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Abstract: - There are three papers in a series of discussions related to the partitioning capabilities on nested 
rectangular decision regions using multi-layer perceptrons. We propose a constructive algorithm, called the 
up-down algorithm, to realize the nested rectangular decision regions. The algorithm determines the weights 
easily and can be generalized to solve other decision regions with the properties of similarity and dissimilarity.  
The first article gives preliminaries and describes the algorithm. The second one presents the properties of the 
algorithm and proves the feasibility.  The last one discusses the applications of the algorithm using the 
properties of similarity and dissimilarity. As the first part of the series, this paper first discusses the partition 
capability of multi-layer perceptrons and then explains how two-layer perceptrons form the decision regions.  
The paper presents the formulas of determining the weights of the second layer and threshold of the output 
node for a two-layer percptron and demonstrates examples.  Finally the paper discusses the generalization 
issues related to the proposed algorithm.     
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1.  Introduction [1] 
Necessary condition and sufficient condition, 
described in a mathematical viewpoint, of the 
implementation feasibility of two-layer perceptrons 
(TLPs) have been indicated in [2].  The first layer of 
a multi-perceptron produces decision boundaries and 
the rest of layers map the inputs to get the desired 
outputs [3].  Single-layer perceptrons can determine 
linearly separable decision regions, two-layer 
perceptrons can partition either convex open or 
closed decision regions, and three-layer perceptrons 
are capable of implementing of any shape of decision 
regions [1,4].  Furthermore, any arbitrary decision 
regions can be approximated by TLPs [5].  It has 
been shown that convex recursive deletion regions 
can be implemented by TLPs [6].  Some particular 
nested decision regions implemented by TLPs have 
been presented in [7].  Partitioning properties of 
TLPs have been discussed in [8].  A general study 
on the partitioning capabilities of TLPs can be found 
in [1] where the authors presented the Weight 
Deletion/Selection Algorithm to examine the 
feasibility of implementation of decision regions. A 
constructive algorithm to implement convex 
recursive deletion regions has been presented in [9]. 
The space partitioning multi-layer perceptron model 
has been proposed to solve some intractable 
classification problems [10]. A constraint based 
decomposition training architecture for a multi-layer 

perceptron has been proposed where the second layer 
and third layer of a three-layer perceptron function as 
logic “AND” and “OR”, respectively [11]. 

In the series of the articles related to the 
partitioning capability on nested rectangular decision 
regions, we present an algorithm called the 
“Up-Down Algorithm” to implement nested 
rectangular decision regions.  The up-down 
algorithm is so named because the values of weights 
are selected up (high value) and down (low value) 
alternatively. We explain how two-layer perceptrons 
form the decision regions and discuss the properties 
of the nested rectangular decision regions 
implemented by the proposed algorithm.  We focus 
on how to apply the algorithm to implement some 
special decision regions according to the similarity 
and dissimilarity.  To generalize the algorithm to 
solve more complex decision regions, we modify the 
network structure by adding a logic layer in the 
original neural network and discuss the partitioning 
capability of the modified network structure. 

The three papers are organized as follows: the first 
article gives preliminaries and describes the 
algorithm; the second one presents the properties of 
the algorithm and proves the feasibility; the last one 
discusses the applications of the algorithm using the 
properties of similarity and dissimilarity.  

As the first part of the series, this paper first 
discusses the partition capability of multi-layer 
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perceptrons and then explains how two-layer 
perceptrons form the decision regions.  The paper 
presents the formulas of determining the weights of 
the second layer and threshold of the output node for 
a two-layer percptron and demonstrates examples.  
Finally the paper discusses the generalization issues 
related to the proposed algorithm.     
 
