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Abstract: - An efficient algorithm is proposed for finding all DC solutions of nonlinear (not piecewise-linear)
circuits with mathematical certainty. This algorithm is based on interval analysis, the LP test using the dual
simplex method, the contraction method, and a special technique which makes the algorithm not require large
memory space and not require copying tableaus. By numerical examples, it is shown that the proposed algorithm
could find all solutions of a system of 2 000 nonlinear circuit equations in acceptable computation time.
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1 Introduction

Finding all DC solutions of nonlinear circuits is an
important problem in circuit simulation. Many al-
gorithms have been proposed for finding all DC so-
lutions of piecewise-linear (PWL) circuits which are
obtained by PWL approximation of nonlinear func-
tions [1]–[12]. However, no algorithm has been used
in practical circuit simulation because this problem is
essentially very difficult. Namely, if the number of
PWL resistors is n and if each PWL function consists
of K segments, then the total number of linear regions
(denoted by L) on which we seek for solutions is Kn.
Hence, the computation time of the algorithms gener-
ally grows exponentially with n.

Recently, several algorithms succeeded in finding
all DC solutions of PWL circuits with n ≥ 100 in ac-
ceptable computation time [8]–[12]. That is, in 1996,
only small circuits with n ≤ 14 could be solved [7],
but in 1998, a problem where n = 100 and L = 10100

was solved for the first time [8]. In 2000, a problem
where n = 200 and L = 10200 was solved [10], and
in 2002, a problem where n = 300 and L = 10300

was solved [11]. In 2003, a problem where n = 500
and L = 10500 was solved in practical computation
time [12]. Thus, the study of algorithms for finding
all DC solutions of PWL circuits has been remarkably
developed, if we do not consider the errors of PWL
approximation.

However, PWL approximation often changes the

number of solutions. In the numerical experiments
of the above papers, PWL functions consisting of ten
segments (K = 10) are used, but the PWL approx-
imation with such a small K often vanish some so-
lutions which actually exists as shown later. In order
to design a circuit with high reliability, it is necessary
to find all solutions of the original nonlinear circuits.
This problem reduces to finding all solutions of sys-
tems of nonlinear equations, which is a much more
difficult problem than the PWL case.

As a computational method to find all solutions
of nonlinear equations, interval analysis based tech-
niques are well-known [13], and various algorithms
based on interval computation have been developed
[14]–[16]. Using the interval algorithms, all solutions
of nonlinear equations contained in a given box1 can
be found with mathematical certainty. However, the
computation time of the interval algorithms generally
grows exponentially with the number of variables n.
Therefore, in order to apply the interval algorithms to
practical circuits, it is necessary to improve the com-
putational efficiency from various viewpoints. Re-
cently, all solutions of systems of 200 nonlinear equa-
tions could be obtained in practical computation time
[16]. At the present time, the algorithm proposed in
[16] is one of the most efficient algorithms for finding
all solutions of systems of nonlinear equations.

In this paper, we extend the algorithms in [16],

1An n-dimensional rectangular region with the sides parallel
to the coordinate axes will be called a box.
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and propose an efficient algorithm for finding all DC
solutions of nonlinear circuits.

2 Basic Algorithm

In this section, we first summarize the basic proce-
dures of interval algorithms [13].

Consider a nonlinear resistive circuit described by
a system of n nonlinear equations [1]:

f(x)
�
= Pg(x) + Qx − r = 0 (1)

where x = (x1, x2, · · · , xn)T ∈ Rn is a variable
vector, r = (r1, r2, · · · , rn)T ∈ Rn is a constant
vector, P and Q are n × n constant matrices, and
g(x) = [g1(x1), g2(x2), · · · , gn(xn)]T is a nonlinear
function with component functions gi(xi) : R1 → R1

(i = 1, 2, · · · , n). In this paper, we discuss the prob-
lem of finding all solutions of (1) contained in an ini-
tial region D which is given by an n-dimensional box.

An n-dimensional interval vector with compo-
nents [ai, bi] (i = 1, 2, · · · , n) is denoted by

X = ([a1, b1], [a2, b2], · · · , [an, bn])T . (2)

Geometrically, X is an n-dimensional box.
In interval algorithms, the following procedure is

performed recursively, beginning with the initial box
X = D. At each level, we analyze the box X . If there
is no solution of (1) in X , then we exclude it from fur-
ther consideration. If there is a unique solution of (1)
in X , then we compute it by some iterative method.
In the field of interval analysis, computationally veri-
fiable sufficient conditions for nonexistence, existence
and uniqueness of a solution in X have been devel-
oped. If these conditions are not satisfied and neither
existence nor nonexistence of a solution in X can be
proved, then bisect X in some appropriately chosen
coordinate direction to form two new boxes; we then
continue the above procedure with one of these boxes,
and put the other one on a stack for later considera-
tion. Thus, we can find all solutions of (1) contained
in D ⊂ Rn with mathematical certainty.

