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Abstract: - In this paper, a new fuzzy controller is proposed based on inverse model of boiler-turbine system. 
Gain scheduling scheme is used to keep feedback rule as close as possible to optimal condition while generating 
plant Input/Output data. Interaction between state variables of the system is studied and as a result, a MIMO 
structure controller is developed. Considering possible operating zone, number of rules in Sugeno-type FIS is 
reduced.  It is shown that the proposed controller has better performance such as smaller rise time than the 
optimal controller. It is also shown that the controller has robust performance in the presence of uncertainty and 
parameters variation.   
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1   Introduction 
Everyday large amount of fossil fuel is burnt for 
power generation purposes. Drum type power plant is 
one of the most frequent types of plant which is built 
all over the world for this purpose. Nonlinear nature, 
interaction between state variables and process 
complexities of this type of plant challenged control 
engineers for many years. In order to minimize risk 
of new control strategy implementation, it is first 
evaluated on developed models. Gain scheduling is 
one of the most frequent efforts which have been 
done by power plant control engineers to improve 
controller performance. Dieck-Assad and Masada 
used lookup table to determine controller parameters 
in some specified points [1]. Generally, this method’s 
drawback is interpolation problem for large systems. 
Hogg and Ei-Rabaie applied self tuning generalized 
predictive control (GPC) to a boiler system [2]. 
Prasad et al presented model predictive control based 
on NNs [3]. Bolis et al developed controller with self 
tuning characteristics, but the controller does not 
perform well in the presence of big nonlinearities [4]. 
Diemo and Lee used genetic algorithm to find the 
optimal value of PI and LQR controller parameters. 
They showed that the developed controller has 
desirable performance in wide range of operation [5].  
Ben Abdennour and Lee used robust control methods 
to control boiler and turbine subsystems [6]. 
However; robust control methods has some 
limitation in the presence of severe nonlinearity in 
large systems. Alturki and Abdennour trained a 
neuro-fuzzy controller by the data generated from 5 

linear quadratic regulators linearized in 5 operating 
points [7]. The main drawbacks of this method is that 
the trained controller dose not work in optimal 
condition, since the training data is not generated in 
the optimal condition. In this paper, utilizing gain 
scheduling technique, this drawback is eliminated. 
Moon and Lee proposed a self-organizing fuzzy 
controller [8].  In that study, despite the existence of 
interaction between state variables, SISO controller 
is designed which is not a realistic approach. Tan et al 
proposed a new definition to measure nonlinearity in 
a system and showed that the nonlinearity can be 
avoided by careful choice of operating ranges [9]. 
Therefore; conventional linear controllers could be 
used in the predefined ranges.  
In this paper, new controller is proposed based on 
inverse model characteristics. Considering the 
nonlinearities discussed and measured in [9], NN is 
used to train a fuzzy controller which emulates the 
behavior of the inverse model. Due to interaction 
between state variables, MIMO structure is devised 
for the controller. Large number of rules problem is 
resolved by considering possible operating points 
and eliminating extra impossible operating ranges. 
2   Drum Type FFPP Model 
The mathematical equations which describe the 
behavior of power plant derived in [10] are 
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where x1 , x2  and x3 are drum pressure(kg/cm2), 
generated electric power(MW) ,and fluid density, 
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respectively. The input values are u1, u2 and u3 which 
denote the actuator valve normalized position. 
Actuators are fuel valve and turbine valve and water 
supply valve respectively. 

