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Abstract: This paper proposes statistical schedule length (makespan) analysis for evaluating a schedule and a datap-
ath during asynchronous datapath synthesis. In order to handle the randomness of delay variation mathematically,
the execution time of each operation is modeled by a stochastic variable, and an algorithm to calculate the dis-
tribution of total computation time of a scheduled asynchronous datapath is presented. The proposed statistical
analysis handles three correlations; (C1) correlation between delays on different modules and nets, (C2) structural
correlation (re-convergent paths in a scheduling graph), and (C3) correlation induced by resource sharing.
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1 Introduction

To design a cost effective high performance asyn-
chronous system for a specified application, optimiza-
tion of a datapath in register transfer level is an im-
portant design step. Scheduling and resource bind-
ing (assignment) are major subtasks in datapath syn-
thesis not only for synchronous systems but also for
asynchronous systems. Several synthesis systems for
asynchronous systems have been proposed [1, 2, 3].

In the evaluation phase (of a schedule and a data-
path) of these systems, they introduce a specious con-
stant delay for the execution time of each operation,
such as typical delay, maximum delay or minimum
delay, and compute typical (maximum or minimum)
makespan by using typical (maximum or minimum)
execution delay. If there is no random delay variation
between modules and delays of all modules vary uni-
formly, the above constant delay model seems to be
an acceptable way to handle delay variations. How-
ever, due to local supply noise, local variations of tem-
perature, crosstalk between wires, local manufacturing
imperfections, etc., functional delay and transmission
delay can vary easily, and the calculation of minimum,
typical, and maximum total computation time based
on the constant delay model is unacceptable for those
random delay variations. For a synchronous system,
the effect of delay variations is masked by the clock
period and delay margins. On the other hand, for an
asynchronous system, it affects the total computation
time of an application directly.

* A preliminary version of this paper has appeared in [7].

In this paper, we propose a statistical schedule
length (makespan) analysis method for evaluating a
schedule and a datapath during asynchronous datap-
ath synthesis. We model the execution time of each
operation as a stochastic variable having the normal
distribution, and handle three correlations; (C1) cor-
relation between delays on different modules and nets,
(C2) structural correlation (re-convergent fanouts),
and (C3) correlation induced by resource sharing (de-
pends on resource binding).

We present an algorithm to calculate the distribu-
tion of total computation time of an application al-
gorithm considering correlations (C1), (C2) and (C3)
under given a schedule and resource assignment. The
proposed algorithm can be incorporated into a synthe-
sis system to synthesize asynchronous datapaths hav-
ing optimized statistical performance.

2 Scheduling Graph in Datap-
ath Synthesis

A “scheduling graph” Gg = (Vs, Ag) is a graph which
represents precedence constraints between operations
(see Fig. 1(a)). The precedence relations in Gg come
from two different sources, one is mandatory prece-
dence relation specified by a target application algo-
rithm, and the other is optional precedence relation
brought by scheduling. The arcs representing the lat-
ter are called “disjunctive arcs” in this paper. Vg is
the set of the start and the end of operations, and we
denote the start node and the end node of each opera-
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Figure 1: (a) Scheduling graph, and (b) scheduling
graph having a disjunctive arc.
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Figure 2: Correlations induced on a datapath.

tion o; as of and of, respectively. Ag is the set of arcs
which reflect precedence constraints, and each arc has
variable weight. The weight of an arc (of,0f) corre-
sponds to the execution time of operation o;, which is
denoted by £(0;). For the other arcs, the weights of
them are 0.

