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Abstract: - In this paper trade-offs in digit-serial multiplier blocks are studied. Three different algorithms for
realization of multiplier blocks are compared in terms of complexity and adder depth. Among the three algo-
rithms is a new algorithm that reduces the number of shifts while the number of adders is on average the same.
Hence, the total complexity is reduced for multiplier blocks implemented using digit-serial arithmetic, where
shift operations have a hardware cost. An example implementation is used to compare the power consumption
for five approaches: the three algorithms, using separate multipliers based on CSD representation, and an algo-
rithm based on subexpression sharing. The design of low power multiplier blocks is shown to be a more compli-
cated problem than to reduce the complexity. A main factor that needs to be considered is adder depth.
Furthermore, digit-serial shifts will reduce glitch propagation.
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1 Introduction

Multiplication with a constant-coefficient is common-
ly used in digital signal processing (DSP) circuits,
such as digital filters. This type of multiplication can
be efficiently implemented using shifts, adders, and
subtractors. As the complexity is similar for adders
and subtractors we will refer to both as adders, and the
number of adders and subtractors as adder cost.

In some applications, e.g., the transposed direct
form FIR filter as shown in Fig. 1, one input is multi-
plied with multiple coefficients [1],[2]. This is often
referred to as the multiple-constant multiplication
(MCM) problem, which can be realized using a multi-
plier block as illustrated by the dashed box in Fig. 1.

A simple method to realize multiplier blocks is to
implement each multiplier separately, e.g. using the
canonic signed-digit (CSD) representation [1],[3].
However, it is possible to utilize redundant partial re-
sults to reduce the number of adders required to realize
multiple-constant multiplication [4]-[9].

Most existing work on MCM has focused on mini-
mizing the number of adders, as the shift operations
can be hardwired in a bit-parallel architecture. Howev-
er, in bit- and digit-serial arithmetic the shift opera-
tions require flip-flops, and hence, they have to be
considered as well. In [10] an algorithm that minimiz-
es the number of shifts while keeping the adder cost
low was proposed.

Most work on implementation of digit-serial FIR
filters has focused on implementation in FPGAs and
without using multiplier blocks [11]-[13]. However,
in [14] the digit-size trade-off in implementation of

Figure 1. Transposed direct form Nth-order FIR filter.

digit-serial transposed direct form FIR filters using
multiplier blocks was studied. One of the best MCM
algorithms in terms of number of adders, referred to as
RAG-n [5], and the algorithm proposed in [10], re-
ferred to as RSAG-n, was used in the comparison.

The conclusion in [14] was that an algorithm that
minimize the number of adders, while keeping the
number of shifts low, would be preferable for most
cases.

In this work we propose an algorithm that firstly
aim to minimize the number of adders and secondly
the number of shifts. We investigate how large savings
that can be achieved compared with RAG-n and
RSAG-n, respectively. The algorithms are compared
in terms of complexity and adder depth. Furthermore,
we provide an example implementation and compare
the power consumption of the three algorithms with
using CSD coefficients and using the algorithm in [7].

2 Digit-Serial Arithmetic

In digit-serial arithmetic, the words are divided into
digits of d bits that are processed one digit at a time
[15],[16]. The integer number d is usually denoted the
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Figure 2. Digit-serial (a) adder, (b) subtractor, and (c) shift.

digit-size. This provides a trade-off between area,
speed, and power consumption [16],[17]. For the spe-
cial case where d equals the data wordlength we have
bit-parallel processing and when d equals one we have
bit-serial processing.

Digit-serial operators can be derived either by un-
folding bit-serial operators [18] or by folding bit-par-
allel operators [19]. In Fig. 2, a digit-serial adder,
subtractor, and shift operation is shown, respectively.

Considering the processing elements it is clear that
the area of an FIR filter using digit-serial arithmetic
will increase for larger digit-size. How speed and
power consumption is affected is not obvious.

3 Proposed Algorithm

In [5] the n-dimensional Reduced Adder Graph

(RAG-n) algorithm was introduced. This algorithm is

known to be one of the best MCM algorithms in terms

of number of adders. Based on this algorithm an n-di-

mensional Reduced Shift and Add Graph (RSAG-n)

algorithm has been developed [10], that not only tries
to minimize the adder cost, but also the number of
shifts. However, this algorithm has an increased adder
cost, which will be dominating for larger digit-sizes

[14].