However, the computation time of the interval al-
gorithms tends to grow exponentially with n. One of
the difficulties of these algorithms is that the number
of boxes to be analyzed is extremely large for large
scale systems. Therefore, it is necessary to develop a
powerful test for nonexistence of a solution in a given
box so that we can exclude many boxes containing no
solution at an early stage of the algorithm.

Next, we summarize the powerful nonexistence
test proposed in [9],[14], and [16].

In this test, the nonexistence of a solution to (1)
is checked as follows. We first calculate the inter-
val extensions 2 of gi(xi) (i = 1, 2, · · · , n) over
X = ([a1, b1], · · · , [an, bn])T . Let the interval exten-
sion of gi(xi) over [ai, bi] be [ci, di]. Then, we intro-
duce auxiliary variables yi (i = 1, 2, · · · , n) and put
yi = gi(xi). If ai ≤ xi ≤ bi, then ci ≤ yi ≤ di.

Now we replace each nonlinear function gi(xi) in
(1) by the auxiliary variable yi and the linear inequal-
ity ci ≤ yi ≤ di, and consider the linear programming
(LP) problem:

max (arbitrary constant)

subject to

Py + Qx − r = 0
ai ≤ xi ≤ bi, i = 1, 2, · · · , n
ci ≤ yi ≤ di, i = 1, 2, · · · , n

(3)

where y = (y1, y2, · · · , yn)T ∈ Rn. Then, we apply
the simplex method to (3).

Evidently, all solutions of (3) which exist in X
satisfy the constraints in (3) if we put yi = gi(xi).
Namely, the feasible region of the LP problem (3) is
a convex polyhedron containing all solutions of (1) in
X . Hence, if the feasible region is empty, then we can
conclude that there is no solution of (1) in X .

The emptiness or nonemptiness of the feasible re-
gion of (3) can be checked by the simplex method. If
the simplex method terminates with the information
that the feasible region is empty, then there is no solu-
tion of (1) in X . This test is called the LP test.

By introducing the LP test to the interval algo-
rithms (such as the Krawczyk-Moore algorithm [13]),
all solutions of (1) can be found very efficiently. In
[14], this algorithm solves a system of nonlinear equa-
tions with n = 60 in practical computation time, al-
though the original Krawczyk-Moore algorithm can
solve the system only for n ≤ 12.

In [16], it is shown that the LP test can be per-
formed with a few pivotings (often no pivoting) per
box by using the dual simplex method from the sec-
ond box. Using this technique, the LP test becomes
not only powerful but also efficient. In [16], this im-
proved LP test is introduced to the Krawczyk-Moore
algorithm, which succeeded in finding all solutions to
systems of nonlinear equations with n = 200.

2The interval extension of gi(xi) can be calculated by replac-
ing the variable xi with the interval [ai, bi] and by replacing the
arithmetic operations with the corresponding interval operations
[13]. It is known that the interval extension contains the range of
gi(xi) over [ai, bi].
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3 Proposed Algorithm
Although the LP test proposed in [16] requires only a
few pivotings per box, it has to be performed on many
boxes, especially when K is large. In order to de-
crease the number of boxes on which the LP test is
performed, we introduce the contraction methods pro-
posed in [15] which contract a box X to a smaller box
X̄ containing the same solutions 3.

In the proposed algorithm, we use the algorithm
in [16] as the base and perform the contraction method
each time after the LP test is performed on a box X .
Then, we bisect the reduced box X̄ and repeat the
same procedure on the sub-boxes.

However, there is one more problem in the LP
test algorithm when it is applied to large scale prob-
lems. Namely, since the algorithm has the structure of
a binary tree, it requires very large memory space. In
other words, tableaus of the dual simplex method have
to be copied and reserved at each node of the binary
tree. Moreover, in our past numerical experiments,
the time needed for copying tableaus occupied a large
part of the total computation time of the algorithm in
[16]. In order to overcome this problem, we propose a
technique for making the algorithm not require large
memory space and not require copying tableaus.

