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Abstract: Waveguide mesh models that simulate airborne acoustics require extra non-physical rules to
accurately represent acoustic propagation collisions with objects. In this paper we describe a physics-
based cellula automata of fluid flow phenomena which simulates acoustic as a by-product, in which
such rules are unnecessary. We evaluate our simulation with respect to sound speed and boundary
interactions. Applications include audio signal processing and computer generated sound.
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1 Introduction
A digital waveguide mesh (DWM) is a finite–
difference, time domain computational model that
can simulate aspects of airborne acoustic (room)
phenomena [1]. Spatial dimensions are discretised
into a regular lattice of signal processing elements
which are joined by unit delays and are updated
synchronously in discrete time steps [2]. DWM
have been applied to airborne, or room acoustics in
2–dimensions [1] and in 3–dimensions [3], with some
limitations, which can be partly overcome by in-
troducing additional rules at object boundaries [4].
Such rules appear to trade off the physical iden-
tity of DWM against computational expense (and
perceived complexity) of physical models.

However, DWM are remarkably similar in design
to lattice–based finite–difference physical models
for fluid flow, whose origins lie in physical cellular
automata models for self–reproduction [5], and lat-
tice gas automata [6]. So–called lattice Boltzmann
models (LBM) bear a remarkable resemblance to
DWM except they calculate fluid mass interac-
tions to solve the Navier–Stokes equations for fluid
flow [7]. They have already been used to model
acoustic wave generation in wind instruments [8],
non–linear acoustics [9], and viscous acoustic ab-
sorption [10]. The possibilitiy of using lattice Boltz-
mann models to simulate acoustic propagation has

been suggested [11].
In this paper, a LBM of incompressible fluid flow

in 2–dimensions is tested for its ability to represent
basic aspects of acoustic propagation. In section 2
we outline the design of our model. We describe
experiments which investigate the model’s ability
to represent sound speed and boundary interactions
in section 3. Finally, in section 4 we outline future
work and applications of the model.

2 Method
For empirical tests of the LBM, a 2–dimensional
lattice with 9 fluid velocities (denoted D2Q9 in
Figure 1) was used with a single relaxation time
(ala [12]). The lattice structure is almost iden-
tical to that used for the interpolated rectilinear
waveguide mesh [13]. We use a 2–dimensional lat-
tice for two reasons: such approximations are able
to represent many audio effects to acceptable accu-
racy [14]; and they can be warped to account for
3–D effects [15].

Lattice Boltzmann models compose a family of
discrete–time discrete–velocity approximations of
the Boltzmann equation for fluid flow:

∂f

∂t
+ v∇f = Ω(f)

Where statistical mass distributions f of particles
move with velocity v and are redistributed accord-
ing to a kinetic collision function Ω [16]. Replacing

Proceedings of the 7th WSEAS International Conference on Acoustics & Music: Theory & Applications, Cavtat, Croatia, June 13-15, 2006 (pp42-47)



Figure 1: D2Q9 Topology: [a] Nodes are arranged in a 2–
dimensional rectilinear lattice of size m × n, with links to
nearest (solid) and next–nearest (dashed) neighbours, and
periodic boundaries as indicated. [b] Each fluid node has 9
link velocities c0 . . . c8 and three lattice speeds: 0, 1 and

√
2.

v with a set of discrete velocities, and replacing the
collision function Ω with a single relaxation time
(τ) kinetic approximation [12] yields a discrete ve-
locity Boltzmann equation [17]:

Fi (x + ci∆t, t + ∆t)− Fi (x, t) = −
1

τ

“
Fi (x, t)− F

(eq)
i (x, t)

”
(1)

Where the position of a node is denoted by x, mass
functions Fi represent the quantity of mass at that
node moving according to the velocity ci and equi-
librium functions F

(eq)
i express the relax state of

nodes, and hence the desired dynamics of the sys-
tem. If 1/τ is replaced with ω and ∆t is set to 1,
the state and evolution of nodes on the lattice with
local mass density ρ, local momentum j, and local
velocity u are described by:

ρ (x, t) =
X

i

Fi (x, t) (2)

j (x, t) = ρ (x, t) u (x, t) =
X

i

ciFi (x, t) (3)

Fi (x + ci, t + 1) = Fi + ω
“
F

(0)
i − Fi

”
(4)

The left hand side of (4) represents streaming
of mass distributions to adjacent nodes along lat-
tice velocities (see Figure 1), while the right hand
side represents relaxation toward an equilibrium
state that conserves local mass and momentum.
The equilibrium functions F

(0)
i chosen for the LBM

tested in this paper are formed from a truncated
power series of local momentum and mass density
for the simulation of a linear and incompressible
fluid flow:

F
(0)
i (ρ, j) =

Wi

ρ0


ρ +

1

A
ci · j +

1

2ρA

»
1

A
(ci · j)2 − j2

–ff
(5)

Weights Wi and the free parameter A are chosen
to maximise stability of the underlying hydrody-
namic system for all lattice sizes [18], and to obtain
a solution at the macroscopic limit of the Navier–
Stokes equations. The values used (as given in [7])

along with the discrete lattice velocities are:

ci = (0, 0) i = 0
ci = (±1, 0) i = 1, 3
ci = (0,±1) i = 2, 4
ci = (±1,±1) i = 5, 6, 7, 8

Wi/ρ0 = 4
9

i = 0

Wi/ρ0 = 1
9

i = 1, 2, 3, 4

Wi/ρ0 = 1
36

i = 5, 6, 7, 8

A = 1
3

(6)

Substituting these values into (5) gives the spe-
cific functions:

F
(0)
i =

8>><>>:
4
9
ρ

ˆ
1− 1

2
u2

˜
i = 0

1
9
ρ

h
1 + 3 (ci · u) + 9

2
(ci · u)2 − 1

2
u2

i
i = 1, 2, 3, 4

1
36

ρ
h
1 + 3 (ci · u) + 9

2
(ci · u)2 − 1

2
u2

i
i = 5, 6, 7, 8

(7)

Combining (2), (3), (4) and (7) produces a
macroscopic Navier–Stokes approximation with a
lattice sound speed of cs = 1/

√
3. The acous-

tic pressure (pa) and kinematic shear viscosity (ν)
terms are [7]:

pa (x, t) ' (ρ (x, t)− ρ0) /3 (8)

ν =
2− ω

6ω
(9)

Acoustic pressure is approximate since the appli-
cation of input pressures by a small change in local
mass density modifies average mass density, and
the pressure is assumed to be proportional to den-
sity. ρ0 is used as an approximation of the average
which is correct only at initialisation. So long as
input signals contain no DC offset, this approxima-
tion provides a valid estimate of acoustic pressure,
as the average density on the lattice will remain
close to ρ0.

Boundaries are considered in terms of inputs,
outputs, and the intersection of free-space and ob-
jects. Input of pressure to the model is modeled by
increasing the mass density at a chosen node by an
amount proportional to the desired local pressure
increase (pin):

∆Fi (x, t) = 3Wipin (10)

Since pressure is distributed in a balanced fash-
ion across the velocities, this does not introduce a
net fluid velocity change for the input node. A pres-
sure input may be applied to any free-space node
on a lattice. Outputs involve measuring the acous-
tic pressure with (8), and since no change is made
to the measured nodes, can be specified arbitrarily
without affecting the model. Solid obstacle nodes
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perform no relaxation step - each Fi is assigned a
value from its opposite velocity:

F0 = F0

F1,3 = F3,1

F2,4 = F4,2

F5,7 = F7,5

F6,8 = F8,6

(11)

This boundary is lossless and slightly error–
prone, however it has better stability and is less
computationally expensive than some other alter-
natives [19].

In our empirical experiments, a signal is input
into a chosen lattice geometry and pressure mea-
surements were taken at specific locations on the
lattice for a chosen number of update steps. The
values for pa, mass distributions F0...8 and a tem-
porary update array F ′

1...8 were stored in a multi–
dimensional array. Fi’s were initialised from a spec-
ified ρ0 then the steps [a-d] in Figure 2 were re-
peated. Output waveforms were analysed using the
numerical computation package Octave [20] and vi-
sualisations were obtained from RMS pressure plot
bitmaps, which were either normalised in amplitude
or converted to a visual representation of relative
sound pressure level in decibels (dB).

3 Results
For a model of acoustics to exhibit high physical
correspondence, sound speed in the lattice must
be close to actual sound speed, and interactions
between propagating acoustic waves and object
boundaries must be realistic. While the theoretical
sound speed cs for the D2Q9 model is supposedly

Figure 2: Node update process at each iteration: [a] Input
pressure is converted to mass and distributed to the mass
functions Fi. [b] Local mass density, velocity and pressure

are calculated from the Fi. [c] Equilibrium functions F
(0)
i

and intermediate mass functions F ′
i are computed. [d] F ′

i are
propagated to Fi at adjacent nodes along direction i (except
rest mass F0).

