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Abstract – The maximum subsequence problem is widely encountered in various digital processing systems. Given a 
stream of both positive and negative integers, it consists of determining the subsequence of maximal sum inside the 
input stream. In its two-dimensional version, the input is an array of both positive and negative integers, and the 
problem consists of determining the sub-array of maximal sum inside the input array. These problems are solved by 
Kadane’s algorithm, which has already been proved to be optimal. However, the hardware implementation presented in 
this paper is based on the hardware agents’ paradigm and offers a significantly improved performance (in terms of 
speed) over the classical software implementations.  
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1   Introduction 
The problem of maximum sum was first introduced by 
Bentley [1, 2] and has 1D and 2D versions. It is not very 
difficult to implement in software. The 1D version is 
referred to as the maximum subsequence, while the other 
is called the maximum sub-array problem. It is 
implemented for various DSP applications [6]; Bentley 
[1] introduced Kadane’s algorithm that finds the 
maximal subsequence of a 1D array in linear time O(n). 

The maximum subsequence problem is very widely 
encountered in various digital processing systems. It 
consists of determining a contiguous portion of an 
unsorted 1D array that contains both positive and 
negative integers in which the sum of the array elements 
is maximal, over the entire stream. 

For instance, in the following 13-element 1D array: 
 

a[13] = {7, -9, 15, 20, -37, 23, 4, 5, 19, -28, 17, -2, 1} 
 
If we consider the first element to be a[0], the 

maximal sub-array is delimited by the element of index 5 
(a[5] = 23) and the element of index 8 (a[8] = 19). 

In the following, let s be the notation for the sum of a 
tentative maximum subsequence a[i..j]. The algorithm 
accumulates a partial sum in t and, when t becomes 
better than s, it replaces s with t and updates the position 
(i, j). If t becomes negative, we reset the accumulation.  

This operation is due to its dynamic programming 
nature; a subsequence of negative sum can only 
constitute a suboptimal maximum sum, thus it is 
discarded. The algorithm is presented in Fig. 1. 

 

1.  input : a[1..n] 
2.  output : s,(x1, x2) 
3.  (x1, x2) ← (0, 0); s ← – ∞; t ← 0; 
4.  i ← 1; 
5.  for j ← 1 to n do 
6.           t ← t +a[j] ; 
7.            if t > s then 
8.            (x1,  x2) ← (i, j); s ← t 
9.      end 
//Reset the accumulation 
10.      if t < 0 then 
11.       t ← 0; i ← j + 1 
12.      end 
13.  end 

Fig. 1. Kadane’s algorithm 
 

One of the major tendencies in digital computing 
systems is to relocate the computation-intensive parts of 
applications into hardware. Processors have a general, 
fixed architecture that allows the implementing of tasks 
by temporally composing atomic operations provided e. 
g. by the ALU or the floating-point unit. In contrast, 
ASICs implement tasks by spatially composing 
operations provided by dedicated functional units. 
Reconfigurable computing combines both approaches. 
Reconfigurable systems are built from programmable 
logic, which allows the implementing of tasks both in a 
spatial manner similar to ASICs and in a temporal 
manner comparable to processors. 

The main goal of our research group is to develop 
hardware implementations for the most widely used 
classical software algorithms. Thus, it will be possible to 
gradually implement larger systems based on specialized 
cooperative hardware agents, where each agent is 
responsible for implementing a given algorithm.   
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This paper shows the results for the implementation 
of Kadane’s algorithm in software and in hardware, 
focusing on the hardware implementations which yield 
much better results. The design technique is detailed, 
and the necessary adaptations are explained. Finally, the 
architecture is loaded into a Xilinx FPGA device, for 
simulation and testing purposes. 

 
 

2   The 1D Implementation 
The software implementation for the 1D case is 
straightforward and does not deserve to be detailed here. 
The program was written in C++ and tested on a few PC 
systems. The obtained results are presented in Table 1. 
 
