

Web-based High Performance Full-Text Search Application

BALA NAGENDRA RAO BETHA, VENKAT SRINIVAS MODALI,
ASRITA CHETAN AVASARALA,

KALYAN KUPPACHI, SHANKAR KAMBHAMPATY
Satyam Computer Services Limited
C5, TSR Towers, Raj Bhavan Road
Somajiguda, Hyderabad – 500 082

INDIA
Phone: +91-40-55237373

{Balanagendra_betha, Srinivas_MV, Asrita_chetan, Kalyan_kuppachi,

Abstract: - The paper focuses on the business usage of Full-Text Search at database
level and compares its strengths and weaknesses with respect to B-Tree Index Search.
The paper establishes why Full-Text Search is better suited for searching textual
content and why B-Tree Index is limited in given situations. The paper uses a real-life
application “Persons of Importance” for propagating its message. Performance
Management Tools were applied to compare the results of Full-Text Search with B-
Tree Index in single-user and Multiple-user scenarios.

Keywords- Full-Text Search, B-Tree Indexes, .NET Framework, SQL Server 2000, SQL
Server 2005, Oracle Text

1 Introduction
Full-Text search is a powerful database
feature which could search large contents
of catalogs and documents with high
effectiveness and performance.

 It is uses are many depending on
requirement and situation. For example, a
Hotel Rooms Reservation web site books
rooms for different hotels or hotel chains
across the world. A search capability is
provided on the catalog of hotels. The
catalog describes hotel’s star rating,
location, prices and hotel chain names etc.
User searches the catalog depending on his
convenience by providing location and
star-rating of the hotel etc., while leaves
out other details. The search result lists a
number of hotels meeting the search
criteria and the user chooses to narrow
down the search to a smaller scope. The
end result is, this form of search, is lot less
frustrating than usual options provided

with Lists and Radio Buttons etc. This
type of search falls in Catalog Search
category of Full-Text Search.
 The paper is organized as follows.
Section 2 presents the overview of the
Full-Text search. Section 3 discusses the
architecture of persons of Importance
Application (POI). Section 4 discusses the
deployment view of the application.
Section 5 describes the Performance
Management of Full-Text Search
application in single-user and multi-user
scenarios. Section 6 concludes the paper
with an appendix.

2 Overview of Full-Text
Search
Full-Text search came into popularity with
Google, Alta Vista and Ask Jeeves like
global search engines. All these search
engines depend on an indexing technology
which is different from B-Tree Index and
is far superior in searching textual content.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

In this context the paper discusses the
Full-Text Search feature provided at
database level. ANSI Structured Query
Language (SQL) supports Full-Text
Search capability with extensions like
CONTAINS. [1], [2], [7], [8], [9]

2.1 Differences between B-Tree
Search and Full-Text Search
SQL uses B-Tree Index when searching
with an equiv-join. An equiv-join is where
“=” operator is used. But to issue an
equiv-join the exact values of the elements
being searched must known. The other
alternative is LIKE keyword, which allows
wildcard search but is restrictive. The
obvious fall-out of using wildcard search
is optimizer bypasses B-Tree Index. As
with any formatting of data etc., the B-
Tree optimizer bypasses the index and
opts for full table search and hence
performance hits a roadblock.
 Full-Text goes beyond this searching
capability. Full-Text depends on a special
purpose index which has more intelligence
built into it than a B-Tree Index. It also
provides many programmable features
such as Thesaurus, Stemming, Rooting
and Grammatical variations etc. Full-Text
allows indexing catalog items, MS Word
Documents, PDF documents etc. During
the indexing process the engine removes
noise items and identifies key words with
are relevant to the document. The
relevance of a key word to the content of
the document is given a score. A score of
100 means the keyword is very relevant to
the document while lesser scores mean
less relevance to the document. [7], [4],
[9]

2.2 Advantages of Full-Text
Search

• Full-Text Search is easy to build
in to the application. It is non-
invasive on the application. It
could be developed as a plug-in to
an existing application and search
box could be added at many
places in the screens.

• It is entirely at database layer
without any changes to business
layer or presentation layer.

• It is configurable at any stage of
application development life cycle
without disturbing the existing
data model.

