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Abstract: - In this paper a new design procedure for Hopfield associative memories storing grey-scale images is 
presented. The proposed architecture, with both intra-layer and inter-layer connections, is an evolution of a 
previous work based on the decomposition of the image with 2L gray levels into L binary patterns, stored in L 
uncoupled neural networks: that allows to store images with the commonly used number of 256 gray levels. The 
learning algorithm, used to store the binary images, guarantees asymptotic stability of the stored patterns, has a 
low computational cost, and allows to control the precision of the connection weights. 
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1 Introduction 
Reliable binary associative memories can be 
designed using neural networks with two-state 
activation function, or networks with saturation 
nonlinearities whose asymptotically stable states are 
binary valued [1,2]. The design of neural associative 
memories storing gray-scale images is a challenging 
problem investigated by few authors. The main 
problem to be faced is the robust recall of a stored 
image which can differ in any pixel from the noisy 
version. An image with n pixels and 2L gray levels 
can be represented using L bits for each pixel. It can 
be stored using a binary neural network with nL 
neurons. This approach retains the main advantages 
of binary neural networks. However, it is not 
practical for either hardware implementation or 
software simulation, because of the quadratic 
growth with both the number of pixels and the 
number of bits (n2L2). 
Some methods have been proposed to reduce the 
computational complexity. A first approach is based 
on neural networks with multilevel threshold 
neurons. The activation function is a quantization 
nonlinearity with 2L plateaus in place of two, as in 
the usual sigmoidal function. The resulting stable 
equilibrium points have multivalued components, 
corresponding to the gray levels. The number of 
neurons is n and the number of interconnections is 
n2. Some design methods have been proposed for 
networks with this type of nonlinearity, with 
interesting experimental results [3,4].  
A second approach is based on complex-valued 
neural networks [5-7]. The neuron state can assume 

one of 2L complex values, equally spaced on the unit 
circle. Each phase angle corresponds to a gray level. 
The number of neurons is n; the number of 
interconnections is n2. For complex-valued neural 
networks a generalized Hebb rule was proposed in 
[5,6]. As shown in [6], this generalized rule has the 
same limitations on storage capacity of the usual 
Hebbian learning for binary-valued networks. 
Recently, a sophisticated method for weigth matrix 
design has been proposed in [7], based on the 
solution of a set of linear inequalities.  
A third approach consists in the decomposition of 
the image into L binary patterns. Each pattern 
represents one bit in a suitable digital coding of the 
gray levels, and  it is indipendently stored using a 
conventional binary neural network with n neurons 
[8]. There are L uncoupled sub-networks, each with 
n2 interconnections. The main advantage is that the 
L sub-networks can be implemented via parallel 
hardware, with considerable saving in time, both for 
learning and recall. Moreover, each sub-network can 
be designed using one of the several available 
synthesis methods. However this approach presents 
two drawbacks. First, if a binary pattern cannot be 
stored in a sub-network, the corresponding image 
cannot be stored at all. In quantitative terms, the 
storage probability of a random set of images is the 
product of the storage probabilities in each sub-
network. Hence, the storage capacity is quite lower 
than that of each sub-network with n neurons.  
In the same way, the recall probability of an image, 
starting from a noisy version, equals the product of 
the recall probabilities in each sub-network. 
Therefore, the noise removal capability is modest. 
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The same problems arise if a large scale image is 
decomposed into sub-images stored in indipendent 
neural networks as explained in [9], where some 
overlapping between sub-images is suggested to 
alleviate these effects.  
As the number of gray levels increases, both 
problems become worse since the number of 
indipendent networks increases. As a consequence, 
the method suggested in [8] is applicable only with 
resolution up to 16 gray levels. To overcome this 
limitation, here we present an evolution of our 
previous approach based on the introduction of 
connections between layers. Building inter-layer 
connections introduces interactions among all the 
neurons, even if not direct; due to the presence of 
these interactions both the capacity and the recall 
performance are improved with respect to the 
uncoupled case. 
 