Table 1. Results of the software (C++) implementation 

Number of Tests Input Stream Length Run time (sec) 
10 10000 0.16 
10 20000 0.3 
10 30000 1.012 

100 10000 1.722 
100 20000 3.385 
100 30000 5.208 

1000 10000 17.805 
1000 20000 37.013 
1000 30000 45.956 
1000 60000 93.789 

 
     These results are due to the temporal organization of 
the computing task in the microprocessor-based 
architecture. They are also limited by the numerous 
memory accesses required by this algorithm. 

As it can be seen in Table 1, the run time for a 
sequence of 60,000 numbers is of approximately 90 ms. 

The much better results achieved by the hardware 
implementation are due to the spatial organization of the 
computing task in an FPGA device, which has been used 
as physical support for the implementation. 

When moving it to hardware, the algorithm must 
first be adapted. We consider the case of the analyzed 
stream received serially, synchronously, on our system’s 
data input. The outputs generated by the design are the 
two pointers to the beginning and the end of the maximal 
sequence, x1 and x2, and the maximal sum obtained, s.  

As Naji & Wells have shown in [4], hardware multi-
agent systems allow the concepts of multi agent 
technology to be extended to support reconfigurable 
systems, in which the functionality of both the associated 
hardware and software can be altered dynamically or 
statically with time. The utilization of such a paradigm 
has the potential to greatly increase the flexibility, 
efficiency, expandability, and maintainability of such 
systems and to provide an attractive alternative to the 
current set of disjoint approaches that are now applied to 
this problem domain.  

This paper presents an example of how an agents-
based architecture can be created and applied to the 
reconfigurable hardware domain. We'll consider the 
system at a certain moment in time to be an agent. This 
agent's beliefs are the following: temporary maximal 
sum s, partial sum t, current data from vector a[j] 
(DATAIN(a)), and temporary indices i and j. 

Its goals are: the left index of the maximal sum sub-
array x1, the right index of the maximal sum sub-array x2, 
and the temporary (updated) sums s and t. 

The agent's plan is the actual algorithm (Fig. 2): 
 

Inputs = (s, t, a[j], i, j) 
ag_mem[0] ← Input(0) 
ag_mem[1] ← Input(1) 
ag_mem[2] ← Input(2) 
ag_mem[3] ← Input(3) 
ag_mem[4] ← Input(4) 
ag_mem[1] ← ag_mem[1]+ag_mem[2] 
if (ag_mem[1] > ag_mem[0]) then 
 (ag_mem[5], ag_mem[6]) ← (ag_mem[3], ag_mem[4]) 
  ag_mem[0] ← ag_mem[1] 
end 
if (ag_mem[1] < 0) then 
 ag_mem[1] ← 0 
 ag_mem[3] ← ag_mem[1]+1 
end 
Outputs = (ag_mem[0], ag_mem[1], ag_mem[5],                
ag_mem[6])  // (s, t, x1, x2) 

Fig. 2. The agents-based algorithm implementation 
 

When passing from software to hardware, there are a 
few additional elements to take into consideration. 

As indicated in Section 1, the numbers from the 
input stream are signed integers. It is thus necessary to 
design the whole architecture in two’s complement 
arithmetic. 

A common sense estimation (which also covers a 
wide range of practical situations) is to consider the 
input numbers as bytes. Therefore, we need an 8-bit 
representation of these numbers, and one extra bit for the 
sign. This is why the DATAIN port is sized as a 9-bit 
input. 

In the 1D case, our purpose was to design a system 
that works properly for 65,536 numbers in the input 
stream. Since each number is expressed on 8 bits, a 
simple estimation shows that, for the worst case 
situation, we need an Accumulator on 25 bits to compute 
the partial sums (t, in the algorithm presented in Fig. 1). 
Also, the temporary maximal sum, s, must also be sized 
as a 24-bit data register, because s will never be 
negative, as one can easily deduce from the algorithm, so 
the sign bit is no longer necessary. 