Here, an n-dimensional Reduced Add and Shift
Graph (RASG-n) algorithm is proposed. The new al-
gorithm is a hybrid of the RAG-n [5] and RSAG-n
[10] algorithms. RASG-n work with odd coefficients,
like RAG-n and only realizes one coefficient in each
iteration, like RSAG-n. When it is possible to realize
more than one coefficient RASG-n selects the one that
require the lowest number of additional shifts. This
makes it possible for RASG-#n to minimize both the
number of adders and shifts in an effective way.

These algorithms are graph based where edges cor-
responds to shifts and nodes to additions. Node values
are referred to as fundamentals. Realized coefficients
are removed from the coefficient set and added to an
interconnection table that specifies how the value is
obtained. The termination condition of the algorithm
is that the coefficient set is empty. The steps in the
RSAG-n algorithm are as follows:

1. Divide even coefficients by two until odd, and save
the number of times each coefficient is divided.
These shifts at the outputs can be considered to be
free when other coefficients are synthesised.
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Figure 3. The coefficient c is obtained from (a) two

existing fundamentals or (b) three existing
fundamentals.

2. Remove zeros, ones, i.e., coefficients which corre-
sponds to a power-of-two, and repeated coeffi-
cients from the coefficient set.

3. Compute the single-coefficient adder cost for each
coefficient, which is done by using a look-up-
table.

4. Compute a sum matrix based on power-of-two
multiples of the fundamental values included in
the interconnection table. At start this matrix is

1-12-2 4..
1 2 0 3-1 5..
-1 0-2 1-3 3.
2 31406

and is then extended when new fundamentals are
added. If any required coefficients are found in the
matrix, compute the required number of shifts.
Find the coefficients which require the lowest
number of additional shifts, and select the smallest
of those. Add this coefficient to the interconnec-
tion table and remove it from the coefficient set.

5. Repeat step 4 until no required coefficient is found
in the sum matrix.

6. For each remaining coefficient, check if it can be
obtained by the strategies illustrated in Fig. 3. For
both cases two new adders are required. If any
coefficients are found, select the smallest coeffi-
cient of those which require the lowest number of
additional shifts. Add this coefficient and the extra
fundamental to the interconnection table. Remove
the coefficient from the coefficient set.

7. Repeat step 5 and 6 until no required coefficient is
found.

8. Choose the smallest coefficient with lowest single-
coefficient adder cost. Different sets of fundamen-
tals that can be used to realize the coefficient are
obtained from a look-up-table. For each set,
remove fundamentals that are already included in
the interconnection table and compute the required
number of shifts. Find the sets which require the
lowest number of additional shifts, and of those,
select the set with smallest sum. Add this set and
the coefficient to the interconnection table.
Remove the coefficient from the coefficient set.

9. Repeat step 5, 6, 7, and 8 until the coefficient set is
empty.



The basic ideas for the RAG-n [5], RSAG-n [10],
and RASG-n algorithms are similar, but the resulting
difference is significant. The main difference between
the first two algorithms is that RAG-n chooses to real-
ize coefficients by using extra fundamentals of mini-
mum value, while RSAG-n chooses fundamentals that
require a minimum number of shifts. The result of
these two different strategies is that RAG-n is more
likely to reuse fundamentals, due to the selection of
smaller fundamental values and by that reduce the
adder cost, while RSAG-n is more likely to reduce the
number of shifts. As the proposed algorithm, RASG-n,
is a hybrid of these strategies realizations with both
few adders and few shifts are obtained.

It is worth noting that if all coefficients are realized
before step 6 of the algorithm, the corresponding im-
plementation has optimal adder cost [5].

4 Complexity

In this section the complexity, including adders and
shifts, for the three algorithms are compared. Average
results are shown for 100 random coefficient sets.

4.1 Coefficient Wordlength Effects

The different algorithms were used to design multipli-
er blocks with coefficient sets of varying wordlength.
The setsize is fixed to 25 coefficients.

