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Abstract: - This article proposes a measurement of the uncertainty used in feature labeling
which takes into consideration the similarity between the analyzed characteristic and a
prototype, and the dissimilarity between the same characteristic and the nearest neighboring
prototype. Using the similarity and not the equivalent relationship, the method is more
general, the transitivity not being requested.
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1 Introduction:
Determining the degree of confidence for

the estimated characteristics is one of the
most important issues in feature discovery
and labeling. It has been underlined many
times [1], [2] that crisp interpretation of
classification results implies loosing an
important part of the initial information,
and for this reason it is preferable to use a
fuzzy form for out coming data, or to
establish a continence measure. In these
cases, an uncertainty factor can be used.
Uncertainly is formalized in a various
number of methods: by using probability,
fuzzy membership, possibility
measurement, by using Demster-Shaffer
masses, or rough sets. Most of them are
using an interval to define an uncertain
domain, in which a crisp affirmation about
the studied feature or characteristic cannot
be strictly determined. Even for the fuzzy
membership Atanassov proposed a degree
of unbelongingness [3], as a contra part for
Zadeh’s fuzzy membership. Thus, in
posibilistic approach, the limits of the
uncertainty are the necessity and the
possibility of belonging to a characteristic
[4]. The main relationship is the numerical
equivalence between the degree of
possibility and the degree of membership,
as defined in fuzzy logic:

(x) = (x) (1)

From this relationship, the measure of
possibility is deduced:

(X) = max (x) (2)

where xX is an element of the definition
subset. It’s dual, the measure of necessity
is:

N(A) = 1- (A) (3)

These two measurements represent the
extreme situations. The first represents any
possible belonging to the set, and the
second one represents the absolute positive
situation.
One interesting extension of the uncertain
measurement using possibilities is
presented in [5], where the limits are
established on intervals, creating, in this
way, a granular reconstruction of a
characteristic function. For each interval,
the upper border of the reconstruction is
used as the possibility measurement:

])(|]1,0[sup[
^

 xAaaR (4)

where

 is a t-norm, and  is the
possibility measure of the A(x)
attribute.

Proceedings of the 7th WSEAS International Conference on Fuzzy Systems, Cavtat, Croatia, June 12-14, 2006 (pp39-42)

mailto:barnac@arad.ro


The relationship for the lower border has
the form:

]))(1(|]1,0[inf[
~

 xAaaR
(5)
where

 is the used co-norm, and
 is the necessity measure of the A(x)
attribute

In the Demster-Shaffer theory, the limits
are the credibility and the plausibility [6],
defined by

Bel(A) =  AB m(B) (6)

Pl(A) =  AB m(B)

They are based on masse evaluation,
representing the maximal, respectively the
minimal belief.
Pawlak’s rough set theory defines the
lower R and the upper R approximation
[6] in the description of an object by using
a set of attributes.

}][|{)( XxUxXR R  (7)

where UX  ,

}0][|{)(  XxUxXR R (8)

The lower approximation represents the
certain inclusion of the related elements in
the considered subset X while the upper
approximation represents all elements that
have at least a common point with the
subset. The union of all lower
approximations determines a certain
belonging to the subset, called the positive
region

XRXPOS
UX



)( (9)

while the negative region includes all the
regions which certainly have no common
points with the subset X.

XRUXNEG
UX



)( (10)

The zone between the positive and the
negative regions is called the boundary
region. This region corresponds to the
uncertain zone, in which the membership
of the points to the subset cannot be
determined.

XRXRXBND
UXUX



)( (11)

One of most important observations,
which is connected to the rough sets is the
fact that R is creating an equivalence
partition inside the X domain. The
equivalence relationship determines an
indistinctibility of the attributes inside
each class.

2 Approach
All these formulations about uncertainty

have a very strict delimitation for the
bounders. Nevertheless, it must be noticed
that, in practice, a flexibility of these limits
exists. Some extreme points can be
overlooked. The uncertain region in
feature labeling is sometimes more related
to the relationship between the
characteristics, and less related to
exception points. This article presents an
uncertainty measurement based on
similarity to the prototype and on
dissimilarity from the nearest neighbor
prototype.

