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Abstract: - Necessary and sufficient conditions for implementing particular decision regions by multi-layer 
perceptrons have been presented in recent studies.  In this paper, from a viewpoint of engineering, a 
constructive algorithm is proposed to implement celled decision regions using two-layer perceptrons without 
any training procedure.  The algorithm examines the feasibility of a celled decision region and then determines 
the weights of the second layer for a particular two-layer perceptron to implement the decision region if it is 
realizable. The algorithm is fast based on two aspects. First, it tests the feasibility and determines the weights 
without any training procedure. Second, the classifications of input patterns are based on integer manipulations 
since the weights determined by the algorithm are all integers. The proposed algorithm consists of only three 
simple steps and is implemented easily by computer programming languages.  
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1 Introduction 
A multi-layer perceptron is a layered structure neural 
network.  People use weights to connect nodes in 
each layer to perform the desired mapping from 
inputs to outputs. Training algorithms are used to 
adjust the weight in a neural network in order to get 
better classification results.  However, it takes a lot 
of time to optimize the weights during the training 
procedure especially when the number of weights in a 
neural network is large. 

Another approach to obtain the weights of a 
neural network is to examine its partitioning 
capability and then determine the weights using some 
appropriate algorithms.  An original discussion 
about the partitioning capabilities of multi-layer 
perceptrons can be found in [1] where the author 
indicated one-layer perceptrons only realize linearly 
separating decision regions, two-layer percptrons 
(TLPs) implement either convex open or closed 
decision regions, and three-layer perceptrons can 
successfully partition arbitrary decision regions. 
Further studies related to the feasibilities of 
multi-layer perceptrons are listed in [2-11].  The 
partitioning capability of TLPs has been generally 
discussed in [8], in which the author proposed the 
Weight Deletion/Selection Algorithm to determine 
the feasibility of TLPs and select the weights without 
any training procedure if a decision region is 
realizable. 

In this paper, the author proposes a constructive 

algorithm to examine the feasibility of a celled 
decision region by a particular TLP, and then 
determine the weights of second layer of the TLP if 
the decision region is realizable. Therefore, in this 
paper, when the author mentions ‘select weights ’, it 
means ‘select weights of the second layer of a 
particular TLP ’. 

The primary advantage of the algorithm lies in 
the computational speed to determine the feasibility 
and weights of the neural networks for celled decision 
regions because there is no training procedure to be 
used to adjust the weights.  Furthermore, the weights 
determined by the algorithm are all integers.  This 
will make the computation faster when classifying 
input patterns.  
 
2 Preliminaries 
2.1 Decision regions 
It has been known that the weights of the first layer of 
a TLP are pre-determined if its associated decision 
region is established [2, 8].  We only need to get the 
weights of the second layer of the TLP.  This paper 
focuses on how to generate the weights of the second 
layer of a TLP and assumes the weights of the first 
layer of a TLP are pre-determined. 

It has been known that for a two-layer perceptron, 
the number of inputs determines the dimensionality 
of its associated decision region.  The first layer of a 
two-layer perceptron generates the associated 
decision region and the second-layer serves to map 
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the input pattern to the desired outputs [2,8].  An 
m-dimensional decision region can be divided by a 
group of m-dimensional partitioning hyper-planes.  
These partitioning hyper-planes are associated with 
the hidden nodes of a particular two-layer perceptron 
with a one-to-one correspondence and divide the 
original decision region into different sub-regions.         

For two-class classification problems, theθvalue 
for a particular sub-region in a decision region, is 
defined as follows [8] 
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where θ l  is the θvalue of sub-region l, p is the 
number of partitioning lines in the decision region, 
and wk is the weight connecting first layer node zk 
with the output node. 

The output of the TLP is given by 
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whereθh is the threshold for the output node. 
The necessary and sufficient condition for 

implementing a decision region is the minimum θ
value of sub-regions belonging to class A must be 
greater than the maximum θ value of sub-regions 
belonging to class B [2,6,8].   
 
