The training of the network is done using 
gradient descent using the delta rule back 
propagation algorithm [5]. The weights are updated 
as follows 
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Where, Uij, Vjk and Wk are the weights between 
input and hidden layer, hidden and output layer and 
intra-connections in output layer respectively. dk is 
the desired output. Ii is the input to the networks. Ψ, 
ф are the transfer functions and ξ is the biases. α is 
the momentum coefficient and η is the learning rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig.1a   Architecture of SAN 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1b Schematic diagram of feed-forward neural 
network for each sub-network of SAN 
 
 
3 Fed-Batch Model for Simulation of 

Yeast Cultivation 
In the absence of large experimental data sets 
required for training the SAN a process model was 
used to generate the data. In this study the 
Sonnleitner & Kappeli model for yeast fermentation 
was used [6]. The model proposed by Sonnleitner is 
mechanistic and is based on the fact that glucose 
degradation proceeds via two metabolic pathways - 
oxidative and reductive. Under aerobic conditions 
ethanol is formed as the end product of reductive 
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energy metabolism. Ethanol can only be used 
oxidatively because of the involvement of a limited 
respiratory capacity. This model has been modified 
by adding the dilution terms for fed-batch yeast 
fermentation to enable the simulation of various 
process conditions needed for the present study. The 
equations for fed-batch model are 
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Where x, s, cl, Et are the biomass, substrate, DO 

and ethanol concentration (g l-1) respectively. D is the 
dilution rate (h-1), F is the substrate feed flow rate (l 
h-1), t is time (h) and V is the volume of the reactor 
(l). The values of the parameters are directly taken 
from Sonnleitner & Kappeli model [6]. 

 
 

4 Control strategies to implement 
SAN for yeast cultivation process 

The main objective of this study is to implement the 
proposed SAN for maximization of biomass 
production by keeping ethanol concentration at a 
predefined minimum value after batch phase is over. 
For this purpose two control strategies are proposed. 
In the first strategy, SAN is used in combination with 
a feed-forward neuro controller derived from the 
Sonnleitner & Kappeli model and in the second 
strategy, SAN is used to tune the parameters of a 
heuristic controller. In both the cases SAN is used to 
predict the unmeasured state variables to calculate 
the manipulated state variable, namely, the substrate 
feed flow rate. 

Control implementation begins with training of 
SAN with the process data simulated from the 

Sonnleitner & Kappeli model. The trained SAN has 
reasonable prediction capacity that needs to be 
adapted to changing process condition to meet 
performance criteria in control implementations. The 
weights of the individual sub-networks of the SAN 
are updated at every sampling instant by minimizing 
the difference between the predicted and measured 
values. This is carried out for each sub-network 
sequentially. 

 
 
4.1 Control strategy I 
Here we propose a feed forward control law that 
maximizes yeast production without producing 
ethanol. The control objective is to keep the residual 
ethanol concentration below a threshold value so that 
all the substrate can be used for biomass production. 
This is achieved if the rate of formation of ethanol is 
maintained at zero i.e., 0=dtdEt  during the fed-
batch phase. Now from Eq. 14 and 12 a feed forward 
control law can be derived with the assumption that if 
Et is a small quantity then ( ) 0≈tDE . Thus, either 
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SAN predicts the unmeasured states required by the 
feed forward control law for calculating the input 
feed flow rates. 
 
 
4.2 Control strategy II 
To achieve the maximum yeast production by 
keeping ethanol concentration at a predefined value, 
Ringbom et al[7] proposed that the substrate feed 
rate was set to follow a profile proportional to the 
quantity of biomass present in the system.  

ins
kVxtF =)(                                                           (19) 

 Where k is the highest possible substrate feed 
maintained in the beginning of the run, so that no 
ethanol is formed. The value of the k has to be 
adjusted on-line in order to maximize the yeast 
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growth without ethanol fermentation. The value of 
parameter k can be calculated with the help of 
predicted values of unmeasured state variables by 
SAN and also tuned in such a way that if the ethanol 
concentration increased beyond a set value (Etmin) 
then the value of k was reduced by factor of 0.8. Thus 
the variation in k follows 

⎩
⎨
⎧

≥
<

=
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min

8.0 tt

tt

EEk
EEk

k                                         (20) 

The flow diagram of both control strategies is shown 
in Fig. 2. 
 
