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Abstract: - In this paper, the author theoretically discusses the partitioning capabilities of the up-down 
algorithm and proves the implementation feasibility of the algorithm. Four propositions are presented in the 
paper.  The first three propositions explain the nature of the up-down algorithm and the last one proves the 
implementation feasibility of the algorithm. The author also discusses the implementation feasibility of the 
partially nested rectangular decision regions using the proposed algorithm. 
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1 Properties 
At the beginning of this section, the author first 
presents a well-known necessary and sufficient 
condition for two-class classification problems, and 
then discusses some properties necessary for proving 
the feasibility of the implementation of the nested 
rectangular decision regions using the up-down 
algorithm. 
 
Criterion 1: The necessary and sufficient condition 
for implementing two-class classification problems 
in a decision region is the minimum θ value of 
sub-regions belonging to class A must be greater than 
the maximumθvalue of sub-regions belonging to 
class B. 

The trick of the up-down algorithm is to 
sequentially add an outermost ring to a nested 
decision region starting from the 1A-1B case and to 
guarantee these additions of rings are successfully 
implemented.   

 To do this, Criterion 1 must be satisfied.  Figure 
1 shows the case of adding an outermost ring of class 
B to the 2A-1B decision region, resulting in a 2A-2B 
one.  In this figure the original 2A-1B decision 
region consists of sub-regions A1 to A17 and B1 to 
B8, and the added outmost ring consists of 
sub-regions B9 to B32.  To implement this, one 
adds four partitioning lines to the original decision 
region (the 2A-1B decision region): wleft, wright, wbottom, 
and wtop.  All of sub-regions in the original decision 
region are on the ‘0’ side of wright.  This implies wright 
does not contribute anything to theθvalues of the 
original sub-regions during the addition of the 
outermost ring.  Similarly wtop doesn’t affect the θ
values of the original sub-regions.  On the other 

hand, all of original sub-regions are on the ‘1’ side of 
wleft. wleft (=3) is therefore added to the θvalue of 
each sub-region in the original decision region 
during the addition of the outermost ring.  Similarly, 
wbottom (=3) is also added to the θvalue of each 
sub-region during the addition.  The classification 
condition is still guaranteed because all sub-regions 
in the original decision region are offset with a same 
value (=6), the sum of wleft and wbottom.  Figure 1 
shows the changes on the θvalues before and after 
adding the outermost ring to the 2A-1B decision 
region.  In the figure, the number in each sub-region 
indicates its θvalue after adding the outermost ring 
while the number in parentheses indicates theθvalue 
before adding the outermost ring.  The sum of wleft 
and wbottom (=6) is added to the θ value of each 
sub-region in the original decision during the 
addition of the outermost ring. 

To implement the classification, Criterion 1 must 
be guaranteed, i.e., the maximum θ value of the 
added ring (sub-regions B9 to B32) is less than the 
minimum θ value of the original sub-regions 
belonging to class A (sub-regions A1 to A17).  The 
maximum θvalues of the added ring occur in the 
sub-corner sub-regions of the added ring including 
sub-regions B10, B14, B16, B22, B20, B26, B27, 
and B31 with the same θ value (=3). The author  
will prove it later in Proposition 2.  The nested 
decision region (after the addition of the outermost 
ring) is successfully implemented if one selects a 
proper threshold θh (=3.5). 

It is important to note that the θ values of 
sub-regions in a nested decision region are vertically 
and horizontally symmetrical if the weights are 
selected by the up-down algorithm.  The θvalues 
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are therefore symmetrical to the innermost ring due 
to the vertical and horizontal symmetries.  Figure 1 
shows these symmetrical properties of the θvalues in 
the 2A-2B nested decision region.  For example, 
sub-region B9 is horizontally symmetrical to 
sub-region B15 and vertically symmetrical to 
sub-region B21.   One gets θB9 = θB15 and θB9 = θ
B21.  In addition, since sub-region 21 is also 
horizontally symmetrical to sub-region 32, one 
obtains  θB21 = θB32. From the above description, one 
concludesθB9 = θB32 (symmetrical to the innermost 
ring).  The following proposition proves these 
symmetrical properties.  
 