2. Preliminaries [1, 3]  
To explain how the first layer of a multi-layer 
perceptron forms decision boundaries, we present a 
two-class classification example implemented by a 
TLP with two inputs, four nodes in the first layer (the 
hidden layer) and one node in the second layer (the 
output layer), as shown in Figure 1(a) [1,3].  Figure 
1(b) is the corresponding decision region where the 
two inputs generate a two-dimensional input space 
which is linearly divided into 11 sub-regions 
(numbered from 1 to 11) by the four partitioning 
lines [1,3]. In the figure, the shaded and blank 
sub-regions belong to class A and B, respectively. 
It is important to know that each node in the first 
layer will form a two-dimensional partitioning line in 
the corresponding decision region because it is a 
linear combination of inputs x1 and x2.  To 
implement the four partitioning lines, one therefore 
needs four nodes in the first layer with one-to-one 
corresponding relationship to the four partitioning 
lines.  For convenience, we use the same labels (z1 
to z4) to represent the four nodes and their associated 
partitioning lines.  Each node in the first layer 
generates a “1” output if the input is on one side of 
its corresponding partitioning line, and a ‘0’ output if 
on the other side [1,3].  The second layer performs 
mappings from the first layer to the second layer and 
makes a final decision [1,3].  It is important to note 
that the weights in the first layer are pre-determined 
if a decision region is established [1,3].  To 
implement the decision regions using TLPs, one only 
needs to train the weights of the second layer of the 
TLPs.  The outputs of the first layer are the training 
examples for the second layer.  Table 1 shows the 
training examples of implementation of Figure 1.  In 
Figure 1(b), sub-region 1 is on the ‘0’ side of line z1, 
the ‘1’ side of line z2, the ‘1’ side of line z3, and the 
‘1’ side of line z4.  Therefore the training example 
for sub-region 1 is z1 = 0, z2 = 1, z3 = 1, z4 =1. 

The second layer serves to classify these 
sub-regions into the two classes (class A and class B). 
Theθvalue for a sub-region is defined as follows [1] 

∑
=

=
p

k
kkl zw

1
θ                         (1) 

where θ l  is the θvalue of sub-region l, p is the 
number of partitioning lines in the decision region, 

and wk is the weight connecting first layer node zk 
with the output node. 

The two-class classification problem is 
implemented using the hard limiter [4], which is 
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whereθh is the threshold for the second layer node. 
It has been known that the necessary and sufficient 
condition for implementing two-class classification 
problems in a decision region is the minimum θ
value of sub-regions belonging to class A must be 
greater than the maximum θ value of sub-regions 
belonging to class B [1,3,7]. 

A “nested rectangular decision region” is a 
decision region partitioned by vertical and horizontal 
lines and therefore structured by a series of 
concentric rectangular rings from the innermost ring 
to outermost ring [7].  It is important to mention that 
the nested rectangular decision regions are the 
special case of convex recursive deletion regions 
solved by the previous study [9].  To be brief, in the 
rest of the paper, we use “nested decision region” to 
represent “nested rectangular decision region”.  
These rings in the nested decision region change 
their classes alternatively.  A nested decision is 
called an “iA-jB decision region” if there are i 
rectangular rings belonging to class A and j 
rectangular rings belonging to class B in the decision 
region [7].  Figure 2(a) is a 2A-1B decision region 
where the entire decision region can be divided into 
25 sub-regions, of which 17 sub-regions belong to 
class A (labeled A1 to A17), and 8 sub-regions 
belong to class B (labeled B1 to B8) [7].  These 
sub-regions are grouped into three nested rectangular 
rings.  Two of them belong to class A (A1 and A2 to 
A 17) and one of them belongs to class B (B1 to B8).  
One therefore calls this decision region a 2A-1B 
nested decision region.  In this decision region, 
sub-regions A2 to A17 form the outermost 
rectangular ring and sub-region A1 forms the 
innermost rectangular ring.  Figure 2(b) is an 
example of a 2A-2B nested decision region [7].  
Note that in a nested decision region a sub-region 
obtains ‘0’ if it is on the left of a vertical partitioning 
line, and ‘1’ if on the right of the partitioning line, as 
shown in Figure 2.  Similarly, a sub-region obtains 
‘0’ if it is below a horizontal partitioning line, and ‘1’ 
if above the partitioning line.  Again, in a nested 
decision region the shaded areas represent class A, 
while blank ones represent class B. 

It is important to note that for an iA-jB decision 
region, if the outermost ring belongs to class A, the 
number of partitioning lines in the region is 8˙(i-1), 
which is dividable by 8 (note that i > 1).  If the 
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outermost ring belongs to class A, the number of 
partitioning lines in the region is 8i-4 (dividable by 4 
but not by 8).  For example, there are 8 partitioning 
lines in the 2A-1B decision region (Figure 2(a)) and 
12 partitioning lines in the 2A-2B decision region 
(Figure 2(b)). 

