
Solving the Maximum Subsequence Problem with
a Hardware Agents-based System

Octavian Creţ1, Zsolt Mathe1, Cristina Grama1, Lucia Văcariu1, Flaviu Roman1, Adrian Dărăbant2

Computer Science Department
1 Technical University of Cluj-Napoca; 2 “Babeş-Bolyai” University of Cluj-Napoca

26, G. Bariţiu Street, Cluj-Napoca; 1, M. Kogălniceanu Street, Cluj-Napoca
ROMANIA

Abstract – The maximum subsequence problem is widely encountered in various digital processing systems. Given a
stream of both positive and negative integers, it consists of determining the subsequence of maximal sum inside the
input stream. In its two-dimensional version, the input is an array of both positive and negative integers, and the
problem consists of determining the sub-array of maximal sum inside the input array. These problems are solved by
Kadane’s algorithm, which has already been proved to be optimal. However, the hardware implementation presented in
this paper is based on the hardware agents’ paradigm and offers a significantly improved performance (in terms of
speed) over the classical software implementations.

Key-words: Kadane algorithm, maximal subsequence problem, hardware agents, VHDL, FPGA

1 Introduction
The problem of maximum sum was first introduced by
Bentley [1, 2] and has 1D and 2D versions. It is not very
difficult to implement in software. The 1D version is
referred to as the maximum subsequence, while the other
is called the maximum sub-array problem. It is
implemented for various DSP applications [6]; Bentley
[1] introduced Kadane’s algorithm that finds the
maximal subsequence of a 1D array in linear time O(n).

The maximum subsequence problem is very widely
encountered in various digital processing systems. It
consists of determining a contiguous portion of an
unsorted 1D array that contains both positive and
negative integers in which the sum of the array elements
is maximal, over the entire stream.

For instance, in the following 13-element 1D array:

a[13] = {7, -9, 15, 20, -37, 23, 4, 5, 19, -28, 17, -2, 1}

If we consider the first element to be a[0], the

maximal sub-array is delimited by the element of index 5
(a[5] = 23) and the element of index 8 (a[8] = 19).

In the following, let s be the notation for the sum of a
tentative maximum subsequence a[i..j]. The algorithm
accumulates a partial sum in t and, when t becomes
better than s, it replaces s with t and updates the position
(i, j). If t becomes negative, we reset the accumulation.

This operation is due to its dynamic programming
nature; a subsequence of negative sum can only
constitute a suboptimal maximum sum, thus it is
discarded. The algorithm is presented in Fig. 1.

1. input : a[1..n]
2. output : s,(x1, x2)
3. (x1, x2) ← (0, 0); s ← – ∞; t ← 0;
4. i ← 1;
5. for j ← 1 to n do
6. t ← t +a[j] ;
7. if t > s then
8. (x1, x2) ← (i, j); s ← t
9. end
//Reset the accumulation
10. if t < 0 then
11. t ← 0; i ← j + 1
12. end
13. end

Fig. 1. Kadane’s algorithm

One of the major tendencies in digital computing
systems is to relocate the computation-intensive parts of
applications into hardware. Processors have a general,
fixed architecture that allows the implementing of tasks
by temporally composing atomic operations provided e.
g. by the ALU or the floating-point unit. In contrast,
ASICs implement tasks by spatially composing
operations provided by dedicated functional units.
Reconfigurable computing combines both approaches.
Reconfigurable systems are built from programmable
logic, which allows the implementing of tasks both in a
spatial manner similar to ASICs and in a temporal
manner comparable to processors.

The main goal of our research group is to develop
hardware implementations for the most widely used
classical software algorithms. Thus, it will be possible to
gradually implement larger systems based on specialized
cooperative hardware agents, where each agent is
responsible for implementing a given algorithm.

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

This paper shows the results for the implementation
of Kadane’s algorithm in software and in hardware,
focusing on the hardware implementations which yield
much better results. The design technique is detailed,
and the necessary adaptations are explained. Finally, the
architecture is loaded into a Xilinx FPGA device, for
simulation and testing purposes.