Proposition 1: For a nested decision region 
implemented by the up-down algorithm, theθvalues 
in the decision region are 
(a) horizontally symmetrical, 
(b) vertically symmetrical, and 
(c) symmetrical to the innermost ring of the decision 

region. 
Proof 
(a) The author discusses the case of the nested 
decision region whose outermost ring belongs to 
class B, and then generalizes to the case of the nested 
decision whose outermost ring belongs to class A.  
Consider a nested decision region whose outermost 
ring belongs to class B with p partitioning lines, as 
shown in Figure 2.  The decision region consists of 
(p/2 + 1) vertically layered portions from its bottom 
to top.  The author proves that the θ values in the 
lowest portion of the decision region are horizontally 
symmetrical and then generalizes the symmetrical 
properties to the rest of the layered portions.  Let q 
be p/4. For convenience, the author numbers the 
sub-regions in the lowest portion of the decision 
region from 0 to 2q (SR 0 to SR 2q) from the left 
hand side to the right hand side.  The author first 
proves the leftmost sub-region of the lowest portion 
of the decision region (sub-region 0) is horizontally 
symmetrical to the rightmost sub-region (sub-region 
2q), and then generalizes the horizontally 
symmetrical property to the rest of sub-regions in the 
lowest portion of the decision region.  The θ value 
of sub-region 0 is equal to 0 because it is on the ‘0’ 
sides of all partitioning lines.  However, sub-region 
2q is on the ‘1’ sides of all vertical partitioning lines 
and on the ‘0’ sides of all horizontal partitioning 
lines.  The θvalue of sub-region 2q is given by 
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From the above discussion, one gets θ0 =θ2q. Now 

consider the second leftmost sub-region of the lowest 
portion of the decision region (sub-region 1) and its 
horizontally symmetrical sub-region (sub-region 
2q-1).  The only difference between sub-region 1 
and sub-region 0 is that sub-region 0 is on the “0” 
side of w1, while sub-region 1 is on the “1” side of w1.  
θ1 is given by 

qqw =+=+= 0101 θθ                       (2)               
Similarly, the only difference between sub-region 

2q-1 and sub-region 2q is that they are on different 
sides of partitioning line w2q.  θ2q-1 is given by 

qqw qqq =−−=−=− )(02212 θθ                  (3)              
As discussed earlier, w1 and w2q are horizontally 

anti-symmetrical.  This anti-symmetrical property 
guaranteesθ1 =θ2q-1.  By the same procedure one 
concludes the θvalues are horizontally symmetrical 
for the rest of sub-regions of lowest portion of the 
nested decision region.  One can easily generalize 
the horizontally symmetrical property to the rest of 
the layered portions of the decision region. 

Using the same procedure as above, one can 
obtain the horizontally symmetrical property for a 
nested decision region whose outermost ring belongs 
to class A. 
(b) Using a similar procedure as part (a), one can 
conclude theθvalues in the nested decision region are 
vertically symmetrical. 
(c) By parts (a) and (b), one concludes theθvalues 
in the nested decision region are symmetry to the 
innermost ring.  QED. 

By the symmetrical properties discussed above 
and a similar proving procedure as Proposition 1, one 
can conclude the θ values of the sub-corner 
sub-regions of the outermost ring of a nested 
decision region are the same. 
 
Proposition 2: Consider a nested decision region 
with p partitioning lines (again, p is dividable by 4).  
If one uses the up-down algorithm to add an 
outermost ring to the decision region, the following 
statements are true. 
(a) If the added ring belongs to class B, the 

maximum θvalues of the added ring occur in the 
sub-corner sub-regions of the added ring with the 
same θvalue (= p/4). 

(b) If the added ring belongs to class A, the 
minimumθvalues of the added ring occur in the 
sub-corner sub-regions of the added ring with the 
same θvalue (= – p/4). 

