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Abstract: - In this paper the decentralized stabilization problem of discrete linear time invariant large scale 
interconnected systems without any assumption of system structure is considered. The design is based on stability 
result that employs the notion of block diagonal dominance in matrices and improves upon the exiting results for this 
problem. Our main result here is the sufficient condition for discrete decentralized stabilization. A new and simple 
algorithm is proposed. Simulation results on a numerical example are given to verify the proposed design. 
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1 Introduction 
Decentralized control has received renewed interests 
during the past years, motivated by its importance in 
applications to large complex engineering systems. Since 
1960 many authors have considered this problem. The 
challenge is to find classes of decentralized controllers 
from which specific designs can be selected achieving a 
reasonable compromise in terms of simplicity of design, 
implementation and performance. 
In earlier work, the approach that has received a high 
degree of popularity   is to start with appropriately 
constructed Lyapunov function for the isolated  
subsystems and to impose suitable restrictions on the 
interconnections between the subsystems such that the 
overall system can be proved stable using a Lyapunov  
which is the sum of  the subsystem Lyapunov functions. 
This approach have been applied in diverse practical 
problems such as spacecraft control [5],[6], control 
power systems[7] and control of industrials 
manipulators. More recently Solheim[8] gave a graphical 
approach based on the Gerschgorin  theorem and 
Geromel and Bernussou [9] proposed a parametric 
optimisation  scheme for the choice of subsystem 
Lyapunov functions. M. Sundareshan and R.M.Elbanna 
[1],[2] presented a systematic constructive procedure 
based on a stability result that employs the notion of 
block-diagonal dominances in matrices. But the 
implementation of these controllers is very complicated 
because the resolution of equation of algorithm imposes 
constraining conditions on the interconnections matrices 
and lead to restricted classes of the interconnected 
system Moreover the obtained gains are very high. 

M.Kacim and N.Elalami [3] proposed a balanced 
decentralized control always based on Gerschgorin 
theorem and upon techniques known in the theory of the 
balanced realisation of systems. Despite the simplicity of 
this approach, the procedures as the above mentioned 
designs are generally of trial and error nature and if the 
interconnections do not satisfy the required conditions, 
one is obliged to start with an alternate selection of the 
subsystem Lyapunov functions and repeat the process. 
To reduce this uncertainty in the Lyapunov function 
selection, F.Elmarjany and N.Elalami [4] studied the 
decentralized stabilization via eigenvalues assignment 
and developed the sufficient condition under which 
exponential stabilization with a prescribed convergence 
rate is achieved. The obtained gains of controllers are 
smaller than those found in other designs. The objective 
of this paper is to extend the previous works to discrete 
time systems and develop a new and simple approach for 
the design of discrete decentralized controllers of large 
scale interconnected linear systems.  
 
 
2 Problem Formulation 
Consider a large-scale continue system s described as an 
interconnection of s subsystems s1,s2, …..ss, by: 
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ni
ix ℜ∈  is the state of the subsystem s, mi

iu ℜ∈ is its 

input vector and pi
iy ℜ∈  is its output vector. 
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 is the term due to interconnection of the other  

subsystems. ;nini
iA ×ℜ∈  mini

iB ×ℜ∈ , and njni
ijH ×ℜ∈  are 

matrices of appropriate dimensions.  
It assumed that all pair ),( ii BA  are controllable and 
(Ai, Ci) are completely observable. 
The problem is to design a local controller 

)()( txKtu iii −=                                                         (2) 
  Stabilises the large scale interconnected system. 
Applying the i controller (2) to the plant (1) 
give: 
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  Where   Fi =Ai –BiKi                                          (3)                                                                                                                                   
                                                           

Let )()( maxmin XetX λλ  respectively denote the 
minimum and the maximum of reel matrix X, the 
notation iλ (X) and iσ (X) denote the ith eigenvalue and 
singular value of the matrix X, ( iλ (X)) are arranged in 
descending order when they are reel, i.e 
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Definition 2.1 Let A
nnR ×∈  be partitioned in the 

form: 
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Where niniiiA ×ℜ∈    et  njni

ijA ×ℜ∈   i, j=1, 2…n. 

If iiA  are non singular and 
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Then A is said to be block diagonal dominant relative to the 
partitioning in (4) . If strict inequality holds in (5), then A is 
strictly block diagonal dominant.  
 
