
Addressing Software Application Security Issues

MEHREZ ESSAFI, HENDA BEN GHEZALA

RIADI-GDL Laboratory

National School for Computer Science Studies

University of Manouba, Tunis

TUNISIA

mehrez.essafi@riadi.rnu.tn, henda.benghezala@ensi.rnu.tn

Abstract: - Software tend to be omnipresent in all modern systems. It often manipulates critical resources which

interests pirates and need to be secured. Given the fact that most common software attacks can’t be stopped or

detected using conventional security mechanisms, malicious intruders try hack into systems by exploiting a

software vulnerability. Vulnerabilities result from the use of traditional development processes – not focusing

on security concerns – and the lack of necessary knowledge and guidance on how to produce secure software.

They include implementation bugs such as buffer overflows and design flaws such as inconsistent error

handling. Several efforts are undertaken, to improve secure software engineering, however, developers still

miss or misuse acquired knowledge due to domain immaturity, newness of the field, process complexity and

absence of environments supporting such development. This paper presents our approach addressing software

application security issues through its development process using a strategy oriented process model. The main

feature of the proposed process model is that it provides a two level guidance: 1) a strategic guidance helping

the developer to choose one among a compilations of the existing methods, standards and best practices and 2)

a tactic guidance helping the developer to achieve his selection. This process model is easily extensible and

allows building customized processes adapted to the context, the developer’s finalities and the product state.

Key-Words: - Software, application, security, vulnerability, development, strategic, process, model, guidance.

1 Introduction
Security is a broad area. It deals with cryptography,

security protocols, access control, information flow,

software security, program obfuscation, etc.

Traditionally, security has always been treated as an

add on. An application was assumed to be secure if it

uses cryptography, security protocols, etc. Attacks

on protocols make the community realize that

intuitive accuracy isn’t enough for security [3]. This

results in the development of formal verification

techniques for security concerns [31] [33]. But,

formal verification has its own disadvantages. First,

it can only verify designs, with theoretical

limitations, but cannot apply to the whole system and

cannot guarantee the security properties for

implementations.

 Software security is mainly affected by software

vulnerabilities [18] [19]. With the proliferation of

hackers, who exploit these vulnerabilities to

compromise systems [28]. Therefore, security

aspects of software become a subject of concern.

 Vulnerability is either a defect, or a bug, or a

flaw. Defects are implementation and/or design

errors [3]. A defect may lie dormant in software for

several years and then surface in a fielded system

with major consequences. A bug is an

implementation-level software error. Bugs refer to

low-level implementation errors that could be

remedied by limited code analysis of the external

environment. A flaw is a subtle defect at a deeper

level [13]. Risk is the probability that a vulnerability

is actually manifested or exploited, resulting in either

an impact on normal software functioning or a

failure.

 An attacker may take advantage of a software

vulnerability to compromise the three basic security

properties, i.e., confidentiality, integrity and

availability [13] [18] [28].

 Considering that software tends to be omnipresent

in all modern systems, software security is now a

critical feature of the system as a whole. Research is

concerned about: 1) security software which is a

software whose primary functionality is to

implement a security protocol or mechanism, and 2)

security of software (or software security) which is

software that functions correctly under malicious use

and that doesn’t contain loopholes [26].

 This work fits in the second kind of research

considering that security software need to be secure

themselves to ensure security otherwise, they could

be used as a source of attacks. This paper describes

our approach in addressing software application

security issues throw the development process using

a strategy oriented process model. The main feature

of the proposed approach is the two level guidance it

provides: a strategic guidance helping the developer

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

to choose one among a compilation of the existing

methods
1
, standards

2
 and best practices

3
 useful for

producing secure software and a tactic guidance to

achieve his selection.

2 The problem
A program is a very detailed solution to a much more

abstract problem. Leading from a problem to a

program is a complex process [4].

 Secure software engineering requires a pro-active

approach. It is not an add-on collection of

techniques. It is different from security software. It is

a feature of the entire software system and cannot be

ensured just by using security mechanisms like

access control, encryption, SSL, etc. [21].

 Standard approaches, such as verification and

static analysis, which deal with the analysis of

programs for common security flaws once they are

built [4] [13], or patching techniques are not effective

in ensuring a correct security [27]. Therefore, a lot of

progress has to be made in studying and analysing

software artifacts [1] [2] [4] [6] [7] [12].