The disjunctive arcs are introduced in Gg to avoid
a collision between operations or between data. That
is, if two operations (data) are assigned to the same
functional unit (register), then one lifetime precedes
the other. This constraint can be resolved by adding
disjunctive arcs to Gs. Fig 1(b) shows an example
of the scheduling graph, which is obtained by adding
a disjunctive arc (0%,03) to the scheduling graph in
Fig 1(a). By the disjunctive arc (0f,03), we intend
that the execution of oy starts after the execution of
01 is completed. Note that different decisions yield dif-
ferent sets of disjunctive arcs (i.e., different schedules),
and to find an optimum set is assignment constrained
scheduling problem [3]. The optimality of the schedule
depends on the evaluation of the schedule.
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3 Statistical Delay Model

Figure 2 shows a simple demonstrative example. The
right hand side shows a scheduling graph, and the left
hand side shows a datapath architecture. Basically,
the execution time €(0;) of each operation o; is given
by the functional unit F}; to which o; is assigned, and is
considered to vary randomly. When we compute the
distribution of the path length of path ofofo5050505
(which corresponds to the walk Fj F>F» in the datap-
ath architecture), we will take account of the correla-
tion in type (C1) between £(01) and £(02), and between
g(o1) and €(o03), which reflects the correlation of the
performances of F; and F5. We will also take account
of the correlation in type (C3) between £(02) and £(03),
which reflects the correlation of the performances for
different inputs and at different time instances on the
same functional unit F5. On the other hand, when we
look at two paths ofof 05050505 and ofofojof, we will
take account of the correlation in type (C2) between
path lengths of those paths, since both path lengths
include £(01) in common.

In this paper, the execution time &(0;), which is
dependent on the performance of the functional unit
to which o; is assigned, is modeled by a stochas-
tic variable having the normal distribution as done
in [5, 6], and the schedule length of a schedule is
also considered to be distributed randomly. In what
follows, the weight of each arc e in Ag is denoted
by w(e), and the normal distribution of w(e) is de-
noted by N(u(e),o0?(e)), where u(e)(= E[w(e)]) and
o?(e)(= V]w(e)]) are the mean and the variance of the
distribution, respectively. For two arcs e; = (of, 0f)
and e; = (0},05) in Ag, we consider the correlation
coefficient p(e;,e;)(= Rlw(e;), w(e;)]) between w(e;)
and w(e;). p(e;, e;) reflects the correlation of perfor-
mances of two functional units to which o; and o; are
assigned. Operations o; and o; may share the same
functional unit, and in such case, we can tune p(e;, €;)
to become larger than that for non-sharing case if nec-
essary. Let [(v) be the longest path length from the
source node 0;p;; to a node v in a scheduling graph
Gs.

Here we consider the problem to find the mean
Ell(0oquit)] and the variance V[l(04uit)] of I(0guit) Of
the sink node ogyi: in G3.

4 Statistical Schedule

Analysis

Length

4.1 Overview

In this paper, we propose an algorithm which com-
putes the mean and the variance of the longest path
length from 0;,;; to each node v in topological order of



Algorithm: Statistical Schedule Length Analysis

Step 1: Depending on the binding, u(e) and o%(e) are
assigned to each arc e in Gg. In addition, p(e;,e;) is
assigned to every pair of arcs e; and e;.

Step 2: All nodes in Gs are sorted in topological order.

Step 3: If [(0quit) is computed, then the mean E [I(0quit)]
and the variance V [l(0quit)] are outputted. Otherwise, a
node v is selected from Gs in topological order.

Step 4: If v = 0init, we set E[l(v)] = V[i(v)] = 0
and the correlation coefficients R[l(v),l(v)] = 1 and
RJl(v),w(e)] = 0 for each arc e € Ag, respectively, and
go to Step 3. Otherwise, for each incoming arc of v
e; = (ui,v) (1 = 1,2,---, f(v)), we calculate the mean
E[l{(v)] and the variance V[I}(v)] of I¢(v) using the prob-
abilistic equivalent of I} (v) = I(u;) +w(e;) (“ADD” oper-
ation).

Step 5: For each node z € Vs whose [(r) has been al-
ready computed, we calculate the correlation coefficient
R [l{(v),1(z)] between I{(v) and I(z).

Similarly, for each arc y € As we calculate the correlation
coefficient R [If(v), w(y)] between I (v) and w(y).

Step 6: We recursively calculate the mean E[l;(v)] and
the variance V[l;(v)] of I;(v) using the probabilistic equiv-
alent of I;(v) = max [li—1(v),l{(v)] for i > 2 and 11 (v) =
It (v) (“MAX” operation).