11 xy =                                                                              (4) 
22 xy =                                                                                (5) 
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As indicated by (4) and (5), the first two outputs are 
the same as the first two state variables and the third 
output is determined in terms of α and q which are 
steam quality and evaporation rate, respectively. 
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Equations (1) to (8) are determined by mass and 
energy conversion equations. The parameters are 
tuned based on the data garnered from Synvendska 
Kraft AB plant in Malmo, Sweden. Actuator valves 
limitations are represented by inequalities (9) 
through (12). 
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3   Inverse Model Controller 
The proposed Model in [10] for boiler-turbine unit is 
a nonlinear MIMO model. Thus, its general discrete 
description is 

))(),(()1( kkk uxfx =+                                                     (13) 
where )1( +kx  is the state vector at time k+1, )(kx is 
the state vector at time k, and )(ku is the controlling 
vector at time k. Computing system state vector at 
time k+n, equation (14) is reached. 
 )),(()( UxFx knk =+                                                        (14) 
where n is the order of the plant, F is a multiple 
composite function of f , and U is the control action 
defined by (15). 

Tnkkk )]1(,),1(),([ −++= uuuU Κ                            (15)        
Equation (14) reveals that, if the control input U  
from k to k+n-1 is equal to the right side of (15), the 
state of the plant will move from )(kx to )( nk +x  in n 
time steps [11]. If we were able to find U as a 
function of )( nk +x  and )(kx explicitly, then we could 
bring the system to any desirable state in n time 
increments. 

))(),(( knk xxGU +=                                                      (16) 
Accordingly, the problem is to find the function 
G which is the inverse model of the system. In case 

of linear systems, if the controllability matrix is 
full-rank, finding G in an analytical form is an easy 
task to do. However; for nonlinear systems, there 
may not exist an analytical form. Therefore, instead 
of seeking solution explicitly, adaptive network 
fuzzy inference system (ANFIS) is used to 
approximate the inverse mapping G . The first step is 
to generate a set of input/output data points to train 
the fuzzy system with. After the fuzzy controller has 
been trained, it generates an estimated Û as (17) that 
brings )(kx to the desired state after n time steps. 

))(),((ˆˆ nkk d += xxGU                                                          (17) 
 
 
3.1 Training Data 
In order to train the adaptive network to reach the 
prescribed Ĝ  a set of data points must be prepared. It 
is worth noting that actuator constraints must be 
considered in data generation procedure. The first 
alternative in mind is to use pure random inputs and 
check that whether the pressure and power navigate 
through all possible points in the power-pressure 
plane. 
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Fig.1 Plant outputs for pure random inputs 
 
Figure 1 shows that the plant outputs do not cover the 
whole operating area in the power-pressure plane for 
pure random inputs. Consequently; a pure random 
input is not a suitable identification signal for this 
system. Several other types of inputs have been 
tested, but all of them have the aforementioned 
problem. Therefore; instead of open loop 
identification, closed loop identification will be used 
to prepare training data. For this purpose 7 nominal 
operating points as those in [9] are considered. These 
values along with their steady-state inputs are shown 
in Table 1. 
Table 1 Diagonal line in power-pressure plane 

 P.1 P.2 P.3 P.4 P.5 P.6 P.7 
Pressure 75.6 86.4 97.2 108 118.8 129.6 140.4
Power 15.27 36.65 50.5 66.65 85.06 105.8 128.9
Input 1 0.119 0.209 0.27 0.340 0.418 0.505 0.590
Input 2 0.380 0.551 0.62 0.690 0.759 0.828 0.961
Input 3 0.122 0.255 0.34 0.433 0.543 0.663 0.797
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The 7 operating points form the diagonal line of the 
operating region. Consequently, in order that the 
controller has good performance in the whole 
operating range of the plant, every node in the 
pressure-power plane corresponding to the power 
and pressure mentioned in Table 1 shall be used to 
generate the training data. 
Remark 1- Note that impossible nodes must be 
excluded from the region. In other words, some 
demand powers can not be generated in some 
specified drum pressures. Therefore; the dark (red) 
area shown in Figure 2 is excluded from the data 
generation zone.  

