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Abstract: – In this paper, we introduce an efficient design flow for Globally Asynchronous Locally

Synchronous systems, which can be used by designers without prior knowledge of asynchronous circuits. The

design flow starts with a high-level description model of the system in Simulink and ends with a hardware

implementation in an FPGA or a standard-cell ASIC. We have developed a tool in MATLAB, so that the

designer easily can include asynchronous logic in a conventional synchronous design flow. The proposed

design flow is currently used for implementing the physical layer for a wireless LAN.

Key-Words: – GALS, Design flow, Asynchronous, FPGA, Simulink
1 Introduction

The scaling of the process geometries of CMOS

allows the designer to include more and more func-

tionality on the chip. However, this causes problems

since signals on adjacent wires interact due to cross

coupling and the wire delay increases for global

wires [1]. The interconnect effects makes it prob-

lematic to transfer information over long distances

in one clock period. By dividing a system into

smaller modules with up to 50 000 gates in each

module, the local interconnect problem is

alleviated [2]. By partitioning the system into

module with their own private clock domain and use

a robust communication scheme between modules,

it is possible to reduce the design effort of the global

clock (e.g., mesochronous clocking scheme). It is

also possible to remove the global clock and use an

asynchronous communication scheme between

locally clocked domains [3], called Globally Asyn-

chronous Locally Synchronous (GALS) scheme.

We use an asynchronous wrapper to separate the

synchronous modules into timing independent clock

domains. This results in a synchronous module that

can be modified without affecting the rest of the

system. This allows design groups to work concur-

rently and independently on different synchronous

modules. Furthermore, it supports reuse of synchro-

nous modules and IP blocks.

Asynchronous circuits are in general more chal-

lenging to design than synchronous circuits. A

synchronous circuit is timed by the system clock and

it does not matter if glitches occur in the synchro-

nous circuit as long as the glitch is not sampled by

the receiving register. A glitch in an asynchronous

circuit may be fatal, depending on the used scheme.

Asynchronous design flows are also lacking the

multitude of design tools that exists in a synchro-

nous design flow. An overview of asynchronous

design methodologies is given by S. Hauck in [4].

We advocate that the most important benefit of

the GALS based approach is the increased design

efficiency, which is obtained by the inherent divide-

and-conquer method. In this work, we have devel-

oped a design flow for GALS systems that can be

used by a designer who have no prior knowledge of

how to design asynchronous circuits.

Our tool written in MATLAB targets Altera's

Stratix II FPGA, but it can be extended to work with

ASICs and other FPGAs. The used asynchronous

handshake port in this work, have previously been

tested in an Xilinx Virtex II FPGA [5]. In this paper,

we have focused on FPGA, because of the short

turn-around-time. However, the principle of the

design flow used for FPGA or ASIC is the same.

The paper is organized as follows: Section 2

gives an overview of GALS, Section 3 shortly

describes the used design for the design flow and

Section 4 describes the design flow used for imple-

menting a GALS system.

2 Globally Asynchronous
Locally Synchronous Systems

In this paper, we refer to GALS as a digital system

partitioned into modules with their private clock
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domains with unrelated clock frequencies. Each

clock domain is locally synchronous and may

locally generate its own clock signal using a local

oscillator. An asynchronous communication scheme

is used to communicate between clock domains. To

handle the asynchronous communication between

units, an asynchronous wrapper is added around

each synchronous module. The asynchronous

wrapper can be equipped with functions, such as a

local clock, communication ports, tunable voltage

supply, level-shifters, testing circuits, and FIFOs [6].

In Fig. 1, a generic asynchronous wrapper with a

synchronous module is illustrated.

In a GALS system, advantages are found in that

both asynchronous and synchronous techniques can

be mixed. The synchronous modules are designed

using conventional synchronous design tools. The

communication scheme between different clock

domains uses an asynchronous communication

scheme, which have the advantage that the transmit-

ting and the receiving module does not have to know

exactly when data will be transferred. The hand-

shake scheme acts as a rendezvous for the trans-

mitter and the receiver units.

