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Abstract: - In this paper, SAW propagation in surface-relief (corrugated) gratings is rigorously 
analyzed using multi-wave coupled-wave theory. Using this method of solution, it is possible to 
calculate the diffraction efficiencies of surface-relief gratings to an arbitrary level of accuracy. 
The analysis contains no restrictions with respect to grating profile, groove depth, angle of 
incidence, or wavelength. 
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1 Introduction 
Surface-relief (corrugated) gratings are of 
great technological importance. These 
surface-relief structures, like planar 
gratings, are also capable of very high 
diffraction efficiencies. Corrugated gratings 
can be rigorously analyzed using coupled-
wave analysis [6]. This is done by dividing 
the surface-relief grating into a large 
number of thin (planar) layers. Each thin 
layer is then analyzed using the state 
variables method of solution of the rigorous 
coupled-wave equations for that grating. 

By formulation the problem in a 
particular manner, it is shown that the 
grating layers may be treated one-at-a-time 
in sequence thus reducing the numerical 
calculations to an easily manageable size. 
There are no approximations in the analysis 
and results are obtainable to any arbitrary 
level of accuracy. The diffraction 
efficiencies   of all orders of both the 
transmitted and reflected waves are 
determined in the process. 
 
 

2 Problem formulation 
Surface-relief (corrugated) grating with an 
arbitrary grating profile (dashed lines) is 
presented in Fig.1. Region 1 (the input 
region) is a homogeneous region with mass 
density ρI, and region 3 is homogeneous 
with density ρIII. 

 

Fig.1. The nth planar grating resulting from the 
decomposition of a surface-relief grating into N 
thin planar gratings. 

Region 2 (the grating region) consists of a 
periodic distribution of both types of 
materials. The boundary between the region 
ρI and the ρIII in region 2 is given by 

 ( ) ( )z F x F x= + Λ    (1) 
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where Λ is the grating period. The function  
 thus represents the grating surface 

profile. Unlike most methods for analyzing 
surface-relief gratings, there are no 
restrictions on the form of  in this 
analysis. Curved lines, straight lines, 
shadow regions, hidden regions, etc., are all 
allowed. The total field in region 1 is the 
sum of the incident and backward-traveling 
waves in exactly the same manner as for 
planar grating [6]. The normalized total 
field in region 1 may thus be represented by 

( )F x

( )F x

p e R ejk r
i

jk r

i

i
1

1= +−

=−∞

+∞

∑ 1−
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  (2) 

where Ri is the normalized amplitude of the 
ith reflected wave in region 1 with wave 
vector k1i. Likewise, the normalized total 
field in region 3 is  

(p Tei
i
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where Ti is the normalized  amplitude of the 
ith transmitted wave in region 3 with wave 
vector k3i, and d is the groove depth. Each 
ith field in region 1 and 3 must be phase 
matched to the ith space harmonic field 
(inhomogeneous plane wave) inside the 
grating. 

In the present analysis, the grating 
region (region 2) is divided into N thin 
planar gratings slab perpendicular to the z 
axis as shown in Fig. 1. Then the rigorous 
coupled-wave analysis that has been 
developed for planar grating [4], is applied 
to each slab grating. If the individual planar 
gratings are sufficiently thin, any grating 
profile can be analyzed to an arbitrary level 
of accuracy. The nth slab within region 2 as 
shown in Fig. 1 will consist of a periodic 
distribution if ρI and ρIII materials. The 
mass density for nth slab grating is periodic 
expressed as 

( , ) ( , )n n n nx z z zρ ρ= + Λ   (4) 

and may be expanded in a Fourier series as 

( ) ( )ρ ρ ρ ρ ρn n h n
jhKx

h
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∞

∑I III I (5) 

where zn is the z coordinate of the nth slab, 
h is the harmonic index, K is the magnitude 
of the grating vector ( 2 /K π= Λ ), and 

,h nρ  are the normalized complex harmonic 
amplitude coefficients given by 

( )~ ,,ρh n n
jhKxdx f x z e= −∫

1
0Λ
Λ

  (6) 

The function ( , )nf x z  is equal to either 
zero or unity depending whether, for a 
particular value of x, the grating density is 
ρI or ρIII, respectively. 

The total field in the slab may be 
expressed as 

( ) ( ) ( )p x z S z en i n
k iK r

i

n
2

2
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Where k2,n is the wave vector of the zero-
order (i=0) refracted wave having a 
magnitude of k2,n=2π(ρ0,n)1/2/λ, ρ0,n is the 
average density for the nth slab grating, and 
( ) ( ) ( )2ˆ z cosˆ j k iK z

i iS z S z e φ− −= . 

Substituting 2, ( , )np x z and ( , )n nx zε  
into the wave equation 

( ) ( ) ( )∇ +2 2 0p x z k x p x z' , ' ' ' , 'ρ =  (8) 

and performing the indicated 
differentiations, and setting coefficient of 
each exponential term equal to zero for 
nontrivial solutions yields the rigorous 
coupled-wave equations for nth slab grating  
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where 'θ is the first Bragg angle. These 
coupled-wave equations can be solved for 
nth slab grating using state-variables 
method. 
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3 Problem Solution  
The surface-relief grating diffraction 
problem as formulated in the previous 
section will be solved in a sequence steps. 
First, the rigorous coupled-wave equations 
will be solved for the nth slab grating using 
a state-variables method of solution. 
Second, boundary conditions (continuity of 
p and perpendicular velocity of particles v) 
will be applied between region 1 and the 
first slab grating, then between the first and 
second slab gratings, and so forth and 
finally between the Nth slab grating and 
region 3. Third, the resulting arrays of 
boundary condition equations are solved for 
the reflected and transmitted diffracted 
amplitudes, Ti and Ri. From these 
amplitudes, the diffracted efficiencies are 
determined directly. 
 