In Fig.4 (a) the average number of additional
adders for each coefficient using the RASG-n algo-
rithm is shown. Coefficients that can be realized with
no adders includes zeros, power-of-twos, and repeated
coefficients. Most coefficients can be realized with
only one additional adder. The number of adders is op-
timal for all coefficient sets of wordlengths up to 8 bits
as shown in Fig. 4 (b). Corresponding statistics for the
other two algorithms would look similar.

The average number of adders for the three algorithms
are shown in Fig. 5 (a). It is clear that the number of
adders is higher for RSAG-n. The average number of
shifts is lower for RASG-n than for RAG-n, while
RSAG-n has the lowest number of shifts as shown in
Fig. 5 (b).

In Fig. 6 (a) a histogram for the required number of
adders using 10 bits coefficients is shown. RASG-n
and RAG-n only have a different number of adders in
one out of the 100 cases. As can be seen in Fig. 6 (b)
RASG-n have on average more than 11 shifts less than
RAG-n. RSAG-n has the highest number of adders
and the lowest number of shifts.

4.2 Coefficient Setsize Effects
With the coefficient wordlength fixed to 10 bits, the
different algorithms were used to design multiplier
blocks of varying setsize.

The average number of additional adders is shown
in Fig. 7 (a) for the RASG-n algorithm. For a small
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Figure 4. Statistics from realization of multiplier
blocks using the RASG-n algorithm. (a) Average
number of additional adders for each coefficient.
(b) The probability of proven optimal adder cost.
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Figure 5. Average number of (a) adders and
(b) shifts for sets of 25 coefficients.
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Figure 6. Frequency of the number of (a) adders
and (b) shifts for the three different algorithms
using 10 bits coefficients.
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Figure 7. (a) Average number of additional adders
for each coefficient and (b) probability of proven
optimal adder cost for the RASG-# algorithm.

setsize many of the coefficients will require two addi-
tional adders, which result in a low probability of op-
timality as shown in Fig. 7 (b). For a large setsize most
coefficients can be realized with only one additional
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Figure 9. Frequency of the number of (a) adders
and (b) shifts for the three different algorithms
using sets of 40 coefficients.

adder, and the probability that the total number of
adders is optimal is high.

In Fig. 8 (a) the average number of adders for the
three algorithms are shown. Again, the number of
adders for RAG-n and RASG-n are similar. All algo-
rithms are likely to have an optimal number of adders
for a large setsize, and the difference is naturally small
for a small setsize. Hence, the difference between
RSAG-n and the other two algorithms has a maxi-
mum, which occur for setsize 20.

The differences in number of shifts is increasing
for larger setsize as shown in Fig. 8 (b). RSAG-n takes
full advantage of the fact that coefficients are more
likely to be obtained without additional shifts when
more values are available, and of course has the lowest
number of shifts. The average number of shifts is low-
er for RASG-n than for RAG-n.

In Fig. 9 (a) a histogram for the required number of
adders using sets of 40 coefficients is shown. It can be
seen that RASG-n and RAG-n have the same number
of adders in all 100 cases. However, RASG-n have on
average almost 18 shifts less than RAG-n as illustrated
in Fig. 9 (b).

5 Adder Depth

In [20] and [21] methods to predict the number of tran-
sitions in multiplier blocks was introduced. These
methods are based on the fact that high adder depth re-
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Figure 11. Adder depth for 10 bits coefficients.
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sult in more transitions, and consequently higher pow-
er consumption.

The characteristics for the three algorithms consid-
ering adder depth are shown in Figs. 10 and 11. The
same coefficient sets as in Section 4 was used. It is
clear that RAG-n has the lowest adder depth. Further-
more, the adder depth does not increase for larger co-
efficient sets for RAG-n.

6 Implementation Example

The power consumption is studied by the use of an ex-
ample filter implemented by logic synthesis of VHDL
code using a 0.35 um CMOS standard cell library.