2 The 1D Implementation
The software implementation for the 1D case is
straightforward and does not deserve to be detailed here.
The program was written in C++ and tested on a few PC
systems. The obtained results are presented in Table 1.

Table 1. Results of the software (C++) implementation

Number of Tests Input Stream Length Run time (sec)
10 10000 0.16
10 20000 0.3
10 30000 1.012

100 10000 1.722
100 20000 3.385
100 30000 5.208

1000 10000 17.805
1000 20000 37.013
1000 30000 45.956
1000 60000 93.789

 These results are due to the temporal organization of
the computing task in the microprocessor-based
architecture. They are also limited by the numerous
memory accesses required by this algorithm.

As it can be seen in Table 1, the run time for a
sequence of 60,000 numbers is of approximately 90 ms.

The much better results achieved by the hardware
implementation are due to the spatial organization of the
computing task in an FPGA device, which has been used
as physical support for the implementation.

When moving it to hardware, the algorithm must
first be adapted. We consider the case of the analyzed
stream received serially, synchronously, on our system’s
data input. The outputs generated by the design are the
two pointers to the beginning and the end of the maximal
sequence, x1 and x2, and the maximal sum obtained, s.

As Naji & Wells have shown in [4], hardware multi-
agent systems allow the concepts of multi agent
technology to be extended to support reconfigurable
systems, in which the functionality of both the associated
hardware and software can be altered dynamically or
statically with time. The utilization of such a paradigm
has the potential to greatly increase the flexibility,
efficiency, expandability, and maintainability of such
systems and to provide an attractive alternative to the
current set of disjoint approaches that are now applied to
this problem domain.

This paper presents an example of how an agents-
based architecture can be created and applied to the
reconfigurable hardware domain. We'll consider the
system at a certain moment in time to be an agent. This
agent's beliefs are the following: temporary maximal
sum s, partial sum t, current data from vector a[j]
(DATAIN(a)), and temporary indices i and j.

Its goals are: the left index of the maximal sum sub-
array x1, the right index of the maximal sum sub-array x2,
and the temporary (updated) sums s and t.

The agent's plan is the actual algorithm (Fig. 2):

Inputs = (s, t, a[j], i, j)
ag_mem[0] ← Input(0)
ag_mem[1] ← Input(1)
ag_mem[2] ← Input(2)
ag_mem[3] ← Input(3)
ag_mem[4] ← Input(4)
ag_mem[1] ← ag_mem[1]+ag_mem[2]
if (ag_mem[1] > ag_mem[0]) then
 (ag_mem[5], ag_mem[6]) ← (ag_mem[3], ag_mem[4])
 ag_mem[0] ← ag_mem[1]
end
if (ag_mem[1] < 0) then
 ag_mem[1] ← 0
 ag_mem[3] ← ag_mem[1]+1
end
Outputs = (ag_mem[0], ag_mem[1], ag_mem[5],
ag_mem[6]) // (s, t, x1, x2)

Fig. 2. The agents-based algorithm implementation

When passing from software to hardware, there are a
few additional elements to take into consideration.

As indicated in Section 1, the numbers from the
input stream are signed integers. It is thus necessary to
design the whole architecture in two’s complement
arithmetic.

A common sense estimation (which also covers a
wide range of practical situations) is to consider the
input numbers as bytes. Therefore, we need an 8-bit
representation of these numbers, and one extra bit for the
sign. This is why the DATAIN port is sized as a 9-bit
input.

In the 1D case, our purpose was to design a system
that works properly for 65,536 numbers in the input
stream. Since each number is expressed on 8 bits, a
simple estimation shows that, for the worst case
situation, we need an Accumulator on 25 bits to compute
the partial sums (t, in the algorithm presented in Fig. 1).
Also, the temporary maximal sum, s, must also be sized
as a 24-bit data register, because s will never be
negative, as one can easily deduce from the algorithm, so
the sign bit is no longer necessary.

