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Abstract: - In the present paper we are interested in compression and noise removal as a preprocessor for the 
identification of microcalcification clusters in mammograms. LabVIEW (Laboratory Virtual Instrument 
Engineering Workbench) is a graphical programming language that uses icons instead of lines of text to create 
programs. We propose a general strategy for constructing algorithms and implementing them in LabVIEW for 
compression, noise removal and extracting microcalcification clusters. The comparison method presented in 
this paper aims to improve mammogram comparison by estimating the underlying geometric transformation 
for any mammogram sequence. It takes into consideration the various temporal changes that may occur 
between successive scans of the same woman and is designed too overcome the inconsistencies of 
mammogram image formation. 
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1   Introduction 
   This paper presents some characteristics of 
mammographic images since these will motivate the 
algorithms for microcalcification detection 
implemented in LabVIEW (Laboratory Virtual 
Instrument Engineering Workbench) [1]. 
   To count cancerous cells we use a common image 
processing technique called particle  analysis, often 
referred to as blob analysis. 
   The devastating impact of breast cancer in the 
whole world is well known. This points to the need 
for early cancer detection. Mammography is an X-ray 
imaging procedure for examination of the breast. It is 
used primarily for the detection and diagnosis of 
breast cancer but also for preoperative localization of 
suspicious areas and in the guidance of needle 
biopsies. Mammograms are complex in appearance 
and signs of early disease are often small or subtle. 
Furthermore, the consequences of errors in detection 
or classification are costly. The number of 
mammograms generated daily is large and therefore it 
is very desirable to develop image processing tools 
which facilitate the handling of mammograms and aid 
the radiologist in diagnosis. Breast cancer is detected 
on the basis of four types of signs on the 
mammogram: a) The characteristic morphology of a 

tumor mass; b) Certain presentations of mineral 
deposits as specks called microcalcification;             
c) Architectural distortion of normal tissue patterns 
caused by the disease; d) Asymmetry between images 
of the left and right breasts.  
   The Digital Database for Screening Mammography 
(DDSM) is a database of digitized film-screen 
mammograms with associated ground truth and other 
information. The purpose of this resource is to 
provide a large set of mammograms in a digital 
format that may be used by researchers to evaluate 
and compare the performance of computer-aided 
detection (CAD) algorithms. 
   The evaluation of a CAD algorithm often begins 
with a retrospective evaluation of cancer cases.  
   The reliable diagnosis of abnormalities from a 
single mammogram is an extremely difficult task 
even for a skilled radiologist, and so it is increasingly 
the case that pairs of mammograms are compared [4]. 
These may be, for example, the left and right 
mammograms taken at the same session. Equally, 
when mammograms from an earlier time are 
available, the radiologist will routinely compare the 
older and more recent images. For this reason alone, 
the development of mammogram registration is 
increasingly important for the early detection of 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp671-676)



pathology. The potential clinical applications are as 
follows: 1) for women at high risk of developing 
breast cancer (e.g., women with family history of 
breast cancer or genetic susceptibility), usually have 
more frequent mammograms taken in order to detect 
a malignancy at as early a stage as possible. Previous 
(“normal”) mammograms are used as a baseline for 
comparison with recent ones. 2) for postmenopausal 
women who often decide themselves, or are advised 
by their gynecologist physician, to undergo hormone 
replacement therapy (HRT). However, there is a 
suggestion, based on clinical experience, that 
significant regional increases in tissue density could 
be an early indicator of breast cancer for women 
using HRT. For this reason, it is important to be able 
to register HRT mammogram sequences, aiming at a 
more effective comparison for early detection of 
lesions. 3) for retrospective studies that aim to 
analyze temporal data in order to assess the accuracy 
and effectiveness of diagnosis in hospitals/screening 
centers. Such studies aim to define the rate of missed 
cancers and interval cancers, as well as to further 
educate clinicians in the important task of early 
diagnosis.  
 

Fig.1. Typical mammography images with 
microcalcifications of the same woman (A and B) are 
shown together with C, the registered version of A to 
B. 
 