When we apply the simplex method to (3), we
first apply the variable transformation x̄i = xi − ai

and ȳi = yi − ci, and introduce the slack variables
λ̄i and µ̄i (i = 1, 2, · · · , n) so that the LP problem is
transformed into a standard form:

max (arbitrary constant)

subject to

P ȳ + Qx̄ − r̄ = 0
x̄i + λ̄i = bi − ai, i = 1, 2, · · · , n
ȳi + µ̄i = di − ci, i = 1, 2, · · · , n
x̄i ≥ 0, ȳi ≥ 0, i = 1, 2, · · · , n
λ̄i ≥ 0, µ̄i ≥ 0, i = 1, 2, · · · , n

(4)

where x̄ = (x̄1, x̄2, · · · , x̄n)T , ȳ = (ȳ1, ȳ2, · · · , ȳn)T ,
and r̄ = r−P (c1, c2, · · · , cn)T −Q(a1, a2, · · · , an)T .
Then, we construct the initial tableau.

We explain the proposed idea using Figs. 1 and 2.
Consider that we have performed the LP test on a box
X in Fig. 1 and have obtained an optimal tableau for
(4). Here, the term optimal implies that the optimality
condition is satisfied in the auxiliary objective func-
tion row because the simplex method for (3) consists

3In [15], an algorithm for finding all DC solutions of nonlinear
circuits is proposed using the contraction method. However, the
effectiveness of this algorithm to large scale problems is not clear
because in the numerical experiments of [15], the algorithm was
applied only to small circuits with n ≤ 10.
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Figure 1: Assume that the LP test is performed on X ′

after X .

of Phase I only. Then, consider that we next perform
the LP test on a box X ′. Let [ci, di] and [c′i, d′i] be the
ranges of gi(xi) over [ai, bi] and [a′i, b′i], respectively,
as shown in Fig. 2. In the LP test for X ′, we similarly
introduce auxiliary variables yi (i = 1, 2, · · · , n) and
consider the LP problem:

max (arbitrary constant)

subject to

Py + Qx − r = 0
a′i ≤ xi ≤ b′i, i = 1, 2, · · · , n
c′i ≤ yi ≤ d′i, i = 1, 2, · · · , n.

(5)

Applying the variable transformation x̃i = xi−a′i and
ỹi = yi − c′i, and introducing the slack variables, (5)
is transformed into a standard form:

max (arbitrary constant)

subject to

P ỹ + Qx̃ − r̃ = 0

x̃i + λ̃i = b′i − a′i, i = 1, 2, · · · , n
ỹi + µ̃i = d′i − c′i, i = 1, 2, · · · , n
x̃i ≥ 0, ỹi ≥ 0, i = 1, 2, · · · , n
λ̃i ≥ 0, µ̃i ≥ 0, i = 1, 2, · · · , n.

(6)

However, from x̄i = xi − ai and x̃i = xi − a′i,
x̄ = x̃i + (a′i − ai) (i = 1, 2, · · · , n) hold. Then,
from x̄i + λ̄i = bi − ai in (4) and x̃i + λ̃i = b′i − a′i
in (6), λ̄i = λ̃i + (bi − b′i) (i = 1, 2, · · · , n) hold.
Similarly, ȳi = ỹi + (c′i − ci) and µ̄i = µ̃i + (di − d′i)
(i = 1, 2, · · · , n) hold. Substituting these relations
to the previous optimal tableau for (4), the optimal
tableau for (6) is easily obtained, which differs from
the previous tableau only in the constant column.

Of course, this tableau may not be feasible (i.e.,
all elements in the constant column may not be non-
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Figure 2: Illustration of the interval extensions of
gi(xi) over [ai, bi] and [a′i, b′i].

negative), but always dual feasible because the op-
timality condition is satisfied. Hence, starting from
this tableau, we can perform the dual simplex method
and check the existence of the feasible region of (5).
Thus, the LP test using the dual simplex method can
be performed without copying (reserving) the tableau
at each node.

In most cases, this dual simplex method requires
only a few pivotings. It often requires no pivoting;
namely, if the dual feasible tableau is feasible (i.e., all
elements in the constant column are non-negative) or
the tableau indicates that the feasible region is empty,
then the dual simplex method terminates with no piv-
oting. Hence, the average number of pivotings per box
becomes very small.

This technique also improves the computational
efficiency substantially, because as stated before, the
time needed for copying tableaus occupies a large part
of the total computation time in the original algorithm.

4 NUMERICAL EXAMPLES

We introduced the proposed techniques to the well-
known Krawczyk-Moore algorithm [13] and imple-
mented the new algorithm using the programming lan-
guage C on a Sun Blade 2000 (UltraSPARC-III Cu
1.2GHz). In this section, we show some numerical
examples.