 
Fig.2 Data generation Zone (Bright area) 
 
In order to navigate through the pressure-power plane 
in Figure 2, linear quadratic regulators are used. 
Careful choice of weighting function (Q and R) is 
necessary to develop desirable characteristics in the 
trained fuzzy controller. Moreover, if R is assumed 
small in comparison with Q, outputs of controller will 
be much more grater than 1 (upper threshold of the 
actuators) which is unrealistic and causes aggressive 
oscillations in the generated power. 
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Fig.3 Plant state variables under LQR control 
Figure 3 shows that pressure and power moving in 
the bright (green) area shown in Figure 2 desirably, 
under LQR control. Therefore; the generated data are 
suitable to train the inverse model fuzzy controller. 
 
Remark 2- If linear quadratic regulators are designed 
for these operating points, then the performance of 
the plant in the surrounding area will go away from 
the optimal condition. If a fuzzy logic controller is 
designed based only on these operating points, then 

the response of the closed loop system will 
deteriorate from its desired value for other points. 
This is the case which can be seen in the simulation 
results of [7]. However, in our paper, to overcome 
this problem a fuzzy system has been used for the 
purpose of gain scheduling. In this case at each node 
optimal control is guaranteed and in the area between 
nodes, an interpolation of feed back gain matrix is 
applied.   
 
 
3.2 Fuzzy Controller Structure 
Before tuning controller parameters by means of 
generated data, controller structure must be 
determined. Firstly interaction between each channel 
in the model is scrutinized. In some studies such as 
[8], SISO controller is designed to control the plant. 
In these studies dominant input/output pairs are 
chosen with the following argument. “From (2), x2 is 
controlled by u2 “. But, it must be noted that x2 is 
affected by x1 which itself is affected by u1. Further, 
in (3), since x1 is in the order of 100 in nominal 
operating conditions, the coefficients of u2 and u3 are 
of the same order. So, the effect of u2 on x3 can not be 
neglected. Considering interaction in time domain, it 
can be also studies in frequency domain. Deriving, 
the linearized system transfer function in operating 
point 4, it can be seen that off-diagonal terms can not 
be neglected. One of the most common ways to asses 
the interaction between state variables of a MIMO 
plant is drawing Gershgorin bands. Diagonal 
dominance Idea is first presented by Rosenbrock. As 
Diagonal dominance increases, System variable 
interaction decreases and vice versa, and both of 
these characteristic could be evaluated by the 
following definition. 
 
Definition 1- An m×m system matrix transfer function 
G, is row diagonal dominant, if for all values of ω 
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m
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1
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Similarly, G is column diagonal dominant, if for all 
values of ω 
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The Gershgorian band is defined as the locus of all 
circles drawn in the imaginary plane as ω changes 
from zero to infinity. For each row or the column of 
the matrix transfer function G, the origin of the circle 
is located at Gii and the radii is equal to the 
summation of all off-diagonal elements’ magnitudes 
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of that row or column, respectively. The encirclement 
of the origin by Gershgorian band shows the 
interaction of state variables.  
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Fig.4 Gershgorian Band for the second row 
 
As Figure 4 shows for lower frequencies, origin is 
encircled by the band, which shows that the 
dominance criterion is not satisfied.  
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Fig.5 Gershgorian Band for the third row 
 
Considering Gershgorian band for the third row of G, 
Figure 5 shows that for all frequencies origin is 
encircled. Therefore; it is not possible to neglect 
interaction between state variables. 
 In the first trial, minimum number of inputs is 
designated for the basic structure of fuzzy controller. 
So, the general form of the j-th rule is 
 
If y1desired is A1j and y2desired is A2j and y3desired is A3j 
and y1(k)is B1j and y2(k)is B2j and y3(k)is B3j  and 
u1(k-1) is C1j and u2(k-1) is C2j and u3(k-1) is C3j 
Then u1(k)  is D1j and u2(k)  is D2j   and u3(k)  is D3j 
 j=1,…, n                                                                  (20) 
 where yi and ui denote plant i-th output and i-th input 
respectively. Ai, Bi, Ci and Di are their 
corresponding membership functions. Furthermore, k 
denotes sampling time. 
If each linguistic variable is partitioned by only 2 
membership functions, there must be 29 =512 rules 
which is great number of rules. However; due to 
existence of impossible operating points, as shown in 
Figure 2, not that much number of rules is needed. 
After many times of iteration, it is found out that 150 
are enough for the purpose. In the other words, 
performance of the model did not increased any more 
by increasing the number of rules. 