   The differences in imaging conditions and the 
temporal changes (5-year interval) render the 
comparison of A and B difficult, while by comparing 
B (recent mammogram) and C the physician can be 
reassured that the encircled region in B is scar tissue 
from the excision of a previous cancer in C (also 
encircled in the same location).  
 
 
2   Compression and Noise Removal 
   We first review briefly the elements of wavelet-
based compression. 
   While compression and noise removal are 
important for the storage and transmission of images, 
in the present paper we are interested in them as a 
preprocessor for the identification of 
microcalcification clusters in mammograms.  

    A schematic for wavelet-based compression is 
presented in Fig.2. 

 
 

Fig.2. Wavelet based compression 
 
   The main steps in wavelet-based compression are 
[1]: 
 
Step 1. Computation of wavelet coefficients: 
 
   A digitized image is an array of pixel values. For 
mammography, this array is generally not square and 
this causes some technical difficulties in wavelet-
based image processing algorithms. Also the size of 
mammograms is large when compared with many 
other images. However, we shall assume that the 
digitized mammogram is not only square but of size 
2mx2m. Typical values are m = 9, 10. 
   Thus, a digitized mammogram, will be an array of 
nonnegative integers 

( ) { }1202121 −∈= m
k ,...,k,k,k,kk,p             (1)

The range of the integer values jpg  is related to the 
scanner and the dynamical range of the film. 
   The following viewpoint of a digitized image is 
useful in the analysis that follows. We can view the 
pixel values as obtained from a bivariate function F 
defined on the unit square Ω:=[0,1]2 by taking cell 
averages: 

( ) ,k,k,dxdyy,xFp
kQ

m
k ∫ −≤≤= 120 21          (2)

where 
[ ] [ ].k,kxk,kQ mmmmmm

k
−−−−−− ++= 222222 2211:  

Thus, we view the pixel values as samples of the 
underlying function F. 
   We choose a univariate scaling function φ and from 
the pixel values (pk), we create an approximation f to 
F from the space V-m and represent the mammogram 
as in  

( ) k,m
j

kcfF −ϕ=≈ ∑          (3)

 This is usually accomplished by defining 
( ) ,k,k,pkc m

k 120 21 −≤≤=:          (4)
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and defining ( )kc  for other values of k by some 
extension strategy. 
 
Step 2. Thresholding: 
 
   We gain lossy compression of the image by 
reducing the size of the wavelet coefficient file. We 
can use the fast wavelet transform (FWT) to convert 
the representation (3) to the wavelet representation. 
In this way, we obtain 
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In each of these sums, the k can be restricted to those 
values for which kj,η  is nonzero on Ω. The wavelet 
coefficients ( )kd n,j can be computed from the pixel 

values in mN 22=  the original number of pixel 
values. We call (5) the wavelet representation of the 
image. It will be convenient to speak only about the 
coefficients ( )kd n,j  of .η kj, Similar statements apply 

to the coefficients of .k,0φ  
   There are two essential methods for compression: 
thresholding and quantization. In this paper we will 
use thresholding. Thresholding means that we pick a 
threshold jε for each level 011 ,,...,mj −+−= and 
retain only those coefficients whose absolute value 
exceeds jε . Thus, thresholding replaces ( )kd n,j by 

( )( )kd ,jj ητ where the function jτ  defined by 
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This is called hard thresholding; the function jτ  is 
not continuous. Soft thresholding would replace jτ by 
the Lipschitz continuous function 
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Soft thresholding is numerically stable; a small 
change in ( )kd n,j results in a small change in the 

output ( )( )kd ,jj ητ 0 .Thresholding will replace small 
wavelet coefficients by zero. This not only has the 
desired effect of compression but also removes noise. 
There are several results which show that soft 
thresholding, with a proper choice of thresholding 
parameters, gives an optimal algorithm for removing 
Gaussian noise. 

Step 3. Encoding: 
 
  For the purposes of storage or transmission of the 
compressed image, a lossless encoder is applied to 
the file of wavelet coefficients. While standard 
arithmetic and runlength encoding can be applied, the 
best results are obtained with customized encoders 
[3] which take into account the spatial correlation of 
the wavelet coefficients. The encoded wavelet 
coefficient file is our compressed representation of 
the image and can be stored or transmitted. 
    