 
5 Results and Discussion 
5.1 Training and Generalization Performance 
of SAN 
 The data was generated at a constant sampling 
interval 15 min for 10 h with batch time 5 h and the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

batch volume was 6 l. Training and validation data 
sets with three varying initial conditions, initial 
substrate concentration, substrate concentration in 
feed and minimum ethanol concentration (a 
predefined set value of ethanol concentration, Etmin) 
with respect to time are shown in Fig 3. The data sets 
were chosen in such a way that it can cover a large 
region of metabolic space of the process while 
remaining within the physical constraints such as the 
maximum working reactor volume. The values of 
initial ethanol concentration, initial DO %, air flow 
rate, initial biomass concentration and volume of the 
reactor were 0.6 gl-1, 100, 4 lm-1, 0.7 gl-1 and 12 l 
respectively. The values of these initial conditions 
were kept constants throughout the simulated data 
sets. Three data sets from the each corner of the cube 
data sets (total twenty four) were taken for training 
and four data sets from the centre of the cube are 
taken for validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Flow diagram of SAN application in control strategies for Fed-batch fermentation 
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Fig. 3 Various combinations of initial conditions to 
generate data sets 
 

Initial weights are assigned randomly between -
0.1 to +0.1. The number of hidden nodes was 
optimized with respect to recall error and number of 
iterations to converge the networks. Seven hidden 
nodes were found to be optimum. The learning rate 
coefficient of 0.05 and momentum coefficient of 0.95 
were used. The network was trained for an average 
threshold mean square error per data point of 10-5. 
The average number of iterations per feed forward 
neural network unit of the network was 2500. The 
recall profiles matched the training dataset profiles 
with recall errors of the order of 10-5. For validation 
of SAN outside the training domain, recall profiles 
matched the simulation profiles with generalization 
errors (average mean square error per data point) of 
the order of 10-4  (see Fig. 4 and Fig. 5). 
 
5.2 Performance of implemented SAN for control 
strategies  
Data set with initial substrate concentration 3.5 gl-1, 
substrate concentration in feed 30 gl-1, and minimum 
cut off ethanol concentration 0.8 gl-1 was taken for 
control implementation of SAN as well as to test the 
generalization performance of SAN outside the 
training domain, while other conditions were kept 
constant. 5% of random measurement noise was 
added to the DO data to test the robustness of the 
SAN in prediction of unmeasured state variables. The 
value of k for the control strategy II came to be 0.19 
from the simulation. A sampling interval of 15 
minutes is used to allow for measurement delay. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Recall profiles of SAN for training data set 
simulated (         from model, ○ Ethanol Conc., □ 
Biomass Conc., ∆ Substrate Conc., ◊ Volume of 
reactor and  × DO Conc.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Generalization profiles of SAN for training 
data set simulated (         from model, ○ Ethanol 
Conc., □ Biomass Conc. ∆ Substrate Conc. ◊ Volume 
of reactor and  × DO Conc. ) 

 
From the simulation results we had got 

generalization errors (average mean square error per 
data point) of the order of 10-4 for without noise data 
and 10-3 for noise data. In case of data with added 
noise we observed that average mean square error per 
data point for biomass concentration, ethanol and 
feed flow rate were 10-3, 10-4, 10-3 respectively for 
control strategy I and II. The computation time for 
prediction and adaptation of the each sub-network of 
SAN is less then 5 minutes depend upon the nature of 
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the data and tolerated error required for adaptation.  
The results are shown in Fig. 6 and 7. The profile of 
the manipulated variable, substrate feed flow rate (F) 
predicted by the SAN was closely matched the 
profile calculated from simulated data. From the 
simulation results it can also be concluded that in 
control strategy I is superior than the control strategy 
II because the amount of biomass produced is higher 
than that of control strategy II starting with the same 
initial conditions. These results also showed that a 
well trained SAN has enough potential to predict the 
one sampling time step ahead state variables and can 
estimate the control input for the process. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Implementation of Control Strategy I 
simulated (           from model, ○ Ethanol Conc., □ 
Biomass Conc.,  ∆ Feed flow rate) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Implementation of Control Strategy II 
simulated (           from model, ○ Ethanol Conc., □ 
Biomass Conc., ∆ Feed flow rate) 

6 Conclusions 
 In this present study, we have developed a hybrid 
neural controller using SAN and evaluated its 
performance for controlling the yeast cultivation. 
Results show that it can use on-line with the process 
for various control strategies as it has capabilities of 
adapting with the changing dynamics of the process 
caused by inherent nonlinearity of the system as well 
as by the external disturbance. It adapts with the 
system dynamics by updating its weights from on-
line measured state variable contains information 
about the system. The off-line computation time for 
training is around 3-7 minutes with convergence 
error 10-5 (Average mean square error per data point) 
whereas adaptation and generalization time is 2-5 
minutes with convergence error 10-3 to 10-4. In on-
line implementation the trained SAN requires only a 
few seconds to adapt to the new conditions therefore 
SAN can be implemented irrespective of control 
strategy. 
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