 
2 The Multilayer Hopfield Net 

Architecture 
To implement the neural network architecture, we 
used a multilayer Hopfield neural net. 
The Hopfield net [1] has only one layer of unit, that 
play a triple role as input, output, and processing 
unit. The units are globally interconnected and the 
state equation of a 2-dimensional network is the 
following: 
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i,k = 0, 1, 2 ..... , M j,l = 0, 1, 2 ..... , N 
 
where M×N is the number of units, Uij is the input of 
the unit at row i and column j, Vkl the output of the 
unit at row i and column j, W=[Wij,kl] is the 
connection matrix, and Iij the input bias to the unit at 
row i and column j. The output Vij of is given as 
Vij=f(Uij), where f(.) is the piecewise-linear 
saturation nonlinearity: 

f(x) = 0.5 ( )1x1x −−+ . 
In this work, we considered Iij = 0 for every (i,j) and 
we assume a multilayer Hopfield net defined on a 3-
dimensional (M×N×L) grid of units, where C(i,j,p) 
denotes the unit at the intersection of row i and 
column j in layer p. The net connection is local, i.e. 
each unit in layer p is only connected to its 
neighborhood, defined by 
 
Nr,s(i,j,p) = { ( k, l ,q) : |k-i| ≤ r ∨ |k-i| ≥ M- r , 
| l -j| ≤ r ∨| l -j| ≥ N-r , |q-p| ≤ s ∨ |q-p| ≥ L- s } 

Each unit is therefore connected to (2r +1)2 units in 
each of the layers p-s, ..., p-1, p, p+1, ..., p+s. We 
assume r ≥ s. 
To simplify the statements and the notation, 
wraparound connections will be assumed. This is 
equivalent to consider the net arranged on a hyper-
torus. The number of connections per unit is: 

µ = (2s +1) (2r +1)2. 
The state equation of the multilayer Hopfield net is 
the following: 
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where Uijp is the state of unit C(i,j,p). qkijpW l, denotes 

the connection weight from unit C(k, l ,q) to unit 
C(i,j,p). 
The image with n pixels and 2L gray levels is 
decomposed into L binary patterns with n pixels. 
Each pattern corresponds to a layer of the multilayer 
net. Hence, the proposed architecture consists of L 
layers, each with n units; the total number of units is 
nL and the total number of interconnections is µnL. 
The number of interconnections grows only linearly 
with the number of pixels and logarithmically with 
the number of gray levels.  
The decomposition of the image into binary patterns 
can be made using different coding strategies. The 
usual binary-weighted coding entails an 
amplification of the effect of additive Gaussian 
noise with zero mean. This common type of noise 
gives a high probability of “jumping” from a 
quantization level to an adjacent one, if the standard 
deviation σ is low. For example, if σ is equal to the 
quantization interval the probability that a gray level 
is transformed into an adjacent one is almost 50% 
(0.4834). This level jump results in a moderate 
degradation of the image from a perceptive 
viewpoint; however it could correspond to the 
reversing of several bits. For example, moving from 
gray-level 3 to gray-level 4, all the bits change 
(011→ 100), hence there is a bit inversion in each 
layer of the proposed network. If  there are too many 
binary errors, they cannot be corrected by the 
associative memory due to the excessive Hamming 
distance from a stored pattern. 
To alleviate this problem we used the reflected-
binary or Gray code which has the property that, 
moving from a quantization level to an adjacent one, 
only one bit changes. Now, moving from gray-level 
3 to gray-level 4, only one bit changes (010→ 110). 
Using the Gray code, additive zero-mean Gaussian 
noise results in a reduced Hamming distance 
between the stored binary pattern and that 
corresponding to the noisy image. As a 
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consequence, the recall of a stored image is 
simplified. 
 