Lemma 2.2 
Let the matrix A partitioned as in (4) satisfy the 
conditions: 

 (i)  TAA=  
(ii)  Aii=1,2….s. are positive definite 
(iii) A is strictly block diagonal dominant 

Then, all eigenvalues of A are real and positive 
 

Theorem 2.3  
Let spec ( iF ) ⊂  LHP ∀  i=1, 2,….s and let Pi the 
symmetric matrix solution of the Lyapunov equation 
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For an arbitrarily selected symmetric matrix  
niniiQ ×ℜ∈  , then (3) is asymptotically stable if: 
 

jij

s

ijj
ij

s

ijj
ii HPHPQ )()()( max

)(1)(1
maxmin λλλ ∑∑

≠=≠=
+φ

          (7)  
                                                           
Proof: see [1] and [2]. 
The objective of this paper is to extend this work to 
discrete systems and to give the sufficient conditions of 
existence of discrete decentralized controllers. 
Let us consider a discrete large-scale system described 
as interconnections of s subsystems by: 
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∀  i=1……s                                                    (8)  

Fi is asymptotically stable matrix 
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Theorem 2.4  
Let Fi an asymptotically stable matrix ∀  i=1, 2… s and 
let Pi the symmetric matrix solution of the discrete 
algebraic Lyapunov matrix equation: 
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For an arbitrarily selected symmetric matrix niniiQ ×ℜ∈  , 
then (8) is asymptotically stable if: 
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To prove this result, we will use the standard results for 
eigenvalues of symmetric matrices [5], [6]. 
For M=MT∈  R n*n 

IMMIM )()( maxmin λλ ≤≤                                (11)             
For X=XT, Y=YT∈  R n*n 

)()()()()( 1 YXYXYX iini λλλλλ +≤+≤+                       (12)               
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 For X=XT, Y∈  R n*n 
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               Proof 

selecting )()())(( kzPkzkzV T= , ),( 2,1 sPPPdiagP Λ=    
as a discrete Lyapunov function and evaluating its 
variation along the trajectories of (8)  
 ∆  V(z)=V(z(k+1))-V(z(k))  
              =zT(k) (FT P G+GT P F+GT P G- Q )z(k) 

 = -zT(k) W z(k)                                                             
Where 
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The diagonal elements: 
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From lemma 2.2 , W is positive definite if it is strictly 
block-diagonal dominant, i.e. 
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It is simple to observer that for i≠ j: 
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The implementation of this control by using theorem 2.4  
is very complicated because the resolution of equation 
of algorithm imposes constraining conditions on the 
interconnections matrices and leads to restricted classes 
of the interconnected  system. Moreover the obtained 
gains are very high. In this paper we propose a new 
algorithm for decentralised stabilisation based on the 
theorem Gerschgorin such that the overall system can be 
stabilized with a prescribed convergence rate. 
 
3 An Algorithm for discrete decentralized 
stabilization 
Let consider the discrete system:  
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The problem is to design a local dynamic controller: 
 ui(k) = - ki xi (k)                                                        (17)  
Stabilizes the system (16).from(16) and (17) we have: 
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Let us consider the following transformation: 
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α  is a positive scalar ( 1≥α ) 

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp412-416)



∑
≠
=

−

−−+−

+

+==+
s

j
j

jij

iii
k

i

kXh

kBUAXkXkX

1
1

1

11)1(

)(

)()()1(

α

ααα
        (18) 

Ui (k)= -Ki Xi (k) 
 
The goal is to select the feedback gain Ki and the 
required scalarα  which stabilize (18) 
Fi=  1−α  (Ai-Bi Ki) 
Spec(Fi)={ }inii βββ Λ21  
From theorem2.4, the system (18) is asymptotically 
stable if : 
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We shall now give the procedure for the construction of 
the controllers gains ki: 
Step1: α =1, select Ki such that spec (Ai-Bi Ki) is inside 
the unit circle. This selection can be made by a standard 
pole placement design. 
Step2: choose an arbitrary matrix positive Qi,  
Step 3 : Solve the Lyapunov matrix equation.  
If condition (19) is checked then : 
Calculate ki such as  
spec (Ai-Bi ki)= spec ( 1−α (Ai-Bi Ki)) 
If not, α =α +1 and go to step 3. 
 
 
3 Illustrative example 
We consider the following example which was treated 
by Sundershan and Elbanna[1]. 
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The discrete-time model is obtained from its 
continuous –time model by discretizing it using 
MATLAB c2d with the sampling period T=0.1 
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Selecting  K1= [ 12,6590    14,4390    5,3373]  
and 
K2 = [ 7,0324     3,6090 ]  to place the 
eigenvalues of (A1 – B1 K1 ) and ( A2 – B2 K2 ) 
at (0,8084+0,0977i    0,8084-0,0977i   0,6987) 
and (0,7166+0,1020i         0,7166-0,1020i ) 
Following the steps of the algorithm, we obtain    
α =4;  
The required controller gains k1 and k2 to be used are 
then: 
 k1= [551.1286     148.6881   15. 8668] and  
 k2= [71.5979   12.1847]. 
All the states of the subsystems are plotted in figures. 
From the simulation results it can be seen that each 
subsystems are asymptotically stable. 
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4   Conclusion 
This paper has introduced a new approach for designing 
a decentralized control for discrete large scale systems. 
The present results are developed in the context of 
decentralized stabilization; they have a wider 
application in that they can be extended to the design of 
decentralized observation algorithms and to the design 
of decentralized model reference adaptive identification 
schemes. 
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