2.3 Disadvantages of Full-Text
Search

Full-Text Indexes are not
automatically refreshed. Changes
made to database are not reflected in
the Full-Text Index. The Index has to
be refreshed periodically to reflect
those changes. End-user’s buy-in is
required for the delayed refresh.
However, there is some work-around
to overcome this limitation of Full-
Text Search.

2.4 Uses of Full-Text Search
For a beginning its uses are clearly visible
in the following domains:

• Pharmaceutical Industry: In a
pharmaceutical application names
of drugs are searched frequently.
A LIKE operator search is not as
effective as a Full-Text search.
There are some advanced features
like Thesaurus which could be
applied to search synonymous
names. An categorized form of
index is Ontology which
facilitates search reduced to a
particular field.[1]

• Travel and Logistics industry: As
mentioned earlier, in a Hotel
Rooms Reservation Application.
Names of all the hotels and cities
could be put in Full-Text index
and searched on a frequent basis.

• Banking and Finance Industry:
Names of customers, cities,
products and services could be put
in a Full-Text Search.

2.5 Tuning Full-Text Search
Full-Text is entirely fine-tunable to
achieve high performance.

• SCORE is a feature built in to the
SQL which gives the degree of
relevance of a searched keyword
to that of the result. A SCORE of
100 is high relevance while
SCORE of 0 is no relevance at all.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

Using SCORE one can restrict the
search results to an acceptable
level. [3]

• Noise elimination. An XML file
provides the hints to the Full-Text
Indexing engine which words to
be treated as noise and eliminated
before index is created. Words
like “A”, “AS”, “IS”, “ARE” are
treated as noise and eliminated fro
index. This reduces the unwanted
words from index and improves
search performance. [1]

2.6 When to use B-Tree and
when not to use Full-Text Search
Full-Text Search is not panache, a
medicine to all diseases. It is useful only
certain situations where textual search is
required. While B-Tree Indexes are going
to remain the forte of On-Line Transaction
Processing (OLTP) applications like Bank
Transaction Management Systems etc.

2.7 Expanding Full-Text Search
Thesaurus: An example of thesaurus is
given below. It is known that names like
TONY, ANTHONY and ANTONY are all
synonymous. So, while searching for
TONY, the search engine should look into
ANTHONY and ANTONY as well. When
included all the variations of the name in
the search, the search results are far more
effective.
 There are examples of commonly used
words and their equivalent botanical
terms. For example, ONION is a
commonly used term for Allium
Triquetrum. While searching for ONION,
if the search engine includes documents
containing both the terms, the results
would be very effective. The thesaurus
could be configured using an XML file
which contains all the synonymous words
and is included before creating the index
for Full-Text Data. [4], [5]

3 Case Study
Persons of Importance Application (POI),
gathers personal details about important

people like politicians, industrialists,
businessmen, terrorists, bankrupt
businessmen or people from sanctioned
lists generated by national security
agencies. There are two categories of users
for the POI. The “Editors” compile the
data from whichever source it is available
such as newspapers, magazines and
autobiographies etc. While the “End-
Users” use, information thus gathered, for
searching with any combination of first
name, middle name, last name, country of
origin, country of residence and date of
birth etc. This database is used in tracking
the activities and movements of such
people for National political and financial
safety.

3.1 Salient Features: The salient
features of the architecture are the
following [4]:
3.1.1 Scalability: A loosely coupled
architecture allows scalable solutions. The
application could cope to peak loads
within SLA.
3.1.2 Performance: The architecture
guarantees performance SLA of 5+
seconds of response time for multi-users
scenarios. It is feasible to generate such
high performance only using features of
Full-Text search. B-Tree Indexes would
not deliver the desired effect or
performance.
3.1.3 Maintainability: Due to
componentization the application is easily
maintainable.
3.1.4 High-availability: The architecture
is highly available with limited outages
and crash-proof recovery systems.
3.1.5 Security: Using Access Control
Service and Enterprise-wide Single-Sign-
On, the architecture is secure.