Step 4. Decoding: 
 
   The encoded file is decoded to obtain the 
compressed wavelet coefficient file. This is the same 
file as at the end of Step 2. 
 
Step 5. Computation of pixel values. 
 
   The inverse fast wavelet transform is used to 
compute the pixel values of the compressed image. 
This step takes again N operations. These are then the 
pixel values of the compressed image which is our 
approximation to the original image. In compression 
algorithms we have to take into account the choice of 
wavelet basis, the choice of metric and the level of 
compression.  
 
 
3   Image processing techniques 
   IMAQ Vision Software from National    
Instruments [2] adds high-level machine vision and 
image processing to LabVIEW, Measurement Studio, 
and other programming environments. IMAQ Vision 
includes an extensive set of MMX-optimized 
functions for gray-scale, color and binary image 
display; image processing, including statistics, 
filtering and geometric transforms; and pattern 
matching, shape matching, blob analysis, gauging and 
measurement. 
   The possibilities and range for image processing 
and machine vision are numerous, if not 
overwhelming. So many algorithms exist for you to 
select from you might ask which one is right for your 
application and where to begin. 
   To start with, in many applications you need a 
quantitative or statistical description of your image or 
region of interest (ROI). Statistical functions are 
calculated quickly; you can solve many inspection 
applications using simple functions such as average 
and standard deviation. Pattern matching functions 
are key for machine vision applications for locating 
features in the image. 
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   To count cancerous cells we use a common image 
processing technique called particle analysis, often 
referred to as blob analysis. Blob analysis is the 
process of detecting and analyzing distinct two-
dimensional shapes within a region of the image. 
Blob analysis can provide your application with 
information about the presence or absence, number, 
location, shape, area, perimeter and orientation of 
blobs-microcalcifications- within an image. 
   A simple definition of a blob is a group of 
connected pixels. In general, blobs are thought of as a 
group of contiguous pixels that have the same 
intensity. Image processing operates on these blobs to 
calculate the area or perimeter or to count the number 
of distinguishable blobs. Before you can apply blob 
analysis you must preprocess the image by converting 
a gray-scale image – an image with 256 levels -  to an 
image with only two gray scales – zeros and ones. 
The objective is to separate the important 
microcalcifications, blobs, from the unimportant 
information, background.  A technique called 
thresholding appropriately separates the 
microcalcifications (blobs) from the background. 
   The result of the thresholding process is a binary 
image, which is an image of pixel values of only ones 
and zeros. The microcalcifications are represented by 
the connected pixels of ones and the background is 
represented by the zeros. By binarizing the image into 
ones and zeros, the task of writing image processing 
algorithms for microcalcification analysis is made 
easier. To find the area of a microcalcification, you 
have to count the pixels with values of one that are 
connected. Another benefit of binarizing the image 
for blob analysis is that the blob analysis calculations 
are fast. Many biomedical imaging applications can 
be solved using blob analysis, but also this kind of 
analysis is useful in industrial inspection applications. 
The steps for counting cancerous cells are the 
following: 
- Acquiring the image: configure the board for 
acquisition using a point-and-click user interface; the 

configuration software saves the settings for the 
board to a configuration file, which is then used by 
the NI-IMAQ driver software in the development 
environment to simplify acquisition of images; 
- Thresholding to create a binary image: the 
threshold function segments an image into two 
regions, an object region (microcalcification) and a 
background region; in this process all pixels that fall 
within the gray-scale interval defined as the threshold 
interval are given the value one.; all other pixels in 
the image are set to zero; the result is a binary image 
that can be processed very rapidly; generally, 
algorithms to process binary images are faster than 
algorithms for gray-scale images. 
- Filtering to remove noise and particles on the 
border of the image: IMAQ function filters or 
removes the particles below a certain pixel size; 
another function removes the particles on the border 
of the image, because you cannot accurately 
determine the size of particles on the border of an 
image; 
- Microcalcifications (blob) analysis to count cells: 
IMAQ functions analyze blobs in an image; it is 
possible to count, label, measure cells and objects; 
calculate area, perimeter, orientation, location and 49 
other parameters; there are many blob calculations 
such as area, perimeter, moment of inertia, 
orientation, mean chord, width, height, ellipse axis, 
elongation factor, circularity factor, type factor, 
projection, location, bounding rectangle; use 
morphology functions to erode, dilate, fill holes, 
convex (fill holes on the edges), reject objects on the 
border and separate blobs. 
   In figure 3b is represented the front panel of an 
acquired cancerous mammography, while the block 
diagram of the LabVIEW virtual instrument for 
acquiring the mammography image is in the 
following figure 3a: 
 