Example 1: Consider a system of n nonlinear
equations:

g(xi) + x1 + x2 + · · · + xn − i = 0, i = 1, 2, · · · , n
where g(x) = 2.5x3 − 10.5x2 + 11.8x

which describes a nonlinear resistive circuit contain-
ing n tunnel diodes [7]–[12],[14],[16]. The initial re-
gion is D = ([−10, 10], · · · , [−10, 10])T . Note that
the conventional Krawczyk-Moore algorithm could

Table 1: Comparison of computation time.

Ref.[14] Ref.[16] Proposed

n S T (s) T (s) T (s)

100 9 71 306 1 060 2
200 13 ∞ 26 748 21
300 11 ∞ ∞ 65
400 9 ∞ ∞ 124
500 13 ∞ ∞ 333
600 11 ∞ ∞ 543
700 9 ∞ ∞ 632
800 11 ∞ ∞ 1 788
900 19 ∞ ∞ 3 704

1 000 17 ∞ ∞ 5 706
1 100 9 ∞ ∞ 4 387
1 200 9 ∞ ∞ 6 377
1 300 21 ∞ ∞ 22 123
1 400 9 ∞ ∞ 10 741
1 500 13 ∞ ∞ 22 501
1 600 23 ∞ ∞ 58 157
1 700 11 ∞ ∞ 33 638
1 800 9 ∞ ∞ 30 745
1 900 9 ∞ ∞ 41 906
2 000 9 ∞ ∞ 48 805
2 100 11 ∞ ∞ 77 179
2 200 23 ∞ ∞ 173 785
2 300 15 ∞ ∞ 169 243
2 400 9 ∞ ∞ 85 771
2 500 9 ∞ ∞ 136 934

solve this system for n = 12 in about three hours,
and for n = 14 in about 44 hours in [14].

Table 1 compares the computation time of the al-
gorithm in [14], that in [16], and the proposed algo-
rithm, where S denotes the number of solutions ob-
tained by the algorithms, T (s) denotes the computa-
tion time, and ∞ denotes that it could not be computed
in practical computation time (in this paper, less than
2 days) or memory overflow occured. As seen from
the table, the proposed algorithm could solve this sys-
tem for n = 1000 in about 1.5 h, and for n = 2000 in
about 13 h. This is the first numerical example where
all solutions of a system of 2 000 nonlinear circuit
equations are found in practical computation time.

Fig. 3 illustrates the growth of the computation
time when n increases. It is seen that the computa-
tion time of the proposed algorithm grows exponen-
tially, but not very explosively. It is also seen that the
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Figure 3: Computation time of the algorithms.

Table 2: Result in Ref. [12].

n L S T (s)

100 10100 9 319
200 10200 9 2 620
300 10300 11 2 758
400 10400 3 8 305
500 10500 3 21 364

computation time depends largely on the number of
solutions.

Table 2 shows the result of computation described
in [12] where the algorithm proposed in [12] was ap-
plied to the PWL versions of the n-tunnel diodes cir-
cuits on a 450MHz computer. In Table 2, L = 10n

denotes the total number of linear regions. Namely,
the nonlinear function representing the characteristic
of the tunnel diodes is approximated by a PWL func-
tion with ten segments. As seen from Tables 1 and 2,
PWL approximation often changes the number of so-
lutions. Thus, finding all solutions of the original non-
linear equations is important to design a circuit with
high reliability.

We also compare the memory space needed in the
algorithms. When n = 200, the algorithm in [16]
needed 334204 Kbyte memory, but the proposed al-
gorithm needed only 7546 Kbyte memory. We also
note that, when n = 1000, the proposed algorithm
needed 158632 Kbyte memory, and when n = 2000,
it needed 627864 Kbyte memory, although the algo-
rithm in [16] could not solve this system for n > 290
on a 1G RAM computer.

Example 2: We next solved the transistor circuits
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Figure 4: Transistor circuit 1.
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Figure 5: Transistor circuit 2.

shown in Figs. 4–7 [1]–[12]. Then, we found 9, 3,
11, and one solution(s) in 0.08, 0.06, 1.55, and 1.09 s,
respectively. It is seen that all solutions were found in
little computation time.

5 CONCLUSION

In this paper, an efficient algorithm has been pro-
posed for finding all DC solutions of nonlinear cir-
cuits. It has been shown that the proposed algorithm
does not require large memory space and does not re-
quire copying tableaus, which improves the computa-
tional efficiency substantially. It has also been shown
that the proposed algorithm could find all solutions of
a system of 2 000 nonlinear circuit equations in practi-
cal computation time for the first time. Since the pro-
posed algorithm does not use PWL approximation, it
is useful to design a multistate circuit with high relia-
bility.
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