Of course, an Adder resource is necessary. It does
not appear explicitly in Fig. 1, because Kadane’s
algorithm was targeted for a software implementation.
This Adder must also be sized on 24 bits.

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

As can be seen in Fig. 1, the j variable iterates from 1
to n (n being the size of the input stream). In the
hardware implementation, this corresponds to a Counter.
Since our goal was to design a system that deals with
streams of at most 65,536 numbers, this Counter must be
sized on 16 bits.

The algorithm described in Fig. 1 also contains three
more variables: x1, the pointer to the beginning of the
maximal subsequence found in the input stream; x2, the
pointer to the end of the maximal subsequence found in
the input stream, and i, an intermediate variable that
points to the candidate maximal subsequence. These
variables are stored into data registers, which must be
sized on 16 bits.

When moving the algorithm from software to
hardware, some additional resources are necessary,
which do not appear explicitly in the pseudo code: the
Adder and the Counter are examples of such “hidden”
resources. Another hidden resource is the Increment (“+
2”) Block, which is necessary for implementing the
(apparently) simple operation i ← j + 1 in the last line
(line 11) of the algorithm.

The goal of the hardware implementation is to obtain
a speed increase. For this purpose, our intention was to
create a pipelined design, where a new number from the
input stream is processed in each clock cycle. The whole
design must of course be synchronous.

It is generally a good idea to buffer the input data,
so, as can be seen in Fig. 3, a new partial sum (t ← t
+a[j]) will be obtained one clock cycle later than the
arrival of a new input number.

This organization also has another advantage. At the
end of the algorithm (lines 10-12 on Fig. 1), we have to
compare t to 0. Because of this structure (see Fig. 3), we
know in advance if the Accumulator (that stores t) will
be loaded with a negative number. In software this
operation would take place exactly as described by the
algorithm: first, load t with the new value (t ← t +a[j]),
then test if it is negative. In hardware, since t is a data
register loaded with the result produced by the Adder, if
the first bit is ‘1’ (meaning that the result of the addition
is negative), on the next clock cycle we can directly and
synchronously reset the Accumulator.

Because of this structure, the algorithm must be
adapted as follows. At the end of the current iteration,
the i variable must be updated to the value j + 1. In our
case, we must perform the operation: i ← j + 2, because t
“will be negative” only later, after one clock cycle. But
after that clock cycle, j will be incremented, so i must be
updated to the value j + 2.

The Comparator is a combinational resource needed
to determine if t > s (line 7 in Fig. 1). It must be sized on
24 bits, because s is always positive and is compared to t
only when t is positive too, so for t the sign bit is no
longer necessary.

9-bit Input Buffer
 (stores a)

25-bit Accumulator
(stores t)

25-bit Adder

9

25

25

25

RESET

9

DATAIN

Comparator

24-bit Data Register
(stores s)

24

24 16-bit Counter
(stores j)

16-bit Data Register
 (stores i)

PL

+2 Block

16-bit Data Register
 (stores x1)

16-bit Data Register
 (stores x2)

16

16

1616

PL PL

“t < 0” (bit 25)

“t > s”

16 16

s x1 x2

24

24

Sign extension

Fig. 3. The hardware architecture in the 1D case

Technically speaking, the sign extension is not a

resource, but it is implemented by the interconnection
network. We must perform a sign extension on the input
numbers, because they come as two’s complement 9-bit
words, while the Adder is sized on 25 bits.

To preserve the readability of the schematic, the
Clock and Preset signals from Fig. 3 have not been
represented, for all the sequential components (the 9-bit
Input Buffer, the 25-bit Accumulator, the 24-bit Data
Register, the 16-bit Data Registers, and the Counter).

The initialization of the designed system is done as
follows. All the sequential components are initialized
with 0, except for the 16-bit Counter that stores j, which
will be initialized with 216-2, i.e. “1111111111111110”.
The reason is given by the particular features of this
architecture, as explained above.