A 27th-order lowpass linear-phase FIR filter with
passband edge 0.157 rad and stopband edge 0.4w rad
is used for the evaluation. The maximum passband
ripple is 0.01, while the stopband attenuation is 80 dB.
The filter has symmetric coefficients {4, 18, 45, 73,
72, 6, =132, -286, -334, —139, 363, 1092, 1824,
22841}1/8192. The filter is implemented using the trans-
posed direct form structure shown in Fig. 1. Only the
arithmetic parts are considered here.

The required number of adders and shifts for the
three different algorithms is shown in Table 1. The
RAG-n and RASG-n algorithms require 12 adders,
which is optimal for this coefficient set. The RSAG-n
algorithm requires the lowest number of shifts. Also
included is an implementation using separate CSD
multipliers and one based on the algorithm in [7]. The
smallest area is obtained for RSAG-n for small digit-
sizes, while for larger digit-sizes RASG-n is the best.

The maximum clock frequency and corresponding
maximum sample frequency is shown in Fig. 12. Here
it is seen that the CSD implementations have the high-
est sample frequency. This is because for CSD multi-
pliers there are at least two shifts between each adder,
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Table 1. Arithmetic complexity for the example filter.

Shifts
Algorithm |Adders
Internal External Total
RAG-n [5] 12 20 10 30
RASG-n 12 14 9 23
RSAG-n [10] 14 18 1 19
Pasko [7] 15 27 12 39
CSD [3] 28 78 20 98

and hence, the critical path is short. The slowest imple-
mentations are the ones based on RASG-rn. This can be
explained by that many adders are cascaded without
any shifts in between for the RASG-r case.

The power consumption was obtained using Na-
noSim™ with 100 random input sample. As can be
seen in Fig. 13 (a) the energy per sample for the shifts
in the multiplier block is smallest for RSAG-n and
largest for CSD. The energy per sample for the adders
in the multiplier block is shown in Fig. 13 (b). RAG-n
consumes less energy for any digit-size. By adding the
energy for the adders and the shifts, the energy for the
multiplier block is obtained, as shown in Fig. 13 (c).
RSAG-n consumes the least energy for digit-sizes one
and two and RAG-n for larger digit-sizes. Note that
the energy consumption corresponding to shifts and
adders dominates for small and large values of the dig-
it-size, respectively. In Fig. 13 (d) the normalized en-
ergy per sample is shown. From this it can be seen that
the optimal digit-size for RASG-n and RSAG-#n is
three, while for the other three algorithms it is six. The
energy per sample consumed for the structural adders
is shown in Fig. 13 (e), while the total energy for all
arithmetic operations is shown in Fig. 13 (f). The pow-
er for the structural adders is only effected by the
glitches from the multiplier block. It can be seen that
the glitches are significantly higher for RASG-n and
RSAG-n. For RSAG-n the reason is that the number of
external shifts, which provides glitch reduction be-
tween the multiplier block and the structural adders, is
small. For RASG-n the increased number of glitches
due to high adder depth in the multiplier block is prop-
agated to the structural adders.

A surprising result is that the energy consumed by
the adders is larger for RASG-n than RSAG-n, al-
though the number of adders is smaller. The reason for
this will be discussed in the following.
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In Fig. 14 the adder depth for each coefficient in
the example filter using the three different algorithms
is illustrated. It is clear that RASG-#n has larger adder
depth than RSAG-n, which explains the higher power
consumption. RAG-n has the lowest adder depth.

The fact that adder depth is highly correlated with
power consumption is established when the energy
consumed in each adder is investigated. This is shown
in Figs. 15 (a) and (b) for digit-size one and five, re-
spectively. Note that the RSAG-n implementation in-
cludes two extra adders, hence, the total energy is
larger than illustrated in Fig. 15.

7 Conclusions

In this paper trade-offs in digit-serial multiplier blocks
was studied. Some conclusions regarding design
guidelines for low power digit-serial multiplier blocks
can be deduced. The actual complexity in terms of
adder cost and number of shifts is not the main factor
determining the power consumption. Instead the adder
depth, as for parallel arithmetic, is a main contributor.
Hence, an algorithm with low adder depth should be
used. Furthermore, the shifts prevent glitch propaga-
tion through subsequent adders. For even coefficients
the shifts can be placed either before or after the final
additions. Hence, a heuristic for placing the shifts
would be useful.
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