1/
√

3, in practice the sound wave travel speed is
dependent both on frequency and ω. A coupling
between velocity and viscosity [21] and model dis-
cretisation will affect the speed of acoustic propa-
gation. To measure the effect of ω on average sound
speed, a grid of size lx = ly = 260, ρ0 = 0.1 was
stimulated with an impulse of varying amplitudes
(a = 0.001, 0.01, 0.1, 0.2) and run for 300 iterations.
For each value of ω, impulse responses were ob-
tained for positions in one octant at a distance of
approximately 50 units from the input: r ' 50 and
0 < θ < π/4. Each measured point was analysed
to determine the time to the first peak in the im-
pulse response, and hence the propagation speed to
that point. These speeds were then averaged and
the results are graphed in Figure 3 along with the
theoretical sound speed 1/

√
3.

The measured sound speed was within 5% of c
for values of ω over 1.1, and within 0.5% near 1.8.
Increasing the amplitude of the impulse tended to
slightly raise the sound speed travel, but only signif-
icantly when the input signal amplitude was simi-
lar or greater in magnitude than ρ0. No meaningful
results were obtained for ω less than 0.5 since over–
damping made the impulse response an inaccurate
measure of sound speed.

We also demonstrate the acoustic propagation
properties via pressure plots of D2Q9 with respect
to three typical types of object boundaries: par-
allel reflection; diagonal reflection; and diffraction.
Firstly, for parallel reflection Figure 4 shows a pe-
riodic plane wave incident on a solid wall, reflect-
ing and setting up a standing wave pattern. The
generated pattern shows incomplete cancellation at
nodes because the discrete node lengths inexactly
correspond with the wave travel speed 1/

√
3 and

wave period. Secondly, for diagonal reflection, Fig-
ure 5 shows a plane impulse wave incident on a wall
at an angle of 45o. The plane wave reflects down-
ward on the first impact [b], bounces between the
wall angles [c], then returns, traveling to the left [d].

Finally, for diffraction, a simple slitted wall ex-
periment is shown in Figure 6. A periodic plane
wave is incident on a boundary with a slit of length
20. Pressure plots in normalised dB show the
diffraction present at low frequencies, and the shad-
owing at higher ones.
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Figure 3: Measured sound propagation speed against ω over a range of impulse amplitudes. ρ0 = 0.1, r ' 50, 0 < θ < π/4

[a]

Solid WallInput

[b]

Figure 4: Generation of plane standing waves by a plane
wave incident on a solid wall (ω = 1.8, lx = 800). [a]: f =
0.025 [b]: f = 0.05.

4 Conclusion
In this paper we described the use of a physical
cellula automota model for computational fluid dy-
namics which was subverted to simulate acoustic
propagation in a fluid medium. We demonstrated
that our model D2Q9 represents sound speed and
object boundary interactions reasonably realisti-
cally without the need for additional boundary
rules (ala DWM), thus it has good physical cor-
respondence. Operation of the model is indepen-
dent of lattice geometry and the relative positions

of sources and sinks, allowing accurate simulation
even if this geometry changes during simulation.

The fluid–based approach to simulating acoustics
is also being evaluated in terms of scalability and
operational frequency range. With scalability, we
wish to exploit the regular structure and communi-
cation patterns of Lattice Boltzmann models in or-
der to achieve real–time simulation of room acous-
tics with arbitrary geometry. With operational fre-
quency range, we want to know if the model has
the same limits of digital waveguide meshes, and if
the alternative approach can improve on current in-
terpolation and digital filtering techniques. Bound-
ary condition geometry is easily specified in lattice–
based models but, while simple boundaries are triv-
ially implemented, they are typically non–physical
and cannot represent an absorptive boundary accu-
rately. Many boundary methods are available from
LBM research and we intend to evaluate these in
comparison with DWM boundaries for simulations
of room acoustics with lossy boundaries.

There exist several potential applications of the
model, such as physically correct simulation, imag-
inary musical instrument sound synthesis, and ed-
ucational purposes. The first application is de-
sired in digital signal processing, audio engineer-
ing, sound synthesis and music. The second ap-
plication can be achieved using small lattice sizes
that can be computed in real–time that simulate
a musical instrument with arbitrary, perhaps im-
possible, geometry, whose output is still based on
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[a]

[b]

[c]

[d]

Figure 5: Four stages from a simulation of a plane wave
obliquely reflecting on a diagonal boundary and then return-
ing in the opposite direction. [a]:t = 15 [b]: t = 60 [c]:
t = 120 [d]: t = 160

physical behaviour. These instruments could be
controlled using a graphical interface or optimised
from a desired output profile. Such a graphical in-
terface could also allow the model to be used for
educational purposes. Acoustic wave propagation
could be presented at several time scales with var-
ious types of signals. Furthermore, since an under-
standing of the update process at each node can be
reached without an understanding of mathematical
methods, the model could be used as an introduc-
tion to computational and numerical methods for
solving difficult equations.
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