 
3 Design of associative memories 

with finite precision 
To design the multilayer Hopfield net, we adapted 
the method proposed in [13], summarized in the 
following. 
Let N r,s(i,j,p) = N r,s(i,j,p) – C(i,j,p), and yijp = f(xijp). 
Assume Wijp,ijp = 1 for every i, j and p. The design of 
the associative memory is as follows. First, we 
decompose the i-th Gray coded image to be stored, 
into L binary patterns from which we construct the 
i-th bipolar pattern y(i)∈{-1,+1}M×N×L. Let y(1) … y(Q) 
be the Q bipolar patterns corresponding to the 
images to be stored. Then, we find the connection 
weights qkijpW l,  (i, k =1,…, M; j, l =1,…, N; p, q 

=1,…, L, qk ,, l ≠ i, j, p), satisfying the following 
set of constraints: 

0 
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i = 1,…, M, j = 1,…, N, p = 1,…, L, m = 1,…, Q. 
where δ represents a margin of stability for the 
stored patterns. 
To compute the weights we use the following 
algorithm. 
Let 

qkijpW l, (0) = 0   for every (i, j, p)≠ ( q, k, l ). 
For every t > 0 compute: 

P( (t)∆ (m)
ijp ) 

i = 1,…, M, j = 1,…, N, p = 1,…, L, m = 1,…, Q, 
where 
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and 
P (x) = 0, for x ≥ 0, P (x) = 1, for x < 0. 

Then, update the weights as follows: 
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P(x) is a penalty function of the constraint violation. 
η > 0 is a learning rate. A digital implementation of 
the algorithm is suggested in [13]. The W matrix so 
computed is not symmetric in general. To ensure the 
symmetry of W matrix, we consider the following 
updating rule, instead of eq. (3): 
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where P(x,y)=1 if x<0 or y<0, P(x,y)=0 if x≥0 and 
y≥0. 
Asymptotic convergence of this type of algorithm to 
a solution of (1) is not guaranteed, since it can 
approach a limit cycle in the solution space. 
However, by choosing η sufficiently small, it is 
possible to force the sequence Wijp,klq(t), Wijp,klq(t+1), 
……. to stay arbitrarily close to a correct solution of 
(1). The presence of a margin δ in (2) guarantees the 
storage of the desired patterns. 
Let examine some properties of the proposed 
algorithm: 
1. Only additions are required for its 

implementation. 
2. The weights can be represented as qkijpW l,  = ± 

η qkijpN l, , where qkijpN l,  is a positive integer. 
Hence, all the weights (at each iteration) have 
finite precision; the required number of bits is 
log2(Nmax)+1, where Nmax is the maximum value 
of qkijpN l, . 

3. The algorithm can be implemented or simulated 
on a digital hardware, without numerical errors, 
provided that a sufficient number of bits is used. 
In fact, no rounding or truncation is required to 
represent the weights. 

4. The W matrix is symmetric, so the complete 
stability of the system is guaranteed. 

 
 
4 Experimental results 
A design example is presented to show the 
effectiveness of the proposed method, and we 
assume, for this example, η= 0.1. 
The design objective is to store two real-life images 
with 200×200 pixels and 256 gray levels. The 
images are lenna and stefan, shown in Fig. 1. Due to 
computer memory limitations we partition each 
image into 16 parts, each with 50×50 pixels. This 
way we obtain 32 images which can be stored using 
a multilayer Hopfield net with 50×50×8=20,000 
units and  r = s = 3.  Each part is stored as an 
indipendent stable equilibrium point of the net. The 
used value for δ is 500. Then, we recall the 32 
stored images starting from a corrupted version. 
Noisy versions of the stored images are generated 
by adding zero mean gaussian noise, with standard 
deviation σ = 16. Noisy images are partitioned into 
16 parts, which are used as initial states of the net. 
With δ = 500 and σ = 16, both the images were 
correctly recalled without errors. 
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(a)        (b) 

 
Fig. 1 – Images stored in the example: “Lenna” image (a), “Stefan” image (b). 

 
We repeated this experiment using the uncoupled 
neural network proposed in [11], with the same 
images Lenna and Stefan shown in Fig. 4 and σ = 
16. The best recall results, obtained with δ = 800, 
are shown in Fig. 2. 
 

 
Fig. 2 – Recall results of the uncoupled neural 

network. 
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