3 Results of the 1D Implementation
The hardware design was specified in parameterizable
VHDL code and the physical support of the
implementation was a Xilinx Virtex II 1000 FPGA,
speed grade -6 device.

After running Xilinx Synthesis software, the reports
indicated a maximal working frequency of 133 MHz
(clock period: 7.5 ns). The simulation was done in
ModelSIM and the proper functioning of the design was
confirmed.

It is obvious that the performance depends on the
length of the input stream. A simple
computation/calculation indicates that for an input
stream of 65,536 numbers, the total execution time is
0.49 ms, which indicates at least two orders of
magnitude improvement over the software
implementation (see Table 2).

An examination of the results yielded by the
software implementation shows that the run time does
not increase linearly with the length of the input stream,

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

but in case of the hardware implementation, this
dependency is linear.

As reported by Xilinx synthesis tools, the FPGA
device is used only at 20% of its total capacity, which
allows the implementation of the hardware version for
much larger input streams.

As a result, the more we increase the length of the
input stream, the better the hardware implementation
performs when compared with the software one.

It is easy to adapt the hardware architecture to larger
sizes of the input stream by simply resizing the resources
on a larger number of bits.

4 The 2D Implementation
The 2D case consists of finding the sub-array of
maximal sum inside an M x N array. For example, for
the array in Fig. 4, the solution is highlighted in gray.

2 -4 5 -5 -9 3 -4
-5 -6 -9 2 -5 4 1
-3 7 -7 5 6 -6 0
-3 5 -8 8 -2 2 -7
-4 1 -1 0 -1 -4 1

Fig. 4. Solution example for the 2D problem

The software solution to this problem is classical and
straightforward. The results are shown in Table 2.

Table 2. Results of the software implementation

Input Array Size (M = N) Run time in C++ (sec)
4 0.00062

16 0.00282
64 0.01560

128 0.05160
170 0.16000
512 1.70300
648 3.39100

1024 13.1870
2048 99.2180

The 2D Kadane algorithm is based on the 1D
Kadane algorithm. The 1D algorithm is run on the
elements of each row of the array (row1, row2… rowM),
considered as a 1D stream, then, on the sum of each pair
of rows (row1 + row2, row1 + row3,… rowM-1 + rowM).
The solution is given by the maximal sum produced by
the 1D Kadane algorithm on these cases. If x1 and x2 are
the pointers to the beginning and the end of the maximal
sub-stream, and Ri and Rj are the two added rows for
which the sum is maximal, then the solution is delimited
by the rectangle given by the upper-left (Ri, x1) and the
lower-right corners (Rj, x2).

As one can see in Table 2, the execution time
increases exponentially, O((M × N) 3) with the size of the
input array. The hardware implementation starts showing
its usefulness for large arrays, where the gain of speed
becomes significant.

For the hardware implementation, a series of
adaptations of the algorithm had to be done, in order to
wisely exploit the logic resources of the Virtex FPGA
devices. The input array is stored in a memory.
Depending on the space available in the FPGA device,
this memory can be implemented inside or outside the
chip. Data are read from this memory, word by word,
and the hardware architecture is adapted for a pipeline
processing style.

In order to extract rows from the memory the way
mentioned above, a special Address Generator module
had to be designed. It is presented din Fig. 5a.

To minimize the space occupied inside the FPGA
chip, the Multiplier from Fig. 5a is a MULT18x18
Virtex2 primitive. Also, to implement the memory,
Virtex BlockRAMs were used. Thus, the speed of the
design increases because specialized components are
used, and also the bigger capacity of the Virtex FPGA
allows us to implement larger designs.

The Address Generator has the task of generating the
appropriate addresses for the Memory to ensure the
proper functioning of the algorithm. It must first extract
Rows 0 to M-1, then Rows 1 to M-1, then Rows 2 to M-
1… etc., until Rows M-2 to M-1. Combined with the
architecture of the RowBuffer and helped by the
Command Unit (Fig. 5b and Fig. 5c), it will help feeding
into the Kadane1D module each Row individually, then
the sum of each pair of Rows from the input array. This
functionality is ensured by the use of the Multiplier for
Fig. 5a, and also the two counters.