Of course, an Adder resource is necessary. It does 
not appear explicitly in Fig. 1, because Kadane’s 
algorithm was targeted for a software implementation. 
This Adder must also be sized on 24 bits. 
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As can be seen in Fig. 1, the j variable iterates from 1 
to n (n being the size of the input stream). In the 
hardware implementation, this corresponds to a Counter. 
Since our goal was to design a system that deals with 
streams of at most 65,536 numbers, this Counter must be 
sized on 16 bits. 

The algorithm described in Fig. 1 also contains three 
more variables: x1, the pointer to the beginning of the 
maximal subsequence found in the input stream; x2, the 
pointer to the end of the maximal subsequence found in 
the input stream, and i, an intermediate variable that 
points to the candidate maximal subsequence. These 
variables are stored into data registers, which must be 
sized on 16 bits. 

When moving the algorithm from software to 
hardware, some additional resources are necessary, 
which do not appear explicitly in the pseudo code: the 
Adder and the Counter are examples of such “hidden” 
resources. Another hidden resource is the Increment (“+ 
2”) Block, which is necessary for implementing the 
(apparently) simple operation i ← j + 1 in the last line 
(line 11) of the algorithm. 

The goal of the hardware implementation is to obtain 
a speed increase. For this purpose, our intention was to 
create a pipelined design, where a new number from the 
input stream is processed in each clock cycle. The whole 
design must of course be synchronous.  

It is generally a good idea to buffer the input data, 
so, as can be seen in Fig. 3, a new partial sum (t ← t 
+a[j]) will be obtained one clock cycle later than the 
arrival of a new input number. 

This organization also has another advantage. At the 
end of the algorithm (lines 10-12 on Fig. 1), we have to 
compare t to 0. Because of this structure (see Fig. 3), we 
know in advance if the Accumulator (that stores t) will 
be loaded with a negative number. In software this 
operation would take place exactly as described by the 
algorithm: first, load t with the new value (t ← t +a[j]), 
then test if it is negative. In hardware, since t is a data 
register loaded with the result produced by the Adder, if 
the first bit is ‘1’ (meaning that the result of the addition 
is negative), on the next clock cycle we can directly and 
synchronously reset the Accumulator. 

Because of this structure, the algorithm must be 
adapted as follows. At the end of the current iteration, 
the i variable must be updated to the value j + 1. In our 
case, we must perform the operation: i ← j + 2, because t 
“will be negative” only later, after one clock cycle. But 
after that clock cycle, j will be incremented, so i must be 
updated to the value j + 2. 

The Comparator is a combinational resource needed 
to determine if t > s (line 7 in Fig. 1). It must be sized on 
24 bits, because s is always positive and is compared to t 
only when t is positive too, so for t the sign bit is no 
longer necessary. 

 

9-bit Input Buffer
 (stores a) 

25-bit Accumulator
(stores t) 

25-bit Adder 

9

25

25

25

RESET

9

DATAIN

Comparator 

24-bit Data Register
(stores s) 

24

24 16-bit Counter
(stores j) 

16-bit Data Register 
 (stores i) 

PL 

+2 Block 

16-bit Data Register 
 (stores x1) 

16-bit Data Register
 (stores x2) 

16 

16

1616 

PL PL

“t < 0” (bit 25) 

“t > s” 

16 16

s x1 x2

24

24

Sign extension

Fig. 3. The hardware architecture in the 1D case 
 
Technically speaking, the sign extension is not a 

resource, but it is implemented by the interconnection 
network. We must perform a sign extension on the input 
numbers, because they come as two’s complement 9-bit 
words, while the Adder is sized on 25 bits. 

To preserve the readability of the schematic, the 
Clock and Preset signals from Fig. 3 have not been 
represented, for all the sequential components (the 9-bit 
Input Buffer, the 25-bit Accumulator, the 24-bit Data 
Register, the 16-bit Data Registers, and the Counter). 