In addition, the correlation coefficients R[l;(v),{(z)] and
R[li(v),w(y)] between li(v) = max [li 1(v),l;(v)] and
I(x) of each node x whose I(z) has been already computed
and w(y) of each arc y, respectively, are calculated.

By computing E[l;(v)], V[li(v)], R[l:(v),I(x)] and
R[l;(v), w(y)] recursively, we have the mean E[l(v)] =
Ellf()(v)] and the variance V[I(v)] = V[l ) (v)] of I(v),
the correlation coefficient R[I(v),I(x)] = R[l;)(v), ()]
between [(v) and I(z) of each node x whose I(z) has
been already computed, and the correlation coefficient
R[l(v), w(y)] = R[lv)(v), w(y)] between I(v) and w(y) of
each arc y. Go to Step 3. |

Figure 3: Statistical schedule length analysis algoritm.

the precedence relation given by Gg. The algorithm
also takes account of three types of correlation (C1),
(C2) and (C3).

Figure 3 shows our proposed algorithm, in which
I(v) denotes the longest path length from 0ni: to v
passing through the 4th incoming arc of v, and [;(v)
denotes the longest path length from 0;,4; to v passing
through one of 1st to ith incoming arcs of v, that is
l#(v)(v) = I(v), where f(v) is the in-degree of v.

The time complexity of the proposed algorithm
is evaluated as follows. For each node v selected
in topological order, the mean E[l(v)], the variance
V[l(v)], and the correlation coefficients R[l(v),l(z)]
and RJ[l(v),w(y)] for each node and each arc in Gg =
(Vs,As) are calculated, and thus the computation
time required in Step 5 and 6 is O(f(v) - |As|), where
f() is the number of incoming arcs of a node v.
Since ), oy, f(v) = [As|, the total time complexity
is O(|As|?).
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4.2 Maximum of Two Stochastic Vari-
ables

Given two stochastic variables ¢ and n having the
normal distributions N (u1,07) and N (u2,03), respec-
tively, and the correlation coefficient R[¢,n] = p be-
tween £ and 7, the mean E[v] and the variance V[v] of
the stochastic variable v = max[¢, 7] are obtained as
follows [4]. Unless 061 —o3 =p—1=0,

Elv] = m®(a)+p22(-a) + ap(a), (1)
VIY] = (4l +07)®(a) + (43 + 03)®(—)
+(m + po)ap(a) — B[], (2)
where
z? w
ola)=—=en (-5 ), 0 = [ v, @)
a=\/0% + 0% — 20109p, a = /h;,uz- (4)

Given a stochastic variable 7 having the normal dis-
tribution, and correlation coefficients R[¢,7] = p; and
R[n, 7] = p2, the correlation coefficient R[7, v] between
7 and v = max[¢, n] is obtained as follows [4].

o1, ®(a) + 02p2®(—0q)
Viv]

It is well known that the following equations hold
for stochastic variables.

R[r,v] =

(5)

Eli+j] = E[]+ E[], (6)
Vii+jl = VI+V[]+2CGE ), (7)

Cli,jl = VVIEVIIEL ], ®)
Cli+j,k] = C[i,kl+Cl[j,kK, 9)

where C[z,y] denote the covariance between z and y.

4.3 ADD operation

In Step 4, for each arc e; = (u;,v) (i =1,2,---, f(v)),
we compute the longest path length If(v) from 0
to v passing through e;. Using l!(v) = I(u;) + w(e;)
and equations (6), (7) and (8), we calculate the mean
Ell(v)] and the variance V[I¢(v)] of If(v) as follows.

E[lj(v)] = E[l(u:)] + ples),
V[E@] = Vi) +o*(e)
V{l(ui))o?(e:) Rl (ui), w(e
In Step 5, for a node z € Vs whose [(z) has been
already computed, we calculate the correlation coeffi-
cient R[l%(v),l(x)] between If(v) and I(z) from equa-
tions (8) and (9) as follows.
R [li(v), ()]

VV[Hui)]R[I(2), L(ui)] + o(ei) Bli(z), wlei)]
V()]




Note that we set R[l(z),l(u;)] =1, if 2 = u;.