It is also important to known that the innermost 
ring in a nested decision region consists of only one 
sub-region.  For example, the innermost ring in 
Figure 2(a) consists of sub-region A1 only. 
A sub-region is said to be a “corner sub-region” of a 
rectangular ring if it is located at one of the four 
corners of the rectangular ring.  For example, in 
Figure 2(a), sub-regions A2, A6, A13, and A17 are 
the corner sub-regions of the outermost ring of the 
2A-1B nested decision region. A sub-region is said to 
be a “sub-corner sub-region” of a rectangular ring if 
it is adjacent to one of the four corner sub-regions of 
a rectangular ring with a Hamming distance of “1” 
[1,4].  For example, in Figure 2(a) sub-regions A3 
and A7 are sub-corner sub-regions of the outermost 
rectangular ring because they are adjacent to corner 
sub-region A2 with a Hamming distance of 1.  
However, sub-region B1 is not a sub-corner 
sub-region of the outermost ring because its 
Hamming distance to corner sub-region A2 is 2.   
Similarly, in Figure 2(a), sub-regions A5, A8, A11, 
A14, A12 and A16 are sub-corner sub-regions of the 
outermost rectangular ring. 

Again, to brief the discussion, in the following 
sections when we mention a “ring”, it means a 
“rectangular ring”. 
 
3 The Up-Down Algorithm 
The partitioning lines in a nested decision region can 
be grouped into two groups: the group of vertical 
partitioning lines and the group of horizontal 
partitioning lines.  For convenience, we sequentially 
number the vertical partitioning lines from the left to 
the right and the horizontal partitioning lines from 
the bottom to the top.  For example, in Figure 2(a) 
the vertical partitioning lines are w1, w2, w3, and w4, 
and the horizontal partitioning lines are w5, w6, w7, 
and w8. 
3.1 Determining the Weights 
Consider a nested decision region with p partitioning 
lines. By letting q = p/4 (p is dividable by 4), the 
weights of the second layer of a TLP are determined 
by the following criterion: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++=−−

++=+−−

++=−−

=+−−

=

+

+

+

+

qqqkqk

qqqkkq

qqqkqk

qkkq

kq

kq

kq

kq

kw

4..,,23,13for)3()1(

3..,,22,12for)13()1(

2..,,2,1for)()1(

..,,2,1for)1()1(

   

(3)              
For example, the weights of the 2A-1B decision 
region (Figure 2(a)) are selected as follows: w1 = -2, 
w2 = 1, w3 = -1, w4 = 2, w5 = -2, w6 = 1, w7 = -1, and 
w8 = 2. 

Similarly, the weights of the 2A-2B decision 
region (Figure 2(b)) are determined as follows: w1 = 
3, w2 = -2, w3 = 1, w4 = -1, w5 = 2, w6 = -3, w7 = 3, w8 
= -2, w9 = 1, w10 = -1, w11 = 2, and w12 = -3. 

It is important to note that the weights determined 
by the up down algorithm are horizontally and 
vertically anti-symmetrical. For Example, in Figure 
2(b), w1 = -w6, w2 = -w5 (horizontally 
anti-symmetrical), w7 = -w12, w8 = -w11 (vertically 
anti-symmetrical). 
 
3.2 Determining the Threshold (θh) 
Let scθ  be the θvalue of a sub-corner sub-region of 
the outermost ring of a nested decision region . The 
threshold of the output node (θ h) of the TLP to 
implement the nested decision region is determined 
as follows: 
 

⎩
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⎧

−
+
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4 Generalizations  
4.1 Generalization to Multi-Dimensional Cases 
This algorithm is easy to generalize to 
multi-dimensional decision regions by adding 
two partitioning hyper-planes in each dimension 
when one adds a multi-dimensional ring to the 
original decision region. Consider an 
m-dimensional nested decision region with p 
partitioning hyper-planes (note that p is 
dividable by 2m). Let q = p /(2m). The weights 
of the second layer of a TLP are determined by 
the following criterion: 
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4.2 Generalization to Partially Nested Regions 
A “partially nested decision region” is a particular 
nested decision region implemented by adding only 
part of the outermost ring to the original decision 
region.  Partially nested decision regions result from 
adding any combination of the four partitioning lines 
(wleft, wright, wbottom, and wtop) to the original decision 
region.  Figure 3 shows some examples of partially 
nested decision regions implemented by adding some 
combinations of the four partition lines to the 
original 2A-1B nested decision region. We will 
discuss the implementation feasibility of the partially 
nested decision regions in the next paper of the series 
of the studies (Part II: Properties and Feasibility).  
 
