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Abstract: - We have studied the case of chaotic synchronization of two identical nonlinear autonomous electric 
circuits, which are mutually (bidirectionally) coupled via a linear resistor RC. The two circuits can be either 
υC1-coupled or υC2-coupled. Both, experimental and simulation results, have shown that chaotic 
synchronization is possible only in the case of υC2-coupling. 
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1   Introduction 
Since the discovery by Pecora and Carroll [1], that 
chaotic systems can be synchronized, the topic of 
synchronization of coupled chaotic circuits and 
systems has been studied intensely [2] and some 
interesting applications, as in broadband 
communications systems, have come out of this 
research [3-5]. Generally, there are two methods of 
chaos synchronization available in the literature. In 
the first method, due to Pecora and Carroll [1], a 
stable subsystem of a chaotic system could be 
synchronized with a separate chaotic system, under 
certain suitable conditions. The second method to 
achieve chaos synchronization between two 
identical nonlinear systems is due to the effect of 
resistive coupling without requiring to construct any 
stable subsystem [6-8]. According to Carroll and 
Pecora [9], periodically forced synchronized chaotic 
circuits are much more noise-resistant than 
autonomous synchronized chaotic circuits. 

In this paper we have studied the case of two 
identical fourth-order autonomous nonlinear electric 
circuits (Fig.1) with two active elements, one linear 
negative conductance and one nonlinear resistor 
with a symmetrical piecewise linear v - i 
characteristic (Fig.2). Using the capacitances C1 and 
C2 as the control parameters, we have observed a 
reverse period-doubling sequence, as well as a crisis 
phenomenon, when the spiral attractor suddenly 
widens to a double-scroll attractor [10].  
 
 
2   The Nonlinear Circuit 
The circuit, we have studied, is shown in Fig.1 and 
has two active elements, a nonlinear resistor RN and 
a linear negative conductance G, which were 

implemented using the circuits shown in Figs.3 and 
4 respectively. The real v-i characteristic of the 
conductance G is shown in Fig.5. 

 
Fig.1. The fourth-order autonomous nonlinear 
electric circuit. 

 
Fig.2. The piecewise-linear and symmetrical v-i 
characteristic of the nonlinear resistor RN. 

 
Fig.3. The nonlinear resistor implementation 
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Fig.4. The negative conductance implementation 
 

 
 
Fig.5. The real v-i characteristic of the negative 
conductance G. 

 
 

The state equations of the circuit are: 
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where 
C1 C C1 a b C1 p1 C1 p1

b c C1 p2 C1 p2

i=g(υ )=G υ +0.5(G -G )(|υ +B |-|υ -B |)

               +0.5(G -G )(|υ +B |-|υ -B |)
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     The values of the circuit parameters are: 
L1=10.2mH, L2=21.5mH, R1=2.02KΩ, R2=108Ω, 
Gn=-0.5mS, Gp=-0.5mS, LR=7.5V, Ga=-0.833mS, 
Gb=-0.514mS, Gc=2.9mS, Bp1=1.46V and 
Bp2=10.1V. 

The Bifurcation diagram of the dynamics of the 
circuit is shown in Fig.6. We can observe forward 
and reverse period-doubling cascades, i.e. 
antimonotonocity [10]. 

 
Fig.6. The bifurcation diagram (iL2)p vs. C1 for 
C2=5.30nF. 

 
 

3   Mutual Resistive Coupling 
If two identical circuits are resistively coupled, 
complex dynamics can be observed, as well as 
chaotic synchronization, as the coupling parameter 
RC is varied. The two circuits can be either υC1-
coupled or υC2-coupled, as we can see in Figs.7 and 
8 respectively. 
 
 
3.1   υC1-coupling  
The system of the two identical 4th order nonlinear 
circuits υC1-coupled via the linear resistor RC is 
shown in Fig.7. The state equations of the system 
are: 
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where 
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and j=1, 2. 
 

 
 
Fig.7. The υC1-coupled system of the two identical 
4th order nonlinear circuits. 
 
3.2   υC2-coupling  
The system of the two identical 4th order nonlinear 
circuits υC2-coupled via the linear resistor RC is 
shown in Fig.8. The state equations of the system 
are: 
 

( ){C11
L11 C11

1

dυ 1 i g υ
dt C

= − }  (15) 

C21 C21 C22
C21 L11 L21

2 C

dυ υ υ1 = Gυ i i
dt C R

⎧ −
− − − −⎨
⎩

⎫
⎬
⎭

   (16) 

{L11
C11 C21 1 L11

1

di 1 = }υ +υ R i
dt L

− −  (17) 

{L21
C21 2 L21

2

di 1 = }υ R i
dt L

−   (18) 

( ){C12
L12 C12

1

dυ 1 = i g υ
dt C

− }  (19) 

C22 C21 C22
C22 L12 L22

2 C

dυ υ υ1 = Gυ i i
dt C R

⎧ −
− − −⎨

⎩

⎫
⎬
⎭

    (20) 

{L12
C12 C22 1 L12

1

di 1 = }υ +υ R i
dt L

− −              (21) 

{L22
C22 2 L22

2

di 1 = }υ R i
dt L

−  (22) 

 
where g(υC1j) is given by Eq. (14) 
 

 

 
 

Fig.8. The υC2-coupled system of the two identical 
4th order nonlinear circuits. 
 