Similarly, for each arc y € Ag we calculate the
correlation coefficient R [I%(v),w(y)] between I (v) and
w(y) as follows.

R [13(v), w(y)]
V[H(ud)|R[l(ui), w(y)] + o(es)plei y)
V{1 (v)]

where p(e;,y) is the correlation coefficient between
w(e;) and w(y) of arcs e; and y in Ag.

4.4 MAX operation for
Stochastic Variables
In Step 6, instead of [;(v) = max[lt(v),l5(v),- -, lE(v)],
we recursively calculate [;(v) = max [l;—1(v), (v)] for
i > 2 and l;(v) = l}(v) for i = 1. From (1) through
(9), the mean E[l;(v)] and the variance V[l;(v)] of
l;(v) are calculated as follows. In addition, the corre-
lation coefficients R[l;(v),l(z)] and R[l;(v),w(y)] be-
tween [;(v) = max [l;—1(v),lf(v)] and I(z) of each node
x whose I(z) has been already computed and w(y) of
each arc y, respectively, are calculated as follows.

Multiple

Elli(v)]
= E[li_1(v)]®(a) + E[l;(v)]®(—
Vli(v)]
= (E2[l,-_1(v) + V]li—1(v ]) ®(a)
+ (E*[li(v)] + V[l (v)]) ®(—)
+ (Bllis ()] + Fll0)]) agla) - B2[l(0),

a) + ap(a),

—
—

_ Bllia(v)] - E[l;(v)]

a

Y

Vlioi(v)] +V[lt( )]
a= | “2VVT @] (V7
+a<e,~)Ru,-_1<v),w<ei)1)

IR 1 (0), 1)) |

R[l;(v), ()]
VVIlic1(0)]R[li-1 (v),1(2)]®(a)
+v/V[IE(0)]R[l}(v),(2)]®(-a)
V{[Li(v)] ’

R[li(v), w(y)]
VV[lici ()] R[li—1 (v), w(y)]®(a)
+V VL )R (v), w(y)|2(—a)
V{li(v)] '
To obtain a, we compute the correlation coefficient

R[li—1(v),l%(v)] between l;_1(v) and If(v) as follows.
R [li1(0), )]
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V VI (wi)] Rlli—1(v), 1 (us)]
+o(ei) Rlli-1(v), w(e:)] _

V[ii(v)]

Thus correlation coefficients R ([l(v),l(z)] and
R[li(v),w(y)] in Step 5 and R[l;(v),l(z)] and
R[l;(v),w(y)] in Step 6 are also computed.

The computation of max[l;_1(v),l%(v)] would be
an approximated one for ¢ > 3, since each /;_1(v) no
longer has the normal distribution. The accuracy of
our computation will be checked through experiments,
which will be reported in section 5.

5 Experimental Results

5.1 Verifying the Accuracy

The proposed statistical analysis algorithm is imple-
mented using C program language on a 1GHz Pentium
III personal computer, and is applied to six datapaths
and schedules (Datapath A, Datapath B, Datapath C,
Datapath D, Datapath E and Datapath F), which are
synthesized in [3]. We use the module library in [6],
and model the delays of an adder and a multiplier with
N(7.5,0.69) and N(16,2.78), respectively. If two op-
erations o; and o; are assigned to the same functional
unit, we set the correlation coefficient p(e;, e;) =1 be-
tween w(e;) and w(e;) for two arcs e; = (of,0f) and
ej = (0},05) in a scheduling graph Gs. Otherwise
the correlation coefficient is set to 0.0, 0.3, 0.6, or 0.9,
which is shown in the column of “Corr”.

Table 1 shows the results of the Monte Carlo sim-
ulation and our statistical analysis. In the columns
indicated by E and v/V, the means and the standard
deviations of the distributions of total computation
time are shown, respectively. The relative errors to the
results of the Monte Carlo simulation are also shown
in the same table. As we can see from this table, our
method provides the mean and the standard deviation
with the relative errors 0.10 % and -0.64 %, respec-
tively, on average.