2.2 Celled decision regions 
A ‘celled decision region’ is a decision region 
partitioned by horizontal and vertical lines by which 
the decision region is divided into rectangle-like 
celled sub-regions. These celled sub-regions are then 
grouped into several horizontal or vertical strips. If a 
celled decision has m vertical partitioning lines and n 
horizontal partitioning lines, we get (m+1) vertical 
strips and (n+1) horizontal strips.  For convenience, 
the author uses notation ‘VSi’ to represent vertical 
strips i and numbers the vertical strips from the left to 
the right (VS0, VS1, VS2, …, VSm). Similarly, the 
author uses notation ‘HSj’ to represent horizontal 
strip j and numbers the horizontal strips from the 
bottom to the top (HS0, HS1, HS2, …, HSn.).  A celled 
sub-region is denoted as ‘Cij’ if it is in the intersection 
of vertical strip i (VSi) and horizontal strip j (HSj).  
Figure 1 displays a celled decision region with 4 
horizontal partitioning lines (wh1 to wh4) and 5 vertical 
partitioning lines (wv1 to wv5). The decision region is 
established either by 6 vertical strips: VS0, VS1, VS2, 
VS3, VS4 and VS5 or by 5 horizontal strips: HS0, HS1, 
HS2, HS3, and HS4.  Each of vertical and horizontal 
strips consists of a series of celled sub-regions, as 
indicated in Figure 1.      

A celled sub-region Cij is represented by two 
components: ‘horizontal component’ i and ‘vertical 

component’ j.  The author uses notation ‘HCi’ to 
represent horizontal component i and notation ‘VCj’ 
to represent vertical component j. It is very important 
to note that the horizontal component of Cij (HCi) is 
associated with vertical strip i (VSi), and the vertical 
component of Cij (VCj) is associated with horizontal 
strip j (HSj).  For example, C23 is represented by HC2 
which is associated with vertical strip 2 (VS2) and by 
VC3  which is associated with horizontal strip 3 (HS3). 
Furthermore, the author uses notation ‘VSiA’ to 
represent a subset of class A of VSi, in which all 
elements belong to class A.  The author also uses 
notation ‘HSjA’ to represent a subset of class A of HSj, 
in which all elements belong to class A.  For 
example, in Figure 1, VS0A = {C01, C02, C03, C04}, VS4A 
= {C41, C42}, HS0A= Φ (the empty set), and HS3A = 
{C03, C23}.  

The author uses notation ‘ V
iAVS ’ to represent a 

collection of the vertical components of the elements 
in VSiA,.  For example, in Figure 1, V

AVS0 ={VC1, 

VC2, VC3, VC4}. Similarly, the author uses ‘ H
jAHS ’ to 

represent a collection of the horizontal components of 
the elements in HSjA . For example, in Figure 1, 

H
AHS2 ={HC0, HC1, HC3, HC4, HC5}.   

 
2.3 The XOR examining procedure 
Based on the XOR criterion presented in [1-5], the 
author demonstrates the XOR examining procedure, 
by providing an example, to explain the necessary 
and sufficient condition of implementation of a celled 
decision region using a TLP.  Observing Figure 1, 
one finds that in VS2, C23 belongs to class A while C21 
belongs to class B. To implement the classification, 
the order of the θvalues of C23 and C21 is given by 
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Similarly, in VS4, C41 belongs to class A while C43 
belongs to class B. the order of the θvalues of C41 and 
C43 is given by 
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 Eqs. (3) and (4) lead to a contradiction, called 
the XOR problem [1-5], which means the decision 
region cannot be implemented by TLPs since the sum 
of wh2 and wh3 cannot be positive and negative values 
simultaneously.  

However for a celled decision region, using the 
above XOR examining procedure to test the 
feasibilities spends a lot of computational time since 
it needs to examine any possible sub-region pairs 
where the XOR problem could occur.  For example, 
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consider a celled decision region with m vertical 

strips and n horizontal strips. There are 
4

)!()!( nm
 

XOR pairs needed to be examined in the celled 
decision region (symbol ‘!’ denotes a factorial 
manipulation). The computational complexity is 
extremely heavy when m and n are large numbers.   

In Figure 1, V
AVS2  ={VC3, VC4}, and V

AVS4  
={VC1, VC2}.  The XOR problem occurs because at 
least one element in V

AVS4  is not in V
AVS2 , and vice 

versa.  For example, VC1 is in V
AVS4  but not in 

V
AVS2 , and VC3 is in V

AVS2  but not in V
AVS4 .  To 

avoid the XOR problem in a celled decision region, 
for any possible pair of vertical strips, say VSk and VSl, 
the following relationship must be satisfied: 

   or  V
KA

V
lA

V
lA

V
KA VSVSVSVS ⊆⊆         (5)                    

Based on the above discussion, in the next section, 
two criteria are presented to test the feasibility of 
implementation of a celled decision region by a TLP 
and to select the weights of the second layer of the 
TLP if the decision region is realizable. 
 