The initialization of the designed system is done as 
follows. All the sequential components are initialized 
with 0, except for the 16-bit Counter that stores j, which 
will be initialized with 216-2, i.e. “1111111111111110”. 
The reason is given by the particular features of this 
architecture, as explained above. 

 
 

3   Results of the 1D Implementation 
The hardware design was specified in parameterizable 
VHDL code and the physical support of the 
implementation was a Xilinx Virtex II 1000 FPGA, 
speed grade -6 device. 

After running Xilinx Synthesis software, the reports 
indicated a maximal working frequency of 133 MHz 
(clock period: 7.5 ns). The simulation was done in 
ModelSIM and the proper functioning of the design was 
confirmed. 

It is obvious that the performance depends on the 
length of the input stream. A simple 
computation/calculation indicates that for an input 
stream of 65,536 numbers, the total execution time is 
0.49 ms, which indicates at least two orders of 
magnitude improvement over the software 
implementation (see Table 2). 

An examination of the results yielded by the 
software implementation shows that the run time does 
not increase linearly with the length of the input stream, 
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but in case of the hardware implementation, this 
dependency is linear.  

As reported by Xilinx synthesis tools, the FPGA 
device is used only at 20% of its total capacity, which 
allows the implementation of the hardware version for 
much larger input streams.  

As a result, the more we increase the length of the 
input stream, the better the hardware implementation 
performs when compared with the software one. 

It is easy to adapt the hardware architecture to larger 
sizes of the input stream by simply resizing the resources 
on a larger number of bits.  

 
 

4   The 2D Implementation 
The 2D case consists of finding the sub-array of 
maximal sum inside an M x N array. For example, for 
the array in Fig. 4, the solution is highlighted in gray. 
 

2 -4 5 -5 -9 3 -4 
-5 -6 -9 2 -5 4 1 
-3 7 -7 5 6 -6 0 
-3 5 -8 8 -2 2 -7 
-4 1 -1 0 -1 -4 1 

Fig. 4. Solution example for the 2D problem 
 

The software solution to this problem is classical and 
straightforward. The results are shown in Table 2. 
 
Table 2. Results of the software implementation 

Input Array Size (M = N) Run time in C++ (sec) 
4 0.00062 

16 0.00282 
64 0.01560 

128 0.05160 
170 0.16000 
512 1.70300 
648 3.39100 

1024 13.1870 
2048 99.2180 

The 2D Kadane algorithm is based on the 1D 
Kadane algorithm. The 1D algorithm is run on the 
elements of each row of the array (row1, row2… rowM), 
considered as a 1D stream, then, on the sum of each pair 
of rows (row1 + row2, row1 + row3,… rowM-1 + rowM). 
The solution is given by the maximal sum produced by 
the 1D Kadane algorithm on these cases. If x1 and x2 are 
the pointers to the beginning and the end of the maximal 
sub-stream, and Ri and Rj are the two added rows for 
which the sum is maximal, then the solution is delimited 
by the rectangle given by the upper-left (Ri, x1) and the 
lower-right corners (Rj, x2). 

As one can see in Table 2, the execution time 
increases exponentially, O((M × N) 3) with the size of the 
input array. The hardware implementation starts showing 
its usefulness for large arrays, where the gain of speed 
becomes significant.  

For the hardware implementation, a series of 
adaptations of the algorithm had to be done, in order to 
wisely exploit the logic resources of the Virtex FPGA 
devices. The input array is stored in a memory. 
Depending on the space available in the FPGA device, 
this memory can be implemented inside or outside the 
chip. Data are read from this memory, word by word, 
and the hardware architecture is adapted for a pipeline 
processing style. 

In order to extract rows from the memory the way 
mentioned above, a special Address Generator module 
had to be designed. It is presented din Fig. 5a.  

To minimize the space occupied inside the FPGA 
chip, the Multiplier from Fig. 5a is a MULT18x18 
Virtex2 primitive. Also, to implement the memory, 
Virtex BlockRAMs were used. Thus, the speed of the 
design increases because specialized components are 
used, and also the bigger capacity of the Virtex FPGA 
allows us to implement larger designs.  