To compare the shape of probability density func-
tion, we compute a large number of samples of to-
tal computation time for Datapath FE using the Monte
Carlo simulation, and the results are shown in Fig. 4
as the histogram of total computation time. The solid
curve in the same figure represents the normal distri-
bution with the mean and standard deviation obtained
from our statistical analysis. From the figure, we can
see that our result is very close to the distribution ob-
tained by the Monte Carlo simulation.

5.2 Synthesis Examples

Next, we consider the problem to find a datapath and a
schedule with minimum mean total computation time



Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp318-323)

Table 1: Total computation time for datapaths and schedules in [3].

Monte Carlo Ours Error [%)]
Corr | E [ns] VV | time [s] | E [ns] VV | time [s] E VV
Datapath A | 0 64.28 | 4.01 1.41 64.61 | 4.03 | <0.01 | +0.51 | +0.50
0.3 63.82 4.60 1.44 63.96 4.56 <0.01 | +0.22 | -0.87
0.6 63.38 5.57 1.43 63.48 5.56 <0.01 | 4+0.16 | -0.18
0.9 62.70 6.40 1.41 62.74 6.40 < 0.01 | +0.06 0.00
Datapath B 0 71.86 4.22 1.21 72.09 4.08 <0.01 | +0.32 | -3.32
0.3 71.00 6.38 1.23 71.20 6.32 <0.01 | 4+0.28 | -0.94
0.6 70.51 5.80 1.18 70.64 5.77 <0.01 | +0.18 | -0.52
0.9 70.17 6.78 1.18 70.27 6.76 <0.01 | 40.14 | -0.29
Datapath C 0 77.93 4.81 1.35 78.00 4.88 <0.01 | 40.09 | +1.46
0.3 77.69 5.88 1.37 77.69 5.88 < 0.01 0.00 0.00
0.6 77.47 7.02 1.37 77.46 7.02 < 0.01 -0.01 0.00
0.9 77.18 8.00 1.35 77.17 8.01 < 0.01 -0.01 +0.13
Datapath D 0 87.54 6.27 1.30 87.59 6.14 <0.01 | 40.06 | -2.07
03 | 87.16 | 7.35 1.27 87.17 | 7.26 | <0.01 | +0.01 | -1.22
0.6 86.71 7.95 1.31 86.73 7.96 <0.01 | 40.02 | +0.12
0.9 86.55 8.97 1.32 86.55 8.95 < 0.01 0.00 -0.22

Datapath E 0 132.54 8.30 3.01 132.50 8.36 0.02 -0.03 | 40.72
0.3 132.27 | 10.46 2.98 132.25 | 10.51 0.02 -0.02 | 40.48
0.6 131.96 | 11.74 3.08 131.96 | 11.76 0.02 0.00 +0.17
0.9 131.68 | 13.59 3.03 131.67 | 13.59 0.02 -0.01 0.00

Datapath F 0 136.54 7.95 3.03 136.79 7.41 0.02 +0.18 -6.79
0.3 135.33 | 10.09 3.00 135.57 9.92 0.02 +0.18 -1.68
0.6 134.60 | 12.01 2.99 134.78 | 11.92 0.02 +0.13 -0.75
0.9 132.71 13.61 3.01 132.75 | 13.61 0.02 +0.03 0.00
Average +0.10 | -0.64

0.07 T

— four-order all-pole lattice filter (ALF), four-order Jau-
mann wave digital filter (JWF), and fifth-order elliptic
wave filter (EWF) as target algorithms.

For comparison, datapaths and schedules are also
synthesized by asynchronous datapath synthesis sys-
tems in [1, 2, 3], in which the conventional objective
function is used. That is, the systems in [1, 2, 3] find
datapaths and schedules with minimum typical total
computation time Tyyp; With Thue, < Tpy. All synthe-
sis results are evaluated by the Monte Carlo simula-
tion, and we obtain means of the total computation
time.

Table 2 shows the results obtained with several
different specifications of the numbers of functional
units (Add and Mul) and registers (Reg) and the up-
per bound of maximum total computation time Tjy
for each benchmark. The last column “time” shows
runtime in second. Note that our results cannot be
compared with the results of [1, 2] for some instance,
since [1] and [2] do not produce any feasible solutions.