GALS have been used in several ASIC imple-

mentations. F.K. Gürkaynak et al. [7] implemented a

GALS bus chip and M. Krstic et al. [8] implemented

a baseband processor for wireless LAN. The design

used in our work is similar to the design used in [8],

with the difference that we use a design flow from a

high-level description down to an implementation in

an FPGA, which is further described in Section 4.

F.K. Gürkaynak et al. [7] has developed a tool called

moduleassembler that helps to automate the design

flow for GALS in an ASIC design. However, the

local clock generation is still handled outside this

tool and the designer still have to have knowledge

about asynchronous ports and how different ports

can be combined.

3 IEEE 802.11a

We have used the standard IEEE 802.11a [9] as an

example for the design flow. IEEE 802.11a specifies

the physical layer of a wireless LAN. The standard

is based on Orthogonal Frequency Division Multi-

plexing (OFDM) and supports different data rates

from 6 Mbit/s up to a maximum of 54 Mbit/s (raw

bit rate). The physical layer includes channel

encoding/decoding, modulation/demodulation and

synchronization.

For the development of the design flow for a

GALS system, we have selected IEEE 802.11a for

the principles of data rate changes.

3.1 Implementation aspects
Figure 2 shows the block diagram of an IEEE

802.11a transmitter. For a specific bit rate (i.e., 6

Mbit/s to 54 Mbit/s), the rate of the data flowing

between computation blocks is different. This must

be handled by the state machine in the transmitter so

that a computation block does not run out of data.

The computation blocks in Fig. 2 have been

partitioned into different clock domains, which are

represented by dotted boxes. An asynchronous

wrapper is used to handle the asynchronous commu-

nication between domains. Blocks that communicate

through an asynchronous communication channel

(e.g., the convolution encoder and the interleaver)

can use simplified state machines, because the

communication channel will automatically handle

the data flow between these blocks. With help of the

asynchronous wrapper, the state machine in the

interleaver does not have to consider whether the

convolution encoder can send data. The wrapper for

the interleaver stops the local clock until the convo-

lution encoder sends data.

It is relatively easy to handle the data rate differ-

ences in a synchronous implementation of IEEE

802.11a. However, for a more complicated system,

GALS has an advantage in that neither the sending

synchronous module nor the receiving synchronous

module have to know if the other domain is ready to

receive or send data.

4 Design Flow

The GALS design flow is shown in Fig. 3. We have

omitted the iterative loops that exist between

different phases in the design flow to reduce the

number of edges in the figure.

The IEEE 802.11a PHY is modeled in Simulink

and the implementation is targeting an Altera

Stratix II FPGA [10]. We have chosen Simulink/

MATLAB from MathWorks [11], to model the

system and to generate the asynchronous wrapper.

Fig. 1: Asynchronous wrapper with a synchronous module.
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4.1 System Design
Simulink is a model design and simulation tool for

model-based designs, which is integrated with

MATLAB. It is easy to build a system model using

predefined functions from MATLAB or blocks from

Simulink. A top-down design approach can be used

in Simulink to create several models of the design.

Starting with a high-level description model of the

system that defines the behavior of the system, we

add more implementation aspects to the model as it

gets closer to the HDL phase, and we end with a bit

true model.

As a starting point for our Simulink model, we

used a demonstration model supplied with Simulink,

which have some similarities with the IEEE 802.11a

standard. This model has been developed so that it

supports the physical layer for IEEE 802.11a. Our

last model in Simulink is a bit true model, which

uses bit true MATLAB models of the FFT and IFFT

from Altera. The final Simulink model will be used

as a reference model in the rest of the implementa-

tion phase to generate test data and reference data.

4.1.1 Clock domain partition

In the HDL phase in Fig. 3, computation blocks are

divided into different clock domains. The decision

on how to partitioning the system into clock

domains can be obtained in Simulink. A starting

point to divide a system into clock domains is to

merge blocks with high intercommunication rates in

the same clock domain and separate blocks with low

intercommunication rates into different clock

domains. Blocks, which have a variable data rate, as

mentioned in Section 3.1, can be divided into sepa-

rated clock domains to let the asynchronous wrapper

handle the data flow.

4.2 Asynchronous Wrapper Generation
So far, the GALS design flow is the same as the

synchronous design flow. The difference is the HDL

phase in which the design includes the asynchronous

wrappers to handle the asynchronous communica-

tion between clock domains.