Proof: 
(a) Consider a nested decision region with p 
partitioning lines, as shown in Figure 2.  Due to the 
symmetrical properties of θvalues, one only needs to 
discuss the sub-regions in the left part of the bottom 
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portion of the outermost ring (SR 0 to SR q) .  Let q 
= p/4.  It is important to note that q is an odd 
number in this case. The vertical partitioning lines 
are selected as follows: w1 = q, w2 = -(q -1), w3 = q -2, 
w4 = -(q - 3), …, wq = 1. Again, one numbers these 
sub-regions from 0 to q from the left hand side to the 
right hand side. θ0 is equal to 0 because sub-region 0 
is on the ‘0’ side of all partitioning lines.  The θ
values of the rest of the sub-regions are: 
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Next the author will prove the maximum θ value 
occurs in sub-region 1 with a value of q. 
To prove this, the author divides the discussion into 
three cases: 
Case 1: sub-region 0: as just discussed above, θ0 = 0. 
Case 2: the sub-region number is even (not including 
sub-region 0).  The stopping point of Eq. (4) is at an 
even term. Rearranging Eq. (4), one gets 
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Observing Eq. (5), one get θ2 = 1, θ4 = 2, θ6 = 3,…,θ
q-1 = (q-1)/2.  Eq. (5) therefore forms a strictly 
increasing sequence with a relationship of θ2 <θ4 <θ6 
< ˙ ˙ ˙<θ q-1. The maximum value of the sequence 
occurs atθq-1 with a value of (q-1) / 2. 
Case 3: the sub-region number is odd.  The stopping 
point of Eq. (4) is at an odd term. Rearranging Eq. 
(4), one gets 
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Again, observing Eq. (6), one get θ1 = q, θ3 = q-1, 
θ5 = q - 2,…,θq = q - (q-1)/2.  Eq. (6) therefore 
forms a strictly decreasing sequence with a 
relationship of θ1 >θ3 >θ5 >˙˙˙>θq.  The maximum 
value of the sequence occurs atθ1 = 1 with a value of 
q. 

To sum up the discussion, the maximum θvalues 
for Case 1, Case 2, and Case 3 are: 

θ0 = 0 occurring in sub-region 0 for Case1, 
θq = (q-1) / 2 occurring in sub-region q for Case 
2, and 
θ1 = q occurring in sub-region 1 for Case 3. 

It is easy to prove that q > (q-1) / 2 since q, as 
mentioned earlier, is a positive odd number. The 
global maximum of θvalue of the above three cases 

therefore occurs in sub-region 1, a sub-corner 
sub-region of the added ring, with a value of q (= 
p/4).  By the symmetrical properties of θvalues, one 
concludes that the maximum θvalues of the added 
ring occur in the sub-corner sub-regions of the added 
ring with the same value (= p/4). 
(b) Using a similar procedure as part (a), one can 
prove the minimumθvalues of the added ring occur 
in the sub-corner sub-regions of the added ring with 
the same value  (= -p/4). QED. 
 
Proposition 3: For a nested decision region 
implemented by the up-down algorithm, the 
following statements are true. 
(a) The maximumθvalue of each ring belonging to 

class B is the same. 
(b) The minimumθvalue of each ring belonging to 

class A is the same. 
Proof 
(a) Consider a nested decision region whose 
outermost ring belongs to class B with p partitioning 
lines, as indicated in Figure 2.  By Proposition 2, the 
maximum θvalue of the outermost ring occurs in its 
sub-corner sub-regions (for example, sub-region s 
adjacent to the left-top corner sub-region of the 
outermost ring) with a value of p/4. Letting q = p/4, 
one getsθs = q.  The maximum θvalue of the second 
outermost ring of class B also occurs in its 
sub-corner sub-regions (for example, sub-region t 
adjacent to the left-top corner sub-region of the 
second outermost ring).  Observing Figure 2, one 
finds that the differences between sub-region s and 
sub-region t are that they are on the different side of 
w2, w3, w4q-1, and w4q. The sum of w2 and w3 is equal 
to –1 since they are adjacent lines determined by the 
up-down algorithm.  Similarly, the sum of w4q-1 and 
w4q is also equal to –1. Theθvalue of sub-region t is 
given by 
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Using the same procedure, one concludes that the 
maximum θ value of the third outermost ring 
belonging to class B is also equal to q because of the 
horizontally and vertically anti-symmetrical 
properties of the weights.  Using the same 
procedure, one can conclude the maximumθvalue of 
each ring belonging to class B is the same. 
One can apply the same procedure to a nested 
decision region whose outermost ring belongs to 
class A and obtain the same conclusion. 
(b) Using the same procedure as part (a), one 
concludes the minimum θ value of each ring 
belonging to class A is the same.   QED. 
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2  Feasibility 
To successfully add an outermost ring to a nested 
decision region implemented by the up-down 
algorithm, Criterion 1 must be guaranteed. The 
following proposition will prove it. 
 