5 Conclusions 
We presented three papers to discuss the 
implementations of nested rectangular decision 
regions using multi-layer perceptrons where a 
constructive algorithm is used to realize these 
regions. The algorithm determines the weights easily 
and can be generalized to solve other decision 
regions with the properties of similarity and 
dissimilarity.  The first article gave preliminaries 
and described the algorithm. The second one will 
present the properties of the algorithm and prove the 
feasibility.  The last one will discuss the 
applications of the algorithm using the properties of 
similarity and dissimilarity. 

In this article, we first discussed the partition 
capabilities of multi-layer perceptrons and explained 
how two-layer perceptrons form the decision regions. 
We also presented the formulas of determining the 
weights of the second layer and threshold of the 
output node for a two-layer perceptron. Finally we 
discussed the generalization issues related to the 
proposed algorithm. 
.  
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     Figure 1: The TLP and the corresponding decision region (taken from [1, 3]). 

        
Table 1 The corresponding patterns for Figure 1 (taken from [1, 3]). 

SR z1 z2 z3 z4 Class SR z1 z2 z3 z4 Class 
1 0 1 1 1 A 7 1 0 0 1 B 
2 0 0 1 1 B 8 1 0 0 0 B 
3 0 0 0 1 B 9 1 0 1 0 A 
4 0 0 0 0 B 10 1 1 1 0 A 
5 1 1 1 1 B 11 1 1 0 0 B 
6 1 0 1 1 B       

       Remark: SR = sub-region  

 
           

 
              
 

          
  

            
 
 
 
 
 
 

B9 B10 B11 B12 B13 B14 B15
B16 A2 A3 A4 A5 A6 B22
B17 A7 B1 B2 B3 A8 B23
B18 A9 B4 A1 B5 A10 B24
B19 A11 B6 B7 B8 A12 B25
B20 A13 A14 A15 A16 A17 B26
B21 B27 B28 B29 B30 B31 B32

A2 A3 A4 A5 A6 
A7 B1 B2 B3 A8 
A9 B4 A1 B5 A10 
A11 B6 B7 B8 A12 
A13 A14 A15 A16 A17 
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(a) The TLP 
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(b) The decision region 

(a) The 2A-1B decision region 

Figure 2: The examples of nested decision regions (taken from [7]). 

Remarks:   
1. Shaded areas indicate class A, while blank ones indicate class B. 
2. A sub-region obtains ‘0’ if it is on the left hand side of a vertical 

partitioning line, and ‘1’ if on the right hand side of the partitioning 
line. 

3. A sub-region obtains ‘1’ if it is above a horizontal partitioning line, 
and ‘0’ if below the partitioning line. 
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Vertical partitioning line 

(b) The 2A-2B decision region 
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B9 A2 A3 A4 A5 A6 
B10 A7 B1 B2 B3 A8 
B11 A9 B4 A1 B5 A10
B12 A11 B6 B7 B8 A12
B13 A13 A14 A15 A16 A17

B9 B10 B11 B12 B13 
A2 A3 A4 A5 A6 
A7 B1 B2 B3 A8 
A9 B4 A1 B5 A10 
A11 B6 B7 B8 A12 
A13 A14 A15 A16 A17 
B14 B15 B16 B17 B18 

B9 A2 A3 A4 A5 A6 B15 
B10 A7 B1 B2 B3 A8 B16 
B11 A9 B4 A1 B5 A10 B17 
B12 A11 B6 B7 B8 A12 B18 
B13 A13 A14 A15 A16 A17 B19 
B14 B20 B21 B22 B23 B24 B25 

B9 B10 B11 B12 B13 B14 
B15 A2 A3 A4 A5 A6 
B16 A7 B1 B2 B3 A8 
B17 A9 B4 A1 B5 A10 
B18 A11 B6 B7 B8 A12 
B19 A13 A14 A15 A16 A17 

Figure 3: The examples of partially nested decision regions.  
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