Equivalence classes imply three
main proprieties: reflexibility, symmetry
and transitivity. In numerous applications,
the transitivity doesn’t hold (see Luce
paradox), fact determined by the
approximation of the observation (two
characteristic measurements seam to be
equal, but in reality there is a little
difference between them). For this reason,
the use of a more general relationship like
similarity, in which the transitive propriety
is not required, is more adequate. This is
especially true for granular computing and
fuzzy logic, where the observations are
rough. In this article a fuzzy similarity
relationship proposed in [8] will be used.
This relationship is obtained by overlaying
two fuzzy relationships, that of inclusion
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and that of dominance. The first one
implies a fuzzy implication relationship,
and establishes the degree of inclusion of a
variable x in an interval boarded by a
constant value a. The second one implies a
fuzzy implication between a boarded
constant b and the variable x. Thus, the
similarity relationship is:

)()(),,( bxxabaxsim  (12)

If the fuzzy implications have the form :

]|]1,0[sup[ xcacxa  (13)

then, for a t-norm that is considered to be a
product, the relationship become:












axdaca
x
a

axdaca
xa

__

__1
(14)

or, for a Lukasiewicz t-norm it becomes :









axdacaax

axdaca
xa
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(15)

The graphical representations of the
product t-norm similarity relationships
ispresented in fig.1

Fig.1

And the graphical representations of the
Lukasiewicz t-norm similarity
relationships is presented in fig.2

Fig.2

Thus, the label of the unknown feature is
determined by the nearest prototype,
which is also the most similar to it:

S(x,a,b)=max(sim(x,a,b)) (16)

Also, the feature is compared to the next
nearest prototype. The dissimilarity is then
determined from this reference point. The
dissimilarity is considered the
complementary measure of the similarity,
and its relation is determined by using the
negation of similarity. In the present
paper, the classical negation will be used.
The resulting relationship for this measure
is:

D(x,a,b)=
Ni ,1

min


(1-sim )),,( ii bay (17)

From the relationship between these two
measurements the measure of uncertainty
can be determined, expressed as a
difference between the similarity with the
closest prototype and the dissimilarity
from the second closest prototype:
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If the result of this measurement is
positive, then small values indicate small
uncertainty, because the labeled feature is
similar to the designed prototype, and is
weakly similar to the next closest one.
In the case of U(x,a,b)>0 being large, it
can be concluded that uncertainty is

1

b



important, because the difference of
similarity between the feature and the next
nearest prototypes is small, and the
possibility of it belonging to each of these
two classes is high, resulting that the
probability of making a mistake is
considerable.
If the difference has a negative value, it
can be concluded that the feature does not
belong to the investigated class, because it
is more similar to another prototype, or it
can be labeled on the information provided
by the existent prototypes.

3 Result
A set of 8 experiments with features

extracted from images was performed. The
goal of the experiments was to recognize
capital letters, more specifically: A, E, H,
I, O, and U. This was done by extracting
the area and the second order moment
from the images of the letters. The
experiments are simple, but suggestive for
the purpose of this paper. As expected, by
observing the distribution of the area
values, a partition of the letters in three
clusters results, namely one with A, E and
H, second with O and U and last
containing only the letter I. Between
letters from different classes, the measure
of uncertainty U(x,a,b) was small, but
inside the classes the value was bigger,
resulting in a more uncertain decision. By
analyzing the feature corresponding to
second order moments, it can be observed
that several groups of letters exist; for
example: O, U or E, H are quite similar,
thus the selection of one of them has more
uncertainty. Also, the uncertainty measure
described before has large values, but for
features corresponding to the letter I, it has
a small value because the confidence in
this selection is high, and the characteristic
of this feature is far from any other one.

4 Conclusion
In many uncertainty measurement
methods a bi-value feature determination
is used, in which the degree on uncertainty
is established between two limits. In this
paper, a method in which the limits are not
so rigid is exposed. They are based on two

fuzzy relationships: the similarity and
dissimilarity of the unknown feature,
which is requited to be labeled, and the
two most nearest prototypes. It had been
proved that the method is sound, and leads
to good results.
Also, the method can be generalized, by
taking into consideration the k-nearest
neighboring prototypes for determining
the dissimilarity measure. Further
investigation will be done in this direction.
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