 The complex and multi-faced ways in which

security permeates systems led us to believe that

software engineering will be much more effective in

ensuring security [13]. From a software engineering

perspective, we are interested in how to enhance (1)

existing lifecycle phases, (2) artifacts and (3)

techniques used in each phase (or perhaps introduce

new techniques?) to support security [1] [2] [6] [7] [8]

[9]. The holy grail of this field is software that is

secure by construction [23] [26] [29] [32]. We believe

that security will improve only by focusing on its

development process since the early phases [20].

 The idea behind life-cycle models is to model

how software should be produced, which means that

these models are prescriptive. The use of prescriptive

process models to develop secure software confronts

us with some inconsistencies. These may be caused

by deviation in the performed process from the

predefined one in order to consider eventual

modifications that will enforce the software security.

The necessity of eventual modifications may emerge

at any level of the development life cycle.

 To ensure that a software development process

and practices consistently produce secure products,

candidate processes and practices and the products

they produce must be analyzed and tested. This is to

1
 R2SIC – Research for Information and Communication System

Security: http://www.cases.public.lu/publications/recherche/r2sic/
2 JTC 1/SC 27 - IT Security techniques Standards: http://www.iso.org/
3 Information Security Management References
http://reform.house.gov/UploadedFiles/Best%20Practices%20Bibliograp
hy.pdf

verify and validate that, when properly used, these

processes and practices can be relied upon to

produce secure products.

 Verifying that a software process can consistently

produce a secure software is a challenge for at least

seven reasons [20]:

- Security is a landscape of evolving threats. What

may appear to be secure software today could be

shown to be insecure tomorrow.

- While tracking the ability of a software system to

withstand attack provides some confidence that it

is secure, but, there are no generally accepted

ways to prove that it is. With current methods, we

can only prove that it is not secure.

- The number of tolerable security defects is quite

low and verifying that fewer than such a small

number of defects exist in a large program is

extremely difficult.

- Even if secure software has been initially

developed, its deployment enhancement, repair,

and remediation must not compromise its

security. No generally accepted ways exist to

verify that such software has preserved its

security properties unaltered.

- Even after one or more processes have been

shown to produce secure software, these

processes and practices must remain effective

when used by many people in many different

software organizations and development

environments.

- An extensive and extended data collection effort

would be required to obtain statistically

significant evidence that a process consistently

produces secure software.

- The methods for qualifying the capabilities of the

likely number of required processes and

organizations would necessarily be time

consuming and expensive.

 In addition software engineers and developers,

who lack security-engineering expertise, need better

guidance to find out the convenient and appropriate

way for reaching the required software security level

[3] [13] [22].

3 Related work
In the domain of software engineering, no processes

or practices have been shown to consistently produce

secure software [20]. However, efforts are

undertaken, to improve software engineering

practices. Indeed, substantial reduction has been

demonstrated in overall software design and

implementation defects, as well as in security

vulnerabilities [2] [6] [7] [8] [9] [10] [12] [13] [14] [19]

[23] [26] [24] [25] [29] [31] [20] [32] [33].

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

 Many researchers have focused on using so-called

best practices in the software lifecycle. As the name

implies, a security development lifecycle is a

Software Development Lifecycle (SDL) where a

special emphasis is placed on software security in

each phase. Two SDLs have been proposed to

integrate software security into the lifecycle, one is

by Microsoft as part of its Trustworthy Computing

Initiative [19] and the other by McGraw [26]. We

refer to these efforts as Microsoft’s SDL and

McGraw’s SDL. Respectively Fig.1 and Fig.2

provide a pictorial overview of the two SDLs.

Obviously, both SDLs have a lot in common. They

enumerate software security best practices applied to

various software artefacts with required iteration but

no guidance is provided. The iteration here means

that these practices will be cycled through more than

once as the software evolves.

Fig.1 : Microsoft’s SDL

Fig.2 : McGraw’s SDL

 The high level of abstraction and the lack of

guidance in these life-cycle models limit their

usefulness in actually supporting and helping

engineers in developing secure software [12].

4 Our modeling approach
In response to the challenges threatening secure

software development processes and helping

software engineers in this complex task, processes

need to be extensible, flexible, and provide guidance

during the process performance instead of being

enforced with a collection of predefined process

models. Such flexibility increases with the

multiplicity of ways proposed to reach the desired

security level. In fact, there is never one way to

proceed, but several ones.

 Secure software development process includes

additional steps dealing with risk analysis, threats

modeling, vulnerability resolution, security test plans

defining, etc. These processes imply many resources

and necessitate knowledge that most software

engineers miss or misuse.

 To model our process, five kinds of process

models are candidates [17] [30]: activity oriented,

products oriented, decision oriented, context oriented

and strategy-oriented process models.