3.2 Layered Approach: A layered
approach of architecture, addresses best
the concerns of encapsulation and
separation of User Interface from Business
Logic Layer and Business Logic Layer
from Data Persistence. [10], [11]
 Separation of one layer from another
secures the application from most
frequently used web hacking methods like
SQL Injection, Parameter Tampering,
Information gathering and Cross-site

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

scripting. Figure-1 shows the layered
diagram of the architecture.

Fig 1: Persons of Importance Search
Architecture

3.2.1 User Interface Layer/Presentation
Layer: This layer groups together a set of
customer facing screens such as User
Interface (UI) Components and UI Process
Components. UI Components are a
collection of presentation services like
HTML/CSS, XML/XSL and C# Web
Forms. While UI Process Components,
decouple the navigational and other
presentation logic from individual forms.
It encapsulates the dependencies between
forms and the logic associated with forms.

3.2.2 Business Logic Layer: Most of the
work is accomplished at business tier. MS
.NET Framework and MS Enterprise
Library Framework (MS-ENTLIB) are
used for implementing business logic. A
few of the patterns in business logic layer
are Service Interface, Façade and
Interfaces to External and Third party
systems. Presentation layer talks only to
Service Interface for any business
functionalities and in turn Service
Interface passes the request to appropriate
services. Façade encapsulates non-core
functionalities of the system and allows
plug-and-play of external tools such as
Reporting Engines into the applications.
Authentication and Authorization are a

few external interfaces which interact with
the application. Other components of
Business Logic Layer are:
 Full-Text Infrastructure: Stored
Procedure to fetch the data using Full-Text
Search Infrastructure provided in SQL
Server ordering according to the relevance
score of the subject in question.
 Full-Text delayed refresh workaround:
Unlike B-Tree Indexes, Full-Text Search
does not update the index immediately
when changes are done to core tables. The
Full-Text Index should be refreshed to
reflect the changes made to core tables.
Although, Full-Text provides incremental
refresh, considering the size of the
database and its user load, a delayed index
refresh approach is adopted. But between
refreshes all changes to database are be
stored in a temporary table as a log.
Including the log in the stored procedure
gave us the workaround for delayed
refresh and user’s changes were reflected
instantly in the query results.
 Full-Text Global Temporary Storage:
This storage was meant to reduce network
traffic. Instead of sending the search
results from data access layer to business
logic layer in one go, it was retained in a
Global Temporary Table and sent one
page-full at a time. The global temporary
table is initialized every time a new query
is fired. But the results of query are
available for view page-by-page. One
global temporary table is created for each
connection session.
 Example: Say, a search resulted in
3000 rows. Now, passing them across
network to Business Tier would result in
3.0 Mbps of data. If 100 users issue such
queries simultaneously then there is no
question of network not getting clogged.
Instead all those rows were retained for a
session in a table in database and passed
only 30-40 rows at a time to the Business
Logic Layer. This reduced network
bottlenecks and fastened the application
response time.
 The other services that manifested are
for updating the static data, work flow
management, business computational
components and validation components.

3.2.3 Data Access Layer: This layer
separates the data access functionality

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

from the business services layer. It is a
thin layer where data access components
interact with Relational Database. All the
Data Manipulation (DML), Audit Trails
and Exception Management are managed
from this layer.

3.2.4 Full-Text Catalog: Full-Text
Catalog in SQL Server resides outside the
database. It is a datafile which can store

many such indexes. Size of the catalog is
proportional to the source table content.
The catalog is not updated when changes
are happening to the main database. Either
an explicit refresh or an incremental
refresh only updates the catalog.
Thesaurus is another major feature of
catalog which allows synonymous terms.
So that names with same meaning such as
“Tony” and “Anthony” are treated as one
and the same. [7]

Table-1 Highlights of the application architecture and non-functional requirements user load, SLA etc.:
Database MS SQL Server 2000, SQL Server 2005. T-SQL Stored procedures
Web Server Microsoft IIS 6.0
Development Suite Microsoft Visual Studio 2003 Enterprise Architect Edition

Microsoft .NET Framework 1.1
Microsoft Enterprise Library 1.0 (MS-ENTLIB)

Operating System Microsoft Windows Server 2003 Standard Edition
Approximate Database size 400+ MB
Table size PERSON_OF_IMPORTANCE 400,000+ rows
Application type Thin Client, Web based internet enabled application working from

any standard internet browser.
Approximate user load At any time 200+ users from all parts of globe.
Service Level Agreement (SLA) 5+ seconds for multi-user scenarios.