The Address Generator has the task of generating the 
appropriate addresses for the Memory to ensure the 
proper functioning of the algorithm. It must first extract 
Rows 0 to M-1, then Rows 1 to M-1, then Rows 2 to M-
1… etc., until Rows M-2 to M-1. Combined with the 
architecture of the RowBuffer and helped by the 
Command Unit (Fig. 5b and Fig. 5c), it will help feeding 
into the Kadane1D module each Row individually, then 
the sum of each pair of Rows from the input array. This 
functionality is ensured by the use of the Multiplier for 
Fig. 5a, and also the two counters. 

 
 

COUNTER1
(0 to M-1) 

MULTIPLIER 

N 

COUNTER2
(0 to M × N-1) 

TC1 

TC 

PL 
ADDRESSES 

CE 

CLK 

CLK 

a) 

A 

Run 

N-2 

B 

HOLD RowBuffer, 
Memory, AddrGen 

M×N-1 C D 

HOLD Memory, AddrGen 
RESET Kadane1D 

LOAD MAX 

HOLD Memory, AddrGen
RESET RowBuffer, Kadane1D 

LOAD MAX 

0 1 

0 1

c)  
 

RowBuffer (FIFO) 
 

+ 

DOUT (from the Memory)

N locations × 9 bits 9 + log2(M × N) 

9 + log2(M × N) 

9 + log2(M × N) 

b)  
Fig. 5. a) The Address Generator; b) Structure of the 
RowBuffer; c) State-diagram of the Command Unit 
 
The RowBuffer is a special FIFO module that allows 

to extract rows from the memory and to add them. Thus, 
a new word (array element) is extracted in each clock 
cycle, in a pipeline fashion. The size of this component 
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is given by the number of columns in the array 
multiplied by the width of each word (in this case, a 
nine-bit representation). 

An important part of the design is the Kadane1D 
module, which operates on individual rows or on the 
result produced by summing pairs of rows, in the order 
specified above. See Fig. 5b for details. 

Here, an adaptation of this module is necessary, 
modifying the version presented at the beginning of this 
paper, because by adding the Rows, the size of the words 
increases. So, the input of the Kadane1D module will be 
expressed on 9 + log2(M × N) bits. This change can also 
be observed in Fig. 5b. 

The output of the Kadane1D module is fed into the 
MAX module, which will determine the maximal sum, 
together with some other vital information: the current 
Row or pair of Rows, the x1 and x2 pointers.  

The Command Unit controls the functioning of the 
whole system. It is a relatively simple Finite State 
Machine (FSM) whose operating mode can be described 
as in Fig. 5c. 

First, a Row (let’s call it Rowi) is extracted from the 
Memory into the RowBuffer. Due to its circular register-
like organization, each element of the current Row is 
added to its corresponding element in the next Row (let’s 
call it Rowj). Simultaneously, the elements of Rowi are 
fed into the Kadane1D module, so two tasks are 
performed in parallel: 

1) The maximal sub-stream of Rowi is 
determined in the Kadane1D module; 

2) The sum between each element of Rowi and 
the corresponding element from Rowj is fed 
into the RowBuffer, ready for the next phase. 

The role of the Command Unit is to stop (HOLD) the 
functioning of the main modules and to synchronously 
reset those of them who need to be re-initialized.  

After a new Row (or the sum of two Rows) is loaded 
into the RowBuffer, the Command Unit will HOLD the 
Memory, the Address Generator and the RowBuffer 
until the Kadane1D module finishes its job of 
determining the maximal subsequence inside the stream 
Rowi. As can be seen from Section 2, one more clock 
cycle is necessary. Then, the result produced by the 
Kadane1D module is transmitted to the MAX module. 