2.4 Criteria 
Criterion 1: A celled decision region can be 
implemented by a TLP if for the vertical strips in the 
decision region one can find a particular order to 
satisfy the following relationship  

{ {
 

2Position  1Position  

Λ⊆⊆ V
jA

V
iA VSVS for distinct vertical strips  (6) 

It is important to note that in Eq. (6) numbers i, j, k,…, 
etc, are not necessary in a numerical order.  The 
author defines the ‘position’ of a set in Eq. (6) 
according to the position counted from the left to the 
right. The ‘rank’ of a vertical component VCi, 
denoted as ‘rank(VCi)’, is said to be r if VCi is in the 
set with position r but not in the set with position r-1.  
If a vertical component is in the set with posoition1, 
its rank is 1.  For example, in Figure 2(a), we get 

V
AVS0 ={VC0, VC1, VC2, VC3, VC4}, V

AVS1 ={VC1, 

VC2}, V
AVS2 ={VC1, VC2, VC3, VC4}, V

AVS3 ={VC2}, 

and V
AVS4 ={VC1, VC2, VC3}.  Rearranging these 

sets, one gets the following relationship 
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The ranks of the vertical components are as follows: 
rank(VC2) = 1, since VC2 is in V

AVS3  (position 1), 

rank(VC1) = 2, since VC1 is in V
AVS1  (position 2) but 

not in V
AVS3  (position 1),rank(VC3) = 3, since VC3  

is in V
AVS4  (position 3) but not in V

AVS1  (position 
2),rank(VC4) = 4, since VC4  is in V

AVS2  (position 4) 
but not in V

AVS4  (position 3), and rank(VC0) = 5, 
since VC0  is in V

AVS0  (position 5) but not in V
AVS2  

(position 4). 
Similarly, to obtain the ranks of the horizontal 

components, one first gets the following relationship: 
 

2Position  1Position  

Λ
321321 ⊆⊆ H
jA

H
iA HSHS for distinct horizontal strips (8) 

Again, in Figure 2(a), we get H
AHS0 ={HC0}, 

H
AHS1 ={HC0, HC1, HC2, HC4}, H

AHS2 ={HC0, HC1, 
HC2, HC3, HC4}, H

AHS3 ={HC0, HC2, HC4}, and 
H
AHS4 ={HC0, HC2}. 

Rearranging these sets, one gets the following 
relationship 
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The ranks of the horizontal components are as 
follows: rank(HC0)=1, rank(HC2)=2, rank(HC4)=3, 
rank(HC1)= 4, and rank(HC3) = 5. 

Note that if two or more components are tied at 
the same position in Eqs. (6) or (8), they have the 
same position.  Figure 2(b) is an example of tired 
positions with the following relationships:   
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The ranks of the vertical components in Figure 2(b) 
are as follows: rank(VC1) = 1, rank(VC3) = 2, 
rank(VC4) = 3,  rank(VC5) = 4, rank(VC0) = 
rank(VC2) = rank(VC6) = 5.  The ranks of the 
horizontal components are as follows: rank(HC0) = 1, 
rank(HC4) = 2, rank(HC2) = rank(HC5) = 3, 
rank(HC1) = rank(HC3) = rank(HC7) = 4, and 
rank(HC6) = 5.  
Criterion 2: If a celled decision region is realizable 
by a TLP, the weights of the second layer of the TLP 
are determined by the following recursive formulas: 
 
wvi = rank(HCi-1) – rank(HCi) for vertical weights  (12) 
whj =rank(VCj-1)–rank(VCj) for horizontal weights  (13) 

where m is the number of the vertical weights and n is 
the number of the horizontal weights.  
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3 The Algorithm and Examples 
3.1 Procedure of the algorithm 
Step 1 (Feasibility-Determining Step): Determine 

the feasibility of a celled decision region by 
Criterion 1.  If it is not realizable, stop the 
algorithm and conclude the decision region 
cannot be implemented by TLPs. If it is 
realizable, go to Step 2.   

Step 2 (Weight-Selecting Step): Determine the 
weights of the second layer for a particular TLP 
by Criterion 2.  

Step 3 (Threshold-Determination Step): θh is set to 
be equal to the minimumθvalue of the celled 
sub-regions belonging to class A.   

 
3.2 Examples of the Algorithm 
Figure 1 is an example of an unrealizable celled 
decision region since one cannot find a particular 
order for the vertical strips to satisfy Eq. (6). 
Figure 2(a) is an example of a realizable celled 
decision region without tied position where the ranks 
of the vertical and horizontal components are 
indicated early. By Criterion 2, the weights of the 
second layer of the TLP are determined as follows: 
wv1= rank(HC0) – rank(HC1) = 1 – 4 = -3, 
wv2= rank(HC1) – rank(HC2) = 4 – 2 = 2, 
wv3= rank(HC2) – rank(HC3) = 2 – 5 = -3,  
wv4= rank(HC3) – rank(HC4) = 5 – 3 = 2 
wh1= rank(VC0) – rank(VC1) = 5 – 2 = 3, 
wh2= rank(VC1) – rank(VC2) = 2 - 1 = 1, 
wh3= rank(VC2) – rank(VC3) = 1 – 3 = -2, and 
wh4= rank(VC3) – rank(VC4) = 3 – 4 = -1, 
The decision region is implemented by lettingθh = 0. 