 
4   Dynamics of the Coupled System 
We have studied the evolution of the two identical 
resistively coupled autonomous and nonlinear 4th 
order electric circuits from nonsynchronized to 
synchronized oscillations, when they exhibit chaotic 
behavior. By ″synchronization of chaos″ we mean, 
that the chaotic oscillations of individual circuits are 
identical to each other.  
     Using the bifurcation diagram of Fig.6, we have 
chosen the values of C1 where chaotic behavior is 
observed and have studied the possibility of chaotic 
synchronization by plotting the diagrams of υC22-υC21 
vs. R1/ RC, the coupling factor. 

Chaotic synchronization was never observed in 
the case of υC1-coupling.  

 
 

4.1 Chaotic attractors 
The chaotic attractors of the two circuits, when they 
are uncoupled, are shown in the following figures. 

In Figs. 9 and 10 we can see the theoretical 
phase portraits for C2=5.3nF and C1=8.0nF and 
C1=8.4nF respectively, while in Figs. 11-14 the 
experimental chaotic attractors are shown, for the 
two identical circuits. 
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Fig.9. Chaotic attractor for C2=5.30nF and 
C1=8.00nF. 

 
Fig.10. Chaotic attractor for C2=5.30nF and 
C1=8.40nF. 
 

 
Fig.11. Chaotic attractor for C2=5.30nF and 
C1=8.00nF for the first circuit (iL2 vs. υC2). 
 

 
Fig.12. Chaotic attractor for C2=5.30nF and 
C1=8.40nF for the first circuit (iL2 vs. υC2). 

 
Fig.13. Chaotic attractor for C2=5.30nF and 
C1=8.00nF for the second circuit (iL2 vs. υC2). 
 

 
Fig.14. Chaotic attractor for C2=5.30nF and 
C1=8.40nF for the second circuit (iL2 vs. υC2). 
 
 
4.2 The case of υC2-coupling 
We have studied the possibility of chaotic 
synchronization when the initial conditions of the 
coupled circuits belong to the same basin of 
attraction. 

The diagrams of υC22-υC21 vs. R1/RC are shown in 
Figs. 15 and 16 correspond to the case, when the 
initial conditions of the coupled circuits belong in 
the same basin of attraction. 

In Figs. 17-19 we can see the experimental 
results from the coupled system for C2=5.30nF, 
C1=8.00nF and various values of the coupling 
resistor RC. 

In Figs. 20-22 we can see the experimental 
results for C2=5.30nF and C1=8.40nF, as the 
coupling resistance RC is varied. 

We observe how the system passes from 
nonsynchronized states to synchronized ones, 
depending on the coupling resistance RC. 
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Fig.15. The diagram of υC22-υC21 vs. R1/RC, for 
C2=5.30nF and C1=8.00nF. 
 

 
Fig.16. The diagram of υC22-υC21 vs. R1/RC, for 
C2=5.30nF and C1=8.40nF. 

 

 
Fig.17. υC2-coupling for C2=5.30nF, C1=8.00nF and 
RC= ∞ (υC22 vs. υC21). 
 

 
Fig.18. υC2-coupling for C2=5.30nF, C1=8.00nF and 
RC=49KΩ (υC22 vs. υC21). 

 
Fig.19. υC2-coupling for C2=5.30nF, C1=8.00nF and 
RC=1.3KΩ (υC22 vs. υC21). Chaotic synchronization. 
 

 
Fig.20. υC2-coupling for C2=5.30nF, C1=8.40nF and 
RC= ∞KΩ (υC22 vs. υC21). 
 
 

 
Fig.21. υC2-coupling for C2=5.30nF, C1=8.40nF and 
RC=40KΩ (υC22 vs. υC21). 
 

 
Fig.22. υC2-coupling for C2=5.30nF, C1=8.40nF and 
RC=1.5KΩ (υC22 vs. υC21). Chaotic synchronization. 
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5   Conclusion 
In this paper we have shown the process of chaotic 
synchronization using computer simulation and 
experiment. 

We have studied the dynamics of the individual 
nonlinear autonomous electric circuit and 
determined the parameter’s region, where the circuit 
exhibits chaotic behavior. Furthermore, we observed 
the chaotic synchronization of two identical circuits, 
which are mutually coupled via a linear resistor RC, 
when the initials conditions of the coupled circuits 
belong to the same basin of attraction. Both, 
experimental and simulation results have shown that 
chaotic synchronization is possible in the case of 
υC2-coupling and not possible in the case of υC1-
coupling. In the first case, the coupling is 
established at the node of the linear part of the 
autonomous circuit, while in the second case the 
coupling is established at the node of the nonlinear 
part. The transferred energy from the coupling 
branch is not enough to synchronize the coupled 
system in the second case, as it has been verified by 
simulation and experiment. This is also enhanced in 
the case when conductance Gn becomes nonlinear. 
The increased complexity of the system does not 
allow synchronization, even in the case of υC2-
coupling configuration [11].  
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