Create an image Read an image
from file

Select an Image File

existing file

Image folder

Get image type

Source

Image

Free Memory.  The image 
control is in Snapshot mode, 
so the image displayed is not 
removed.

 
Fig.3a LabVIEW block diagram for getting, creating and reading an image. 
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Fig.3b LabVIEW front panel for getting, creating and 

reading an image. 
   The following program shows how to compute the 
histogram of an image or a region in the image. This 
program also shows how to set up and use the display 
tools to select and work on different regions in the 
image interactively. 

 
Fig.4. LabVIEW front panel for the histogram of a 

ROI (one of the three microcalcifications) in a 
mammography with three microcalcifications. 

   The following program shows how to use the 
display tools to draw a line on the window that 
displays an image and get the pixel values of the 
image along that line (line profile). You typically use 
line profiles in inspection tasks to find the edges of an 
object or part being inspected. 

 
Fig.5. LabVIEW front panel to inspect line profiles. 

   The blob analysis program performs a series of 
grayscale filtering, threshold, binary morphology, and 
particle analysis operations to measure the areas of all 
the large circular particles of the image. 

 
Fig.6.Filtered image with enhanced edge information. 

Fig.7. Original image and threshold image. 
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4. Mammography Comparison 
 
   Mammogram registration cannot usually be applied 
directly for the automatic detection of small 
abnormalities since the breast is a highly dynamic 
organ in which numerous normal changes occur 
regularly. 
   This way, subtracting registered mammogram 
sequences may lead to a large number of false 
positives  (in this context defined as normal changes 
and misregistrations), appearing in the difference 
image. 
   Mammogram registration could potentially be used 
to trace back “missed cancers” in previous 
mammogram sessions.  The novelty of the method 
presented here derives mainly from the detailed 
understanding of the temporal changes that can occur 
between successive acquisitions. Breast compression 
and imaging condition variability often lead to a 
nonrigid transform in the image plane (even a small 
difference in compression can lead to a significant 
and uneven displacement of the breast structures), 
and a nonrigid transformation of image intensity, 
respectively. Temporal changes can also occur due to 
breast positioning resulting in a rotation of the breast 
between two mammographic exposures.  
   The intensities of a mammogram pair can be 
normalized using the representation of interesting 
tissue [4] which results in the standard mammogram 
form (SMF), a standardized representation of a 
mammogram computed from the image intensities 
(film or digital) and imaging parameters of the 
system used to acquire the image. The method 
described in this [4] deals with the geometrical 
alignment of mammogram sequences. This method 
incorporates a robust method to select consistent 
boundary landmarks for the automatic alignment of 
the breast boundary [4].  
 

 
Fig. 8. Mammograms comparison using registrations. 

(a) The original mammogram. (b) A random 
mammogram transform is applied and the 

mammogram is significantly deformed nonrigidly.  
(c) Mammogram is aligned to its original shape.  

(d) The difference image shows that the images are 
almost identical. 

 
   The following program shows how to use the 
pattern matching tools in IMAQ Vision for 
mammograms comparison. 
   We used pattern matching in the following three 
general applications areas: Alignment - determine the 
position and orientation of a known 
microcalcification by locating features. We use the 
features as points of reference on the 
microcalcification; Gauging- measure lengths, 
diameters, angles, and other critical dimensions 
concerning the microcalcifications; Inspection - 
detect simple flaws, such as missing parts. 

Fig.9. Mammogram sequences comparison. 
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