3.2.5 Data Architecture: The core of the
application revolves around the Full-Text
Search Infrastructure. The success of the
application depends on how well it uses
the features of Full-Text Search.
Following is an example from main
application to high-light the effectiveness
of Full-Text Search in comparison with B-
Tree Index Search. It is using the scaled
down version of the
PERSON_OF_IMPORTANCE table
which stores the personal details over
400,000 persons.
 The table contains three separate
columns for First_name, Middle_name
and Last_name. For the sake of indexing
the Full-Text all the three names are
clubbed together and put into single
column namely FULL_NAME. This
column was used for Full-Text Index.

 Table PERSON_OF_IMPORTANCE
Person_ID
Person_category,
First_name,
Middle_name,
Last_name,
Country_of_origin,
Country_of_residence,
Date_of_birth,
Full_name ...

A search for “Tony Blair” is issued using
B-Tree Index in SQL with the LIKE
operator. Then the same table is searched
using Full-Text Infrastructure with
CONTAINS clause. The results are
compared and effectiveness of Full-Text
Search is found to be far greater than B-
Tree Index Search. Another salient feature
of the search is LIKE operator can not
detect if data is stored as “Tony Blair” or
“Blair Tony”. While Full-Text Search
could identify such reverse combinations.
There are many variation of the name
“Tony”. It can be spelled as “Anthony” or
“Antony” etc. The thesaurus feature of
Full-Text Search identifies those
variations and treats them as one and the

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

same. The following examples high-lights
these features:

Example-1: Search using B-Tree Index (with
LIKE operator)
SELECT FULL_NAME
FROM PERSON_OF_IMPORTANCE
WHERE FULL_NAME LIKE
%Tony%Blair%’;

Results of the query are as follows:
Full_Name
Tony Blair
Tony Charles Lynton Blair
Tony Charles L. Blair

The same query is rephrased with Full-
Text Search capabilities:
Example-2: Search using Full-Text Infrastructure
SELECT FULL_NAME
FROM PERSON_OF_IMPORTANCE
WHERE CONTAINS (FULL_NAME,
 ‘”Tony*” AND “Blair*”’)

Results of the query are as follows:
Full_Name
Blair, Anthony Charles Lynton
Tony Blair
Blair Tony
Tony Charles Lynton Blair
Tony Charles L. Blair
Anthony Blair
Anthony Charles Lynton Blair
Anthony Charles L. Blair...

The CONTAINS clause provides lot more
flexibility than LIKE could provide.
Thesaurus in Full-Text is an XML file
which tells the search engine that “Tony”,
“Antony” and “Anthony” are
synonymous. Hence both the names are
included in search. Building thesaurus is a
one-time activity but is very useful in
retrieving variations in data. Thesaurus
could be used in building ontology of
synonymous medical terms.

4 Deployment View of the
Application
The application is deployed at Satyam
Global Data Center. The configuration of
the servers is as follows:

• Web Server - HP PROLIANT
DL360 G4 Intel XEON-DP
3.40GHz, 2GB RAM, 2x72 HDD

• Database Server - HP PROLIANT
DL380 G4 Intel XEON-DP
3.20GHz/1MB, 4GB RAM,
2x36GB HDD, 4x72GB HDD

Fig 2: Deployment view of the application at Satyam Data Center

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

5 Performance Improvement
of the Application
Performance improvement of the
application is done in a two-pronged
approach:

• Performance measurement: Base-
line performance measurement
data is captured in single user and
multi user mode for development
and production servers. Probes are
inserted in applications at
appropriate place to identify time
taken at database level, application
level and browser level. Tools,
like Load-Runner is used to
simulate multi user scenarios.
[12], [13]

• Performance diagnosis and
Tuning: The captured data is
diagnosed for possible bottlenecks
and changes to designs and
infrastructure is implemented.