COUNTER1
(0 to M-1)

MULTIPLIER

N

COUNTER2
(0 to M × N-1)

TC1

TC

PL
ADDRESSES

CE

CLK

CLK

a)

A

Run

N-2

B

HOLD RowBuffer,
Memory, AddrGen

M×N-1 C D

HOLD Memory, AddrGen
RESET Kadane1D

LOAD MAX

HOLD Memory, AddrGen
RESET RowBuffer, Kadane1D

LOAD MAX

0 1

0 1

c)

RowBuffer (FIFO)

+

DOUT (from the Memory)

N locations × 9 bits 9 + log2(M × N)

9 + log2(M × N)

9 + log2(M × N)

b)
Fig. 5. a) The Address Generator; b) Structure of the
RowBuffer; c) State-diagram of the Command Unit

The RowBuffer is a special FIFO module that allows

to extract rows from the memory and to add them. Thus,
a new word (array element) is extracted in each clock
cycle, in a pipeline fashion. The size of this component

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

is given by the number of columns in the array
multiplied by the width of each word (in this case, a
nine-bit representation).

An important part of the design is the Kadane1D
module, which operates on individual rows or on the
result produced by summing pairs of rows, in the order
specified above. See Fig. 5b for details.

Here, an adaptation of this module is necessary,
modifying the version presented at the beginning of this
paper, because by adding the Rows, the size of the words
increases. So, the input of the Kadane1D module will be
expressed on 9 + log2(M × N) bits. This change can also
be observed in Fig. 5b.

The output of the Kadane1D module is fed into the
MAX module, which will determine the maximal sum,
together with some other vital information: the current
Row or pair of Rows, the x1 and x2 pointers.

The Command Unit controls the functioning of the
whole system. It is a relatively simple Finite State
Machine (FSM) whose operating mode can be described
as in Fig. 5c.

First, a Row (let’s call it Rowi) is extracted from the
Memory into the RowBuffer. Due to its circular register-
like organization, each element of the current Row is
added to its corresponding element in the next Row (let’s
call it Rowj). Simultaneously, the elements of Rowi are
fed into the Kadane1D module, so two tasks are
performed in parallel:

1) The maximal sub-stream of Rowi is
determined in the Kadane1D module;

2) The sum between each element of Rowi and
the corresponding element from Rowj is fed
into the RowBuffer, ready for the next phase.

The role of the Command Unit is to stop (HOLD) the
functioning of the main modules and to synchronously
reset those of them who need to be re-initialized.

After a new Row (or the sum of two Rows) is loaded
into the RowBuffer, the Command Unit will HOLD the
Memory, the Address Generator and the RowBuffer
until the Kadane1D module finishes its job of
determining the maximal subsequence inside the stream
Rowi. As can be seen from Section 2, one more clock
cycle is necessary. Then, the result produced by the
Kadane1D module is transmitted to the MAX module.

If Rowj is RowM-1, this means the Command Unit
also has to reset the RowBuffer (until this moment, we
obtained Rowi, Rowi + Rowi+1, … Rowi + RowM-1, but
now we have to obtain Rowi+1, Rowi+1 + Rowi+2, …
Rowi+1 + RowM-1, etc.). After that, the processing
continues until the last Row is processed.

In this schematic, the control signals are simplified
to avoid overcharging and improve the readability of the
design. All components have been described in
parameterizable VHDL code. Thus, the design becomes
portable on any hardware. The only generics to be

specified are M – the number of rows, and N – the
number of columns of the input array.

The agents will be represented by entities and
associated processes, so the inputs Inp (or beliefs) and
outputs Outp (or the goals) of the hardware agents will
be the ports of these entities. The AgentName() pseudo-
call simulates "invoking" the agent, or modifying the
ports to which its associated process is sensitive.