 The process model we are intending to model

should help developers selecting the appropriate way

to produce software with required security level. It is

thus a decision-oriented process, and activity or

product-oriented models are not appropriate. In

addition, the process needs to capture knowledge

about how to progress in order to allow developers

construct a personalized process. The latter depends

on the application domain, developer’s experience

and previous choices. Many ways are then possible

to achieve the desired goal, and strategy-oriented

process seems to be the best candidate for this

modeling. To model our process, we choose the

MAP formalism which is a strategy oriented process

model representing an extension to the context

oriented process model NATURE
4
 [5] [12] [30].

 The key concepts of the MAP include: (1)

intention which is a goal that can be achieved by

performing a process and (2) strategy which is a way

to achieve an intension. It is a labelled directed graph

with intentions as nodes and strategies as edges

between intentions.

 The MAP can be seen as a set of process

descriptions. Using dynamic selections from these

descriptions, the best particular prescription adapted

to the current situation of the software product is

chosen. In that sense, the map is a multi-model. This

multi-model allows the application engineers

determine, through guidelines, the best way for

specifying, designing, developing, testing, verifying

or deploying a product and thus the best process

model to do that.

 Guidelines used in the map result from previous

acquired experiences and provided solutions to

security problems.

 Three kinds of guidelines are attached to the map:

“Intention Achievement Guideline” (IAG),

“Intention Selection Guideline” (ISG) and “Strategy

Selection Guideline” (SSG). An IAG helps to fulfil

the intention selected by the engineer – it could be

non-formal, tactic or strategic – whereas ISG and

4
 Novel Approaches to Theories Underlying Requirements Engineering

Design
 Test

 plans

Code
 Test

 re sult

Field
 feedback

Abuse
 case

Security
 requirements

Risk
 analysis

External

 review

Risk - based
 Security tests

Static
 Analysis

Risk
 analysis

Pentration
 testing

 Security
 breaks

Requirements
 and use cases

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

SSG help the engineer progressing in the MAP and

selecting the right section and are always tactic.

 A MAP can evolve through time to support new

sections in order to satisfy new requirements.

5 Proposed solution
Our solution aims at providing flexibility and

guidance. It does not impose activities to do, but

enhances what can be done next and how it can be

done in order to address software security issues.

 The proposed solution can be viewed as an

alternative strategy that application engineers can

choose for developing an application, specifically a

secure one. Fig.3 illustrates a MAP representing the

software life cycle meta model giving an abstraction

view on how to secure software during development.

Develop an

application

ISG 1.1

Evolve

the application

ISG 1.2

Start

Traditional Approach

Security oriented

Approach

SSG 1.1

Securing

strategy

Certification

Strategy

Stop

Deployment

Strategy

Maintenance

Strategy

Stopping

Strategy

Evolving

Strategy

Stopping

Strategy

SSG 1.2
Fig.3 : Secure software development MAP

 From this MAP, an application engineer can

instantiate at least four securing processes (1) he

develops the application using a traditional approach

– which does not necessarily deal with security – and

deploy the developed software. Then, he return to

development intention with maintenance strategy

where he can use a securing strategy (2) he develops

an application with a traditional approach, then he

secures it using a securing strategy, which may

include our approach (3) he combines 1 and 2 or 2

and 1. With these three approaches, security is

treated at the end of the development process (4) he

develops an application with a security oriented

approach strategy that include our approach.

 The MAP associated to our security-oriented

approach is illustrated by Fig.4. On this MAP, we

find identified intentions that represent required steps

to the development of secure software. Strategies

represent possible ways releasing a step in the

process. If there are several candidate strategies

when evolving from an intention to another, a

strategy selection guideline is provided. For clarity

reasons, we’ll illustrate only one strategy for each

section that represents the strategy class. So, for

example, “test techniques” strategy could be refined

into “functional test” – required as the lowest

security assurance level
5
, “structural test” – required

5
 Common Criteria for Information Technology Security Evaluation

as the second level security assurance, etc. The

associated strategy selection guideline will guide the

developer choosing between these strategies

depending on his intentions and on the product state.

Start

ISG 2.1

Stop

Specify

requirements

ISG 2.2

Design

ISG 2.4

Define test

Plans

ISG 2.12

Develop

ISG 2.9

Test and

analyse

ISG 2.11

Analyse risks

ISG 2.3

Model Threats

And Abus Cases

ISG 2.6

Audit

ISG 2.10

Define a security

Policy

ISG 2.5

Choice security

mechanisms

ISG 2.8

Approche globale

Using

requirements

analysis method

Risk analysis

method

Design Approach

Satisfying