Performance of the system is not desirable with this 
type of controller. It indicates that controller 
information from previous sampling time is not 
complete. Consequently; the number of sampling 
times is increased for both y and u in the antecedent 
of the fuzzy rules. The general form of the j-th fuzzy 
rules is as indicated in (21). 
 
If y1desired is A1j and y2desired is A2j and y3desired is A3j 
and y1(k)is B1j and y2(k)is B2j and y3(k)is B3j          
and y1(k-1)is C1j and y2(k-1)is C2j and y3(k-1)is C3j 
and u1(k-1) is D1j and u2(k-1) is D2j and u3(k-1) is 
D3j  and u1(k-2) is E1j and u2(k-2) is E2j and u3(k-2) 
is E3j Then u1(k)  is F1j and u2(k)  is F2j   and u3(k)  is 
F3j 
j=1,…, n                                                                  (21) 
 
Based on the same argument and after several times 
of iteration it turns out that the total number of 200 
rules is an optimum number for the proposed 
controller. The performance of the proposed 
controller is discussed in the next section. 
 
  
4   Simulation Results 
To evaluate the performance of power plant under 
control of new control strategy, different cases 
(different working conditions) are studied. System 
initial condition is considered to be as the vectors 
(22) to (24) in all cases. 
 
X0= [90 45 460.24]                                                  (22) 
Y0= [90 45 0]                                                        (23) 
U0= [0.2436 0.6094 0.3066]                                 (24) 
 
The steady-state initial condition is determined to be 
different from the controller design points. Since 
there is a mapping between desired power and the 
drum pressure, the set points for both must be 
determined with regard to each other. At first, 
response of the system with regard to operating point 
variations is studied. Then, in order to evaluate the 
robustness of the controller, the effect of parameters 
variation is studied.  
 
 
4.1 Operating point variation 
Case A: 
In this case, drum pressure and generated power are 
increased to 110 kg/cm2 and 70 MW respectively, 
while keeping drum water level deviation constant at 
zero.  
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Fig.6 System response for case A, Inverse model 
controller (solid), LQR (dashed) 
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Fig.7 Water level deviation for case A, Inverse model 
controller (solid), LQR (dashed) 
 
Figures 6 and 7 compare system response under LQR 
and Inverse model control. It is clear that system 
response under inverse model controller is much 
faster than the LQR controller. The settling time with 
regard to 5% criteria is 96s smaller for inverse model 
controller. Besides, in both cases drum pressure dose 
not have oscillations which is acceptable. 
Furthermore, drum water level deviation reaches zero 
much faster in case of proposed controller. 
Controlling inputs variations for inverse model 
controller are shown in Figure 8. 
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Fig.8 Controlling inputs for case A, Inverse model 
controller (solid), LQR (dashed) 
 
Figure 8 shows that turbine valve opens more in case 
of inverse model control which with the combination 
of other valves positions, guarantees faster response 
of system in generating desired power.   

 
 Case B: 
In case A, 25 MW power is added to unit load 
demand which is an ordinary change in a power 
generation plant. In this case a more severe change 
will be applied to the set points. Consequently; drum 
pressure and generated power are increased to 125 
kg/cm2 and 100 MW respectively, while keeping 
drum water level deviation constant at zero. So a 55 
MW increase in generated power is demanded.  
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Fig.9 System response for case B, Inverse model 
controller (solid), LQR (dashed) 
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Fig.10 Water level deviation for case B, Inverse 
model controller (solid), LQR (dashed) 
 
System response depicted in Figure 9 does not show 
considerable improvement and this is due to actuator 
saturation. 
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Fig.11 Controlling inputs for case B, Inverse model 
controller (solid), LQR (dashed) 
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Figure 11 shows that second controlling input which 
is turbine valve is saturated for about 20 seconds. An 
anti-windup will be helpful in reducing the effect of 
saturation and improves controller performance. 
However; for the sake of brevity it is not brought in 
this paper. The saturation area is encircled in Figure 
11. 
 