Figure 2(b) is another realizable decision region 
with tied positions.  The vertical and horizontal 
weights to implement the decision region are 
determined as follows: wv1 = -3,   wv2 = 1, wv3 = -1, 
wv4 = 2, wv5 = -1, wv6 = -2, wv7 = 1, wh1 = 4, wh2 = -4, wh3 
= 3, wh4 = -1,    wh5 = -1, and wh6 = -1. By lettingθh = 
0, one can implement the decision region by the 
above weights.  

 
4 Conclusions 
The author presented a constructive algorithm to 
examine the feasibility of implementation of celled 
decision regions by TLPs. If the celled decision 
region is realizable by a particular TLP, the algorithm 
generates the weights of the second layer of the TLP 
to implement the celled decision region without any 
training procedure.   

The algorithm is fast based on two aspects. First, it 

tests the feasibility and determines the weights 
without any training procedure. Second, the 
classifications of input patterns are based on integer 
manipulations since the weights determined by the 
algorithm are all integers. The proposed algorithm 
consists of only three simple steps and is 
implemented easily by computer programming 
languages. 

The partitioning capabilities  of two-layer 
perceptrons for more complex decision regions such 
as convex or even non-convex decision regions might 
be interesting issues for the future work.  
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C04 C14 C24 C34 C44 C54

C03 C13 C23 C33 C43 C53

C02 C12 C22 C32 C42 C52

C01 C11 C21 C31 C41 C51

C00 C10 C20 C30 C40 C50

Remarks: 
For vertical strips: 
VS0 = {C00, C01, C02, C03, C04}, VS1 = {C10, C11, C12, C13, C14},  
VS2 = {C20, C21, C22, C23, C24}, VS3 = {C30, C31, C32, C33, C34}, 
VS4 = {C40, C41, C42, C43, C44}, VS5 = {C50, C51, C52, C53, C54}. 
The subsets of class A of vertical strips: 
VS0A={C01, C02, C03, C04}, VS1A = {C11, C12}, VS2A = {C23, C24}, 
VS3A = {C32}, VS4A = {C41, C42}, VS5A = {C51, C52}. 
The sets of vertical components of V

iAVS : 
V

AVS0 ={VC1, VC2, VC3, VC4}, V
AVS1 ={VC1, VC2}, V

AVS2 ={VC3, VC4}, 
V

AVS3 ={VC2}, V
AVS4 ={VC1, VC2}, V

AVS5 ={VC1, VC2}.  
For horizontal strips: 
HS0 = {C00, C10, C20, C30, C40, C50,}, HS1 = {C01, C11, C21, C31, C41, C51,}, 
HS2= {C02, C12, C22, C32, C42, C52,}, HS3= {C03, C13, C23, C33, C43, C53,}, 
HS4 = {C04, C14, C24, C34, C44, C54}.  
The subsets of class A of horizontal strips: 
HS0A = Φ , HS1A = {C01, C11, C41, C51}, HS2A= {C02, C12, C32, C42, C52,},  
HS3A= {C03, C23}, HS4A = {C04, C24}. 
The sets of horizontal components of H

jAHS : 
H
AHS0  = Φ , H

AHS1  = {HC0, HC1, HC4, HC5}, H
AHS2 = {HC0, HC1, HC3, HC4, HC5}, 

H
AHS3 = {HC0, HC2}, H

AHS4  = {HC0, HC2}. 
 

wv1 wv2 wv3 wv4 wv5 

Figure 1: The Celled Decision Region 
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C04 C14 C24 C34 C44

C03 C13 C23 C33 C43

C02 C12 C22 C32 C42

C01 C11 C21 C31 C41

C00 C10 C20 C30 C40

C06 C16 C26 C36 C46 C56 C66 C76

 C05 C15 C25 C35 C45 C55 C65 C75

C04 C14 C24 C34 C44 C54 C64 C74

C03 C13 C23 C33 C43 C53 C63 C73

C02 C12 C22 C32 C42 C52 C62 C72

C01 C11 C21 C31 C41 C51 C61 C71

C00 C10 C20 C30 C40 C50 C60 C70

Figure 2: The Examples of the Algorithm  
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(a) Example without Ties of 
Positions of Vertical Strips 

(b) Example with Ties of Positions of 
Vertical strips 
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