If Rowj is RowM-1, this means the Command Unit 
also has to reset the RowBuffer (until this moment, we 
obtained Rowi, Rowi + Rowi+1, … Rowi + RowM-1, but 
now we have to obtain Rowi+1, Rowi+1 + Rowi+2, … 
Rowi+1 + RowM-1, etc.). After that, the processing 
continues until the last Row is processed.  

In this schematic, the control signals are simplified 
to avoid overcharging and improve the readability of the 
design. All components have been described in 
parameterizable VHDL code. Thus, the design becomes 
portable on any hardware. The only generics to be 

specified are M – the number of rows, and N – the 
number of columns of the input array. 

The agents will be represented by entities and 
associated processes, so the inputs Inp (or beliefs) and 
outputs Outp (or the goals) of the hardware agents will 
be the ports of these entities. The AgentName() pseudo-
call simulates "invoking" the agent, or modifying the 
ports to which its associated process is sensitive. 

RowBuffer (FIFO) 
 

+ 

MEMORY 

KADANE1D 

MAX 

ADDRESS
GENERATOR 

ADDR

DOUT 

X

MAXSUM

X1

X2 

 
COMMAND 

UNIT 
 

CE, 
RESET 

CE, 
RESET

CE, 
RESET 

CE 

Rowi

Rowj 

9 + log2(M × N) 

N - 2 reached 

M × N -1 reached

 
Fig. 6. Kadane2D implementation: general schematic 

  
In the 1D case, we only had one agent, whose goal 

was to perform the computations in a single loop of the 
Kadane 1D algorithm. In order to use the Kadane1D 
agent as a part of the Kadane2D-related computations, 
we need to add a while loop: 

Kadane1D 
Inputs = (n, a[1], a[2], ..., a[n]) 
ag_mem[0] ← 0;  ag_mem[1] ← 0 //x1 and, respectively, x2 
ag_mem[2] ← -30000 //s 
ag_mem[3] ← 0 //t 
ag_mem[4] ← 1; ag_mem[5] ← 1 //i and, respectively, j 
ag_mem[6] ← Inputs(0) // n 
while (ag_mem[5]<ag_mem[6]) do 
      Kadane1DLoop.Inputs(ag_mem[2],ag_mem[3],    

Input[ag_mem[5]], ag_mem[4], ag_mem[5]) 
       Kadane1DLoop()// “invoke” the Kadane1DLoop agent 
      ag_mem[2] ← Kadane1DLoop.Outputs(0) 
      ag_mem[3] ← Kadane1DLoop.Outputs(1) 
      ag_mem[0] ← Kadane1DLoop.Outputs(2) 
      ag_mem[1] ← Kadane1DLoop.Outputs(3) 
      ag_mem[5] ← ag_mem[5] + 1  // increment 
end while 
Outputs = (ag_mem[2], ag_mem[0], ag_mem[1]) //s, x1, x2 

Fig. 7. The updated Kadane1D agent 
 
The Kadane2D agent is modeled starting from the 

hardware components it consists of, considering each of 
them an agent which will be invoked by Kadane2D: 

MAX: Inputs = (s, x1, x2), Outputs = (maxs, x1, x2, 
r1, r2) 

Kadane1D: Inputs = (a[]), Outputs = (s, x1, x2) 
MEM: Inputs = (ADR), Outputs = (DOUT) 
AddressGen: Inputs = (N, M), Outputs = (ADR) 
Besides several variables, the Kadane2D agent also 

needs to store an array of data at each step. As can be 
seen in Fig. 8, this array is an actual row from the input 
matrix, or a sum of such rows; and taking into account 
the fact that the input matrix has N lines and M columns, 
the arrays' dimension will be M. 
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The Kadane2D agent's auxiliary storage space (aux 
in the pseudo code) will then be a matrix like this: 

 0 1 2 3 4 5 6 7 8 … M-1 
0 N M ADR S X1 X2 R1 R2 I   
1            
2            

Row0 will store variables; row 1 will store the 
DOUT array, whereas row 2 will store the ROWBUF 
array. Thus, the new Kadane2D agent’s plan will be: 