Ours
Monte Carlo -------

Figure 4: The distribution of total computation time
for Datapath E, where the means of the Monte Carlo
simulation and our statistical analysis are 132.54 and
132.50, respectively.

(i.e., minimum E[l(0guit)]) with maximum total com-
putation time Ty,q. < Ths under given set of avail-
able modules and a constant T (the upper bound of
maximum total computation time T,,,.). Note that
Tinaz is computed using maximum execution time of
each operation. To find such datapath and schedule,
we incorporate the proposed statistical analysis into
binding exploration based synthesis system [3], and
set E[l(oquit)] for the objective function to be mini-
mized. We use three datapath synthesis benchmarks;

As we can see from the column of E, our system
using the proposed statistical analysis always provides
better solutions. For the case of small target algo-
rithms or small number of functional units, the perfor-
mance difference between datapaths designed by our
system and conventional ones seems not so large. How-
ever, our system tends to generate better solutions
than conventional ones in the mean total computa-
tion time, when the size of a target algorithm becomes
larger, and the number of functional units becomes
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Table 2: Experimental results of datapath synthesis.

[1] [2] [3] Ours
Bench.|Add |Mul|Reg| T |Corr || Tyypi[ns]| E [ns][time [s]|T;ypi[ns]| E [ns][time [s]|Tiypi[ns]| E [ns][time [s]| £ [ns][time [s]
0 63.90 63.90 65.25 63.63 1
4 2 6 |82 0.3 62 63.60 <1 62 63.60 <1 62 64.72 <1 63.39 1
0.6 63.21 63.21 64.07 63.03 1
ALF 0.9 62.62 62.62 63.05 62.55 1
0 72.41 72.41 72.88 71.68 1
2 2|16 (92|03 69.5 71.93 <1 69.5 71.93 <1 69.5 72.32 <1 71.26 1
0.6 71.32 71.32 71.62 70.98 1
0.9 70.40 70.40 70.55 70.21 1
0 79.69 79.69 79.52 78.22 1
2 2 | 7 |102( 0.3 7 79.15 <1 7 79.15 <1 7 79.01 <1 77.41 1
0.6 78.50 78.50 78.39 77.32 1
JWF 0.9 77.59 77.59 77.55 77.13 1
0 88.57 88.57 88.69 87.44 1
2 1 7 (114] 0.3 86.5 88.07 <1 86.5 88.07 <1 86.5 88.10 <1 86.76 1
0.6 87.47 87.47 87.43 86.69 1
0.9 86.73 86.73 86.62 86.54 1
0 134.68 134.68 137.24 132.32] 31
3 3 | 12 |174] 0.3 131.5 |134.01] 22 131.5 |134.01 11 131.5 |136.22| 19 |132.18] 45
0.6 133.20 133.20 134.97 131.89| 29
EWF 0.9 133.20 133.20 133.07 131.81| 30
0 - - 137.20 136.08| 42
2 2 | 12 |184| 0.3 - - 1941 - - 386 131.5 |[136.10| 26 [135.19| 44
0.6 - - 134.75 134.31] 61
0.9 - - 132.83 132.33| 68
larger. References:

On the other hand, our system runs slower
than [3], since the time complexity of the proposed sta-
tistical analysis algorithm is ©(|4s|*) while the com-
plexity of constant delay analysis is O(]As|). In the
future, we will develop an asynchronous datapath syn-
thesis system, which can generate a solution quickly
even if the statistical delay analysis is incorporated.

6 Conclusion

In this paper, we have proposed a statistical schedule
length analysis method for evaluating a schedule and
a datapath during asynchronous datapath synthesis.
Statistical analysis based synthesis system generates
schedules and datapaths having higher statistical per-
formances, which are not synthesized by using conven-
tional systems.

The normal distribution is not always adequate for
the delay analysis of asynchronous datapaths. Devel-
opment of a proper model and algorithms to compute
statistical parameters, which reflect practical random
delay variations, are left for future work.
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