Most synchronous designers have no or little

knowledge of how to design a functional asynchro-

nous wrapper. Therefore, we have developed a tool

in MATLAB that generates the necessary compo-

nents for the asynchronous wrapper so that a

designer can use GALS without designing any asyn-

chronous circuits. The tool in MATLAB generates

the following components:

• Behavioral model for asynchronous wrappers

to be used in the HDL phase.

• Verilog Quartus Mapping file (.vqm) that

describes the logic circuitry used in the

asynchronous wrapper in terms of D flip-flops

and lookup tables.

• Quartus Setting File (.qsf) contains the

constrains to the place and route tool, on how

the logic is relatively placed in the

asynchronous wrapper.

• A second .qsf file for each asynchronous

channel used, that sets up constraints for the

timing analysis in the place and route tool.

The asynchronous wrappers are skipped in the

synthesis phase of the design flow. Hence, there are

no files generated for the synthesis part of the design

flow.

Fig. 2: IEEE 802.11a transmitter, divided into four clock domains.
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4.3 Asynchronous Channel
Between each communicating unit, there is an asyn-

chronous communication channel. The channel typi-

cally consists of an active port and a passive port,

where one is a data input port and the other is a data

output port.

The tool in MATLAB, by default, generates active

output ports, passive input ports and dual-rail

signaling for the asynchronous wrapper. The default

asynchronous communication channel is shown in

Fig. 4. The designer only has to specify the size of

the data bus and the number of inverters in the local

ring oscillator. Hence, the designer does not have to

consider the details in the asynchronous handshake

circuits.

Designers who have knowledge in asynchronous

handshake schemes have the opportunity to select

between single-rail/dual-rail and active/passive

input/output ports respectively. Single-rail and dual-

rail signaling is further described in Section 4.7.

4.4 Asynchronous Wrapper

In Fig. 5, a simple asynchronous wrapper is illus-

trated. The wrapper has one input port and one

output port and internally a local clock. The designer

does not need to understand the internal circuits of a

wrapper, only how it is used by the synchronous

module to send and receive data to and from other

synchronous modules. Our asynchronous communi-

cation ports receive or transmit data each time an

enable signal (Enx) makes a high-to-low or low-to-

high transition [12]. This is the only signal that has

to be handled by the synchronous module to transfer

data between clock domains using the asynchronous

wrapper. The wrapper handles the communication to

other domains in a safe way that do not introduce

problems with metastability, which otherwise is a

problem when communication between clock

domains with different clock frequencies [13]. The

asynchronous wrapper stops the local clock when

data is to be sent or received, and the local clock is

started again when all data has been sent or received.

An example of communication between two

synchronous modules using the communication

channel shown in Fig. 4 is shown in Fig. 6. Both

modules transfer data the first two clock cycles. In

dual-rail signaling, d.t and d.f represents one and

zero data, respectively.

4.5 HDL
The translation to HDL code is currently done

manually, but a Simulink-to-VHDL converter [14]

can be used to translate from a Simulink model to a

HDL model.

There are FPGA vendor specific tools in

Simulink, which can be used to implement the

design in an FPGA using Simulink, such as DSP

Builder from Altera [10] and System Generator

from Xilinx [15]. Both these tools generate HDL

code using special blocksets in Simulink that are

specific to the vendors FPGAs. In our case, we want

to include asynchronous wrappers into the design,

which can be complicated using the design flow of

these tools because of the asynchronous circuits.

However, it may be possible to implement parts of

the synchronous design using these tools.

In the HDL phase, the design is described as a

GALS system. The design has been divided into

clock domains and has asynchronous communica-

tion between clock domains using the generated

asynchronous wrappers. With help of the behavior

description of the asynchronous wrappers and asyn-

Fig. 4: Asynchronous communication channel.
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Fig. 6: Communication between two synchronous modules.
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chronous communication channels, the designer can

focus on the implementation of the synchronous

modules.