Proposition 4: Consider a nested decision region 
implemented by the up-down algorithm.  If one uses 
the up-down algorithm to add a ring to the decision 
region, the following statements are true. 
(a) If the added ring belongs to class B, the maximum 

θvalue of the added ring is less than the minimum 
θvalue of the sub-regions of class A of the original 
nested decision region. 

(b) If the added ring belongs to class A, the minimum 
θ value of the added ring is greater than the 
maximum θvalue of the sub-regions of class B of 
the original nested decision region. 

Proof 
(a) Consider an original decision region with p 
partitioning lines. Let q = p/4.  By Propositions 2 and 
3,  the minimumθvalue of sub-regions belonging to 
class A in the original decision region is – q.  To add 
an outermost ring of class B to the original decision, 
one needs to add 4 more partitioning lines on the left, 
right, top, and bottom of the decision region.  The 
number of total partitioning lines is therefore p + 4. 
Let q’ = (p+4) / 4 = q + 1.  By the up-down algorithm, 
the four weights associated with these partitioning 
lines are selected as follows: wleft = q’, wright= - q’, 
wbottom = q’, and wtop = - q’.  As discussed earlier, the 
original decision region is on the ‘1’ sides of wleft and 
wbottom, and the ‘0’ sides of wright and wtop. This implies 
wleft and wbottom are added to the θ values of all 
sub-regions in the original decision region during 
adding the four partitioning lines while wright and wtop 
make no contribution. After adding the outermost ring, 
the minimum θvalue of the sub-regions of class A of 
the original nested region becomes - q + wleft + wbottom 
= - q + 2q’ = q+2.  By Proposition 2, the maximum θ
value of the added ring (class B) is q’ = q + 1.  Since 
q+2 > q+1, one concludes the maximum θvalue of 
the added ring is less than the minimum θvalue of the 
sub-regions of class A of the original nested region. 

(b) Using the same procedure as part (a), one 
concludes the minimum θvalue of the added ring is 
greater than the maximumθvalue of the sub-regions 
of class B of the original nested region, if the added 
ring belongs to class A. QED. 
Proposition 4 guarantees the feasibility of 
implementation of the nested decision regions using 
the up-down algorithm.  A nested decision can be 
successfully implemented by sequentially adding the 
rings from the innermost ring to the outermost ring 

and by selecting a proper threshold θh. 
Consider the partially nested rectangular decision 
regions mentioned in the first paper of the series of 
the studies (Part I: Algorithm). Using a similar 
proving procedure as Proposition 4, one can easily 
prove that the implementation feasibilities of these 
partially nested decision regions are still guaranteed 
because Criterion 1 is always guaranteed when one 
adds any combination of the four partitioning lines to 
the original nested decision region. 
 
3 Discussion 
The author theoretically discussed the partitioning 
capabilities of the up-down algorithm and proved the 
implementation feasibility of the algorithm. Four 
propositions were presented in the paper.  The first 
three propositions explained the nature of the 
up-down algorithm and the last one proved the 
implementation feasibility of the up-down algorithm. 
The author also discussed the implementation 
feasibility of the partially nested rectangular decision 
regions using the proposed algorithm. 
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Figure 1: The example of adding an outermost ring to a 2A-1B decision region, 
resulting in a 2A-2B decision region. 
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w6 = 1 
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w8 = 2 

wtop = -3 

wbottom 

Remark:  
The number in each sub-region indicates its θvalue after the addition of the outmost 
ring while the number in parentheses indicates theθvalue before the addition . 
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Figure 2: Explanations of the outermost and innermost rings in a nested decision region with p
(= 4q) partitioning lines and the conceptual picture for Propositions 1, 2 and 3.  
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Remarks: 
1. The symbol q in the sub-regions indicates the maximum of the rings belonging to class B.   
2. The maximum θvalue of the rings belonging to class B occurs in the sub-corner sub-regions 

of these rings.  
3. SR represents sub-region; e.g., SR 0 = sub-region 0; SR q = sub-region q 

SR 0 SR 1 SR3 SR 2 SR 4 SR 2q ˙˙˙ SR q ˙˙˙ SR q+1 
SR 2q-1 

SRs 
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