RowBuffer (FIFO)

+

MEMORY

KADANE1D

MAX

ADDRESS
GENERATOR

ADDR

DOUT

X

MAXSUM

X1

X2

COMMAND

UNIT

CE,
RESET

CE,
RESET

CE,
RESET

CE

Rowi

Rowj

9 + log2(M × N)

N - 2 reached

M × N -1 reached

Fig. 6. Kadane2D implementation: general schematic

In the 1D case, we only had one agent, whose goal

was to perform the computations in a single loop of the
Kadane 1D algorithm. In order to use the Kadane1D
agent as a part of the Kadane2D-related computations,
we need to add a while loop:

Kadane1D
Inputs = (n, a[1], a[2], ..., a[n])
ag_mem[0] ← 0; ag_mem[1] ← 0 //x1 and, respectively, x2
ag_mem[2] ← -30000 //s
ag_mem[3] ← 0 //t
ag_mem[4] ← 1; ag_mem[5] ← 1 //i and, respectively, j
ag_mem[6] ← Inputs(0) // n
while (ag_mem[5]<ag_mem[6]) do
 Kadane1DLoop.Inputs(ag_mem[2],ag_mem[3],

Input[ag_mem[5]], ag_mem[4], ag_mem[5])
 Kadane1DLoop()// “invoke” the Kadane1DLoop agent
 ag_mem[2] ← Kadane1DLoop.Outputs(0)
 ag_mem[3] ← Kadane1DLoop.Outputs(1)
 ag_mem[0] ← Kadane1DLoop.Outputs(2)
 ag_mem[1] ← Kadane1DLoop.Outputs(3)
 ag_mem[5] ← ag_mem[5] + 1 // increment
end while
Outputs = (ag_mem[2], ag_mem[0], ag_mem[1]) //s, x1, x2

Fig. 7. The updated Kadane1D agent

The Kadane2D agent is modeled starting from the

hardware components it consists of, considering each of
them an agent which will be invoked by Kadane2D:

MAX: Inputs = (s, x1, x2), Outputs = (maxs, x1, x2,
r1, r2)

Kadane1D: Inputs = (a[]), Outputs = (s, x1, x2)
MEM: Inputs = (ADR), Outputs = (DOUT)
AddressGen: Inputs = (N, M), Outputs = (ADR)
Besides several variables, the Kadane2D agent also

needs to store an array of data at each step. As can be
seen in Fig. 8, this array is an actual row from the input
matrix, or a sum of such rows; and taking into account
the fact that the input matrix has N lines and M columns,
the arrays' dimension will be M.

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

The Kadane2D agent's auxiliary storage space (aux
in the pseudo code) will then be a matrix like this:

 0 1 2 3 4 5 6 7 8 … M-1
0 N M ADR S X1 X2 R1 R2 I
1
2

Row0 will store variables; row 1 will store the
DOUT array, whereas row 2 will store the ROWBUF
array. Thus, the new Kadane2D agent’s plan will be:

Kadane2D
Inputs=(N, M, a[][])
aux[0,0] ← Inputs(0)
aux[0,1] ← Inputs(1)
AddressGen.Inputs(aux[0,0], aux[0,1])
AddressGen()// “Invoke” the address generator module
// And get the address:
aux[0,2] ← AddressGen.Outputs(0) // ADR
MEM.Inputs(aux[0,2]) // “Invoke” the memory module
MEM()
aux[0,8] ← 0 // Get DOUT!
while (aux[0,8] < aux[0,1]) do // i<m
 aux[1,aux[0,8]] ← Mem.Outputs(aux[0,8])
 aux[0,8] ← aux[0,8]+1
end while
aux[0,8] ← 0 // Get ROWBUF!
while (aux[0,8] < aux[0,1]) do // i<m
 // ROWBUF ← DOUT + ROWBUF
 aux[2,aux[0,8]] ← aux[1,aux[0,8]]+aux[2,aux[0,8]]
aux[0,8] ← aux[0,8]+1
end while
// Kadane1D’s inputs are the values in the ROWBUF array:
aux[0,8] ← 0
while (aux[0,8] < aux[0,1]) do // i<m
 KADANE1D.Inputs(aux[0,8]) ← aux[2,aux[0,8])
 aux[0,8] ← aux[0,8]+1
end while
KADANE1D()// “Invoke” Kadane1D
aux[0,3] ← KADANE1D.Outputs(0) //s
aux[0,4] ← KADANE1D.Outputs(1) //x1
aux[0,5] ← KADANE1D.Outputs(2) //x2
MAX.Inputs(aux[0,3], aux[0,4], aux[0,5])
MAX()// “Invoke” MAX
aux[0,3] ← MAX.Outputs(0) //maxs
aux[0,4] ← MAX.Outputs(1) // x1
aux[0,5] ← MAX.Outputs(2) // x2
aux[0,6] ← MAX.Outputs(3) // r1
aux[0,7] ← MAX.Outputs(4) // r2
Outputs = (aux[0,3], aux[0,4], aux[0,5], aux[0,6], aux[0,7])

Fig. 8. The Kadane2D agent

5 Results of the 2D Implementation and
Conclusions*
The main goal of this paper was to create a hardware
implementation of a well-known software algorithm, i.e.
Kadane’s algorithm, in both its 1D and 2D versions, for
determining the maximal subsequence of a stream or an
array of integers.

* This work was supported by the Romanian Ministry of
Education and Research, under grant AT 178 / 2006.

The paper presents a detailed step-by-step
methodology for these adaptations. All choices made for
the nature and the size of the used resources are
discussed and justified.

Like for the 1D problem, the design was specified in
parameterizable VHDL code and implemented in three
Xilinx FPGA devices. In fact, the 2D problem
implementation is an extension of the 1D design, based
on the same working principle. The working frequency
is now lower than in the 1D implementation: around 90
MHz, in average, varying with the FPGA family (91.7
MHz for Virtex2, 95.8 MHz for Virtex2PRO and 85.5
for a Spartan3 device). The global performance also
depends on the input array’s size.

The simulation was done in ModelSIM and the
proper functioning of the design was confirmed.

In conclusion, the performance is at least two orders
of magnitude better in hardware than in software. The
space available in Virtex devices allows
implementations for large input arrays, the main
limitation being introduced by the amount of available
on-chip memory. A larger off-chip memory can be used,
but lowering the working frequency.

Future work will involve creating a hardware
algorithm for determining not only the maximal (or
minimal) subsequence, but the first k maximal (or
minimal) subsequences in an input stream that represents
a 1D or a 2D array.

References:
[1] Bentley, J., “Programming pearls: algorithm design

techniques.” Commun. ACM 27,9 (1984), p. 865.
[2] Bentley, J., “Programming pearls: perspective on

performance.” Commun. ACM 27,11 (1984), p. 1087.
[3] Sung Eun Bae and Tadao Takaoka, “Algorithms for

the Problem of K Maximum Sums and a VLSI
Algorithm for the K Maximum Subarrays Problem.”
Proceedings of the 7th International Symposium on
Parallel Architectures, Algorithms and Networks
(ISPAN’04), 1087-4089/04, 2004.

[4] Hamid Reza Naji and B. Earl Wells, “On
Incorporating Multi Agents in Combined
Hardware/Software based Reconfigurable Systems --
A General Architectural Framework”. Proceedings of
the 7th International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN’02),
2002.

[5] M. Wooldridge, "Agent-based Software
Engineering," In IEE Proceedings on Software
Engineering, 144(1), pages 26--37, February 1997.

[6] X. Meng, V. Chaudhary, Bio-sequence analysis with
cradle's 3SoC™ software scalable system on chip,
Proceedings of the 2004 ACM symposium on Applied
computing.

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp75-80)