5.1 Observations: Initially, when using
B-Tree indexes, the search yielded
response times not up to the expectations.
The index is bypassed totally when
wildcard was applied to search criteria.
However, the problem is resolved once

Full-Text Search is implemented into the
application.
 In multi-user tests (please refer to
Chart-2), the observations are given
below:
5.1.1 While some spikes are noticed,

response time of Full-Text Search
has generally yielded single digit
response times. It is assumed that
the spikes are due to the tests that
are run on machines that have bare
minimum CPU and memory
configuration (Web Server - 1
CPU, 512 MB, DB Server - 1
CPU, 1 GB).

5.1.2 Response time with SQL Server
2005 seems to be twice as fast as
SQL Server 2000 on Full-Text
Search. Comparing tabs with
multi-user test results done
against SQL Server 2000 and SQL
Server 2005 are shown in Chart-1.

5.1.3 It is also understood that, response
time is sensitive to traffic on the
network. To eliminate network
traffic congestions, Global
Temporary Tables are
implemented and dependency on
network bandwidth is reduced.
Chart-1 shows Full-Text Search
results with Global Temporary
Tables.

Chart1: Search results for load test carried out in single user mode

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

Chart-2: Multi-users tests for 20 users in SQL
Server 2000

Chart-3: Multi-user tests for 20 users in SQL Server
2005

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

6 Conclusions
It is evident from the POI case study that
Full-Text search is an efficient tool for
searching large numbers of text files,
documents or catalog fields. It is well
supported by most of RDBMS. It may be
implemented with little or no learning
curve.

References:

[1] http://support.microsoft.com/kb/ap
pliesto#appliesto SQL Server
2005 full-text search includes
improved and updated noise word
files

[2] http://forums.microsoft.com/MSD
N/ Any full-text gurus - Help
writing a query

[3] http://msdn2.microsoft.com/en-
us/library/ms142557(en-
us,SQL.90).aspx Performance
Tuning and Optimization (Full-
Text Search)

[4] http://msdn2.microsoft.com/en-
us/library/ms142547(en-
us,SQL.90).aspx Full-Text Search
Architecture

[5] http://msdn2.microsoft.com/en-
us/library/ms142541(en-
us,SQL.90).aspx Full-Text
Indexing Architecture

[6] http://www.databasejournal.com/f
eatures/mssql/index.php Full Text
Search on SQL 2000 Part 1
Installation of SQL Server 2000
By Don Schlichting

[7] http://www.databasejournal.com/f
eatures/mssql/index.php Full Text
Search on SQL 2000 Part 2
Searching Full-Text on SQL
Server 2000 By Don Schlichting

[8] Oracle® Text Reference 10g
Release 1 (10.1) Part Number
B10730-02

[9] Oracle® Text Application
Developer's Guide 10g Release 1
(10.1) Part Number B10729-01

[10] Microsoft, Improving .Net
Application Performance and
Scalability. Patterns and Practices,
Microsoft Corporation ISBN 0-
7356-1851-8.

[11] Microsoft’s Patterns and
Practices Group
http://msdn.microsoft.com/practic
es/

[12] C. U. Smith and L. G.
Williams, Performance Solutions:
A Practical Guide to Creating
Responsive, Scalable Software,
Addision-Wesley.

[13] Shankar kambhampaty
and Srinivas Venkata Modali,
Performance Modeling for Web
based J2EE and .NET
applications, Transactions On
Engineering, Computing and
Technology , V8 OCTOBER 2005
ISSN 1305-5313

Bala Nagendra Rao Betha, PMP works
as Data Architect in Technology
Architecture Group (TAG) of Satyam
Computer Services Limited, India. He has
over 20 years of experience in software
industry and his area of interest is
Relational Database Management System
(RDBMS).
Venkata Srinivas Modali works with the
TAG. His areas of interest include
Software Architectures and Performance
Engineering
Asrita Chetan Avasarala works with the
TAG. His areas of interest include
Microsoft Technologies
Kalyan Kuppachi works as a Project
Manager with the Financial Services
Group in Satyam Computer Services
Limited, India. His areas of interest
include Project Management and
Microsoft Technologies.
Shankar Kambhampaty, Microsoft
Certified Architect (MCA), PMP heads
the TAG and has been involved for 16
years in architecture, design, development
and management for a number of software
projects, USA, UK, Singapore, Australia
and India.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp744-752)