Kadane2D 
Inputs=(N, M, a[][]) 
aux[0,0] ← Inputs(0) 
aux[0,1] ← Inputs(1) 
AddressGen.Inputs(aux[0,0], aux[0,1]) 
AddressGen()// “Invoke” the address generator module 
// And get the address: 
aux[0,2] ← AddressGen.Outputs(0)  // ADR 
MEM.Inputs(aux[0,2]) // “Invoke” the memory module 
MEM() 
aux[0,8] ← 0 // Get DOUT! 
while (aux[0,8] < aux[0,1]) do // i<m 
     aux[1,aux[0,8]] ← Mem.Outputs(aux[0,8]) 
     aux[0,8] ← aux[0,8]+1 
end while 
aux[0,8] ← 0 // Get ROWBUF! 
while (aux[0,8] < aux[0,1]) do // i<m 
 // ROWBUF ← DOUT + ROWBUF 
     aux[2,aux[0,8]] ← aux[1,aux[0,8]]+aux[2,aux[0,8]] 
aux[0,8] ← aux[0,8]+1 
end while 
// Kadane1D’s inputs are the values in the ROWBUF array: 
aux[0,8] ← 0  
while (aux[0,8] < aux[0,1]) do  // i<m 
     KADANE1D.Inputs(aux[0,8]) ← aux[2,aux[0,8]) 
     aux[0,8] ← aux[0,8]+1 
end while 
KADANE1D()// “Invoke” Kadane1D 
aux[0,3] ← KADANE1D.Outputs(0) //s 
aux[0,4] ← KADANE1D.Outputs(1) //x1 
aux[0,5] ← KADANE1D.Outputs(2) //x2 
MAX.Inputs(aux[0,3], aux[0,4], aux[0,5]) 
MAX()// “Invoke” MAX 
aux[0,3] ← MAX.Outputs(0)  //maxs 
aux[0,4] ← MAX.Outputs(1)  // x1 
aux[0,5] ← MAX.Outputs(2)  // x2 
aux[0,6] ← MAX.Outputs(3)  // r1 
aux[0,7] ← MAX.Outputs(4)  // r2 
Outputs = (aux[0,3], aux[0,4], aux[0,5], aux[0,6], aux[0,7]) 

Fig. 8. The Kadane2D agent 
 
 

5   Results of the 2D Implementation and 
Conclusions* 
The main goal of this paper was to create a hardware 
implementation of a well-known software algorithm, i.e. 
Kadane’s algorithm, in both its 1D and 2D versions, for 
determining the maximal subsequence of a stream or an 
array of integers. 

                                                            
* This work was supported by the Romanian Ministry of 
Education and Research, under grant AT 178 / 2006. 

The paper presents a detailed step-by-step 
methodology for these adaptations. All choices made for 
the nature and the size of the used resources are 
discussed and justified. 

Like for the 1D problem, the design was specified in 
parameterizable VHDL code and implemented in three 
Xilinx FPGA devices. In fact, the 2D problem 
implementation is an extension of the 1D design, based 
on the same working principle. The working frequency 
is now lower than in the 1D implementation: around 90 
MHz, in average, varying with the FPGA family (91.7 
MHz for Virtex2, 95.8 MHz for Virtex2PRO and 85.5 
for a Spartan3 device). The global performance also 
depends on the input array’s size.  

The simulation was done in ModelSIM and the 
proper functioning of the design was confirmed. 

In conclusion, the performance is at least two orders 
of magnitude better in hardware than in software. The 
space available in Virtex devices allows 
implementations for large input arrays, the main 
limitation being introduced by the amount of available 
on-chip memory. A larger off-chip memory can be used, 
but lowering the working frequency. 

Future work will involve creating a hardware 
algorithm for determining not only the maximal (or 
minimal) subsequence, but the first k maximal (or 
minimal) subsequences in an input stream that represents 
a 1D or a 2D array. 
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