 
3.1 Calculational Procedure 
Defining state variables as  

( ) ( )
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for nth slab grating, transforms the infinite 
set of second-order differential equations 
(5) into two infinite sets of first-order state 
equations 
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In matrix form, the state equation for the 
nth slab grating may be written as 
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where  (for l=1,2), ~
, , , ,S Sl p n l i n≡ S

dS
dz

= , 

and the elements of the four submatrices 
(p=1 to s and q=1 to s) are specified  by 
(11) and (12) for the nth slab grating. The 
integers p and q are the row and column 
indices of the four submatrices. The 
maximum value of these indices, s, is equal 
to the number of diffracted orders retained 
in the analysis. The value 1p =  
corresponds to most negative order (value 
of i) retained in the analysis and p s=  
corresponds to the most positive order 
retained. For example, if an odd number of 
waves are retained symmetrically about 

0i =  (the undiffracted wave) in the 
analysis, then ( 1) / 2p i s= + + . Equation 
(13) corresponds to an unforced state 
equation . The solutions of (13) are =S AS

( )~
', ',

'
', ',
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p q n
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where  (for l=1,2) has been rewritten 

as  with p'=p+(l-1)s. The quantities 
λ

~
, ,Sl p n

~
',Sp n

q',n and wp',q',n are the eigenvalues and 
eigenvectors of the matrix A. The integers 
p' and q' are the row and column indices of 
the eigenvector matrix [w] and p'=1 to 2s 
and q'=1 to 2s. The quantities Cq',n are 
unknown constants to be determined by the 
boundary conditions. The desired diffracted 
wave amplitudes for the nth gratin layer are 
given by ( ) (S z S zi n p n, ',

~= ) where p' is 
chosen to correspond to the ith diffracted 
wave. 

Boundary conditions require that the 
pressure p and perpendicular component of 
velocity be continuous across the 
boundaries between the slabs. Velocity v of 
particles, however, must be obtained 
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through equation vp
t

ρ ∂
∇ = −

∂
. The 

perpendicular component of v is in z 
direction and is given by 1 pv j

zρω
∂

=
∂

. 

Therefore, for the boundary ( 0z = ) 
between region 1 (the input region) and the 
first slab grating, boundary conditions are 
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where the value of p’ is chosen to 
correspond to the ith wave. For the 
boundary between nth and th slab 
gratings ( ), the boundary 
conditions are 
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For the boundary between the Ntn slab 
grating and region 3 ( ), the boundary 
conditions are 

z d=
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Equations (15)-(20) represent a total of 
2( 1)N s+ equations. There are s unknown 
values each of Ri and  Ti and 2s unknown 
values of Cq',n for each slab grating. Thus 
the total number of unknowns is 2( 1)N s+ , 
the same as the number of boundary 
condition equations. If s values of i are 
retained in the analysis, then the 
calculations will yield s transmitted wave 
amplitudes (Ti) and s reflected wave 
amplitudes (Ri). 
An efficient procedure to solve this large 
system of equations is to use a technique 
like Gauss elimination [7] applied 
successively to each boundary starting at 
the 0z =  input surface. By using this 
technique 1N + times in sequence, the s 
values of Ri and s values of Ti may be 
obtained in a single pass on the last step. As 
depicted in Fig.2, the boundary condition 
equations are written as a matrix equation. 
The matrix is 2( 1)n s+  by  and 
consists of the coefficients (for 

2( 1)n + s

',q nC ' 1q = to 
2s and 1n = to N), Ri, Ti (s values for both.) 

4sx2s

n=1 2

0

0

N-1 N

2sxs
c1

c2

cN-1

cN
Ri
Ti

s
x
1

1
1

 

Fig.2 Matrix-equation representation of 
2( 1)N s+ boundary-condition equations, where 
s is the total number of diffracted waves 
retained in the analysis. 
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For each slab grating, the boundary 
condition equation for its two boundaries 
produces 4sx4s. Starting with the first 
( ) slab grating (represented by upper 
left submatrix), a technique like Gauss 
elimination is applied to make all of the 
elements of the lover half of the submatrix 
equal to zero. This reduces the system to 
2Ns equations. Repeating this procedure on 
the next ( ) 4s by 2s submatrix reduces 
the system to 2(N - 1)s equations. 

1n =

2n =

This process is continued until after N 
steps, only 2s equations in the diffracted 
amplitudes Ri and Ti remain. These are then 
solved for Ri and Ti. at each step in this 
sequential process, a new set of coefficients 
of  Ri are produced as shown by the dashed 
box in Fig.2. After N steps, these 
coefficients have moved to the bottom of 
the matrix and the final set of 2s equations 
in Ri and Ti are formed. This sequential 
procedure enormously reduces the storage 
and computational requirements for this 
type of problem. At each step, only a small 
4s by 2s matrix is being treated as opposed 
to the entire   2(N + 1)s by 2(N + 1)s matrix 
where N might typically be 50. 

 When amplitude Ri and Ti are known, 
then the diffraction efficiencies (ratio of 
diffracted intensity to output intensity) for 
the region 1 and region 3 may be 
determined respectively as 
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4 Conclusion 
Using the method of solution described in 
the previous section, it is possible to 
calculate the diffraction efficiencies of 
surface-relief gratings to an arbitrary level 
of accuracy. The analysis contains no 
restrictions with respect to grating profile, 
groove depth, angle of   incidence, or 
wavelength. The use of grating structure as 
the most fundamental element of SAW 
devices is very widespread in modern 
technology and directly affects many   areas 
of digital communications.  
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