Case C: 
In the last two cases a single change is applied to the 
set points. In the real situations; however, 
consecutive changes in unit load demand happens. 
Besides, due to nonlinearities, power plant 
characteristics vary to a great extent in response to 
decrease and increase in unit load demand (Figure 
12). 
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Fig.12 System response under LQR control, to an 
increasing and decreasing load profile 
 
Figure 12 shows that controller performance must be 
evaluated in response to decreasing and increasing 
load demand in wide range of operation. 
Consequently; in this case drum pressure and 
generated power are first increased to 110 kg/cm2 and 
70 MW, and then decreased to 100 kg/cm2 and 60 
MW respectively, while keeping drum water level 
deviation constant at zero during the whole process. 
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Fig.13 System response for case C, Inverse model 
controller (solid), LQR (dashed) 
 
Figure 13 shows that the newly proposed controller, 
in addition to keeping extremely fast response in the 
rising set point part, has smaller settling time for the 
falling set point part (11 s smaller). Water level 

deviation and controlling inputs for this scenario are 
shown in Figures 14 and 15 respectively. 
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Fig.14 Water level deviation for case C, Inverse 
model controller (solid), LQR (dashed) 
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Fig.15 Controlling inputs for case C, Inverse model 
controller (solid), LQR (dashed) 
 
4.2 Model parameter variation 
Robustness is an extremely important characteristic 
for industrial process controllers. Normally; accurate 
mathematical description of industrial plants is not at 
hand. Power plant is a good example of such plants. 
There are lots of parameters which affect power plant 
transfer function and can not be determined 
accurately and are considered as uncertainties. These 
parameters are also changing over time due to 
corrosion, variation of climatic situation and etc. 
Consequently; in this section performance of newly 
proposed controller will be evaluated in the presence 
of model uncertainty and parameters variation. In this 
regard coefficients of equations (1) to (8) are 
decreased by 25% which is an extremely severe 
condition. 
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Fig.16 Response of the system with changed 
coefficients, Inverse model controller (solid), LQR 
(dashed) 
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Fig.17 Water level deviation for the system with 
changed coefficients, Inverse model controller 
(solid), LQR (dashed) 
 
Figure 17 shows that model parameter variation has 
direct effect in performance of quadratic regulators. 
This is due to the fact that optimal control calculates 
the feedback value based on the state variables. On 
the contrary, proposed controller has an input/output 
point of view to determine feedback value. It is 
shown that proposed controller has robust 
characteristic and brings drum water level deviation 
to zero regardless of parameters variation which is 
not the case for LQR. In the steady state, water level 
deviation is -0.12 m for the plant under LQR control. 
It is worth noting that water level deviation more than 
±25 cm in drum, could cause power plant to trip 
which is an extremely costly event.  
 
 
5   Conclusion 
Since governing dynamics of an industrial plant like 
fossil fueled power plant can not be identified 
completely accurate, and there are various sorts of 
uncertainties, robustness becomes an important 
aspect of a newly designed controller. Simulation 
results show robust performance of newly designed 
controller in comparison with optimal controller is 
outstanding. In addition to robustness other 
characteristics of the controller such as rise time have 
improved a lot. Since there are lots of newly 
established power plants in Iran like Shazand power 
plant which have a drum type structure and are 
controlled utilizing a central software, the proposed 
control strategy could be implemented easily and 
with little costs. 
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