4.6 Synthesis

Synthesis is only performed on the synchronous part

of the design and each synchronous module is

synthesized individually. In general, conventional

synchronous synthesis tool does not handle asyn-

chronous circuits correctly. However, it is possible

to use attributes in the HDL code to keep the

synthesis tool from modifying the asynchronous

circuitry, e.g., attributes such as dont_touch or

preserve_signal.

All asynchronous communication ports have a

clocked register to store data coming in or going out

of the communication port. These registers have to

be accounted for in the synthesis when setting up the

timing constraints. These registers guarantee that the

data are stable when transferred through the channel

or read by the synchronous module, respectively.

4.7 Place and Route

The logic description of the asynchronous wrappers

is included together with the placement and timing

information in the place and route tool.

The logic for the asynchronous wrappers have

fixed relative placement and the place and route tool

only has to place the asynchronous wrapper blocks

and route the signals used by the asynchronous

wrapper.

For a synchronous signal, there is a timing

window, in which the signal must arrive at its desti-

nation, this sets constrains on how long a signal can

be routed. In the case of the asynchronous communi-

cation channel and single-rail (shown in Fig. 7), this

timing window is a relative window. The data is

bundled with the handshake signals (shown in

Fig. 7(b)) so that it is only important when both data

and handshake reach its destination. The four-phase

handshake protocol for single-rail is shown in

Fig. 7(b). The asynchronous ports are designed so

that the data starts to propagate through the commu-

nication channel at the same time as the enable

signal (En) propagates from the synchronous

module towards the asynchronous port. This lowers

the probability to have problem with the timing in

the asynchronous communication channel.

An alternative to single-rail is dual-rail (shown in

Fig. 8). Each data here occupies two wires and

complete detection is used in the receiver to detect

when data has arrived. Figure 8(b) shows the

transfer of a single data bit, d.t signals when data is

one and d.f signals when data is zero. Figure 8(c)

shows the four-phase handshake for dual-rail, first a

zero is sent and then a one. Because one of d.t or d.f

always signals data, these two signals can be used to

detect data completion [4].

Dual-rail introduces more overhead compared to

single-rail because of the completion detection. A

larger bus will give a large logic overhead and slow

down the communication because of delay in the

completion detection logic. On the other hand, there

are no timing problems with the bus routing in the

asynchronous communication channel because all

data must arrive before the completion detection

signals that the data has been received. Because the

dual-rail does not have timing problem with the bus

routing, dual-rail has been selected as default

communication scheme in the channel.

4.8 Limits of the Asynchronous Wrapper
The current version of the asynchronous port that is

generated by the tool in MATLAB, cannot prioritize

between two communication channels, e.g., if one of

the channels consumes data faster than the other

channel. The communications between modules are

using static scheduling, so that it is not possible for

(a) Single-rail. (b) Four-phase single-rail 
handshake protocol.

Fig. 7: Communication using single-rail.

(a) Dual-rail. (b) One dual-rail data bit.

(c) Four-phase dual-rail
handshake protocol.

Fig. 8: Communication using dual-rail.
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the synchronous module to detect when data is avail-

able on another communication channel.

By extending the ports, it is possible to get a first

come first served functionality [12], which allows

the synchronous module to prioritize between

communication channels. It also allows use of

dynamic scheduling so the synchronous module can

get status information of the communication chan-

nels.

5 Result

A tool has been developed to be able to use asyn-

chronous circuits in a synchronous design flow. A

GALS system using part of the IEEE 802.11a trans-

mitter, have been implemented using the proposed

design flow. The GALS system consisted of four

clock domains, each with asynchronous wrappers

generated by the tool in MATLAB. The implementa-

tion has successfully been tested in a Stratix II

FPGA. 

6 Conclusion

This paper has introduced a design flow for GALS

systems using standard synchronous design tools. A

designer without prior knowledge in asynchronous

circuits can design a GALS system using our design

flow. This is possible by automatically generate the

required components. Two versions of the asynchro-

nous wrapper are created, one behavior version used

for simulation and a second version used in the place

and route tool. The tool described in this paper focus

on implementing a GALS system in an FPGA, but

the tool can easily be extended to also include imple-

mentation in a standard-cell ASIC. The asynchro-

nous wrappers currently only allow static scheduling

but can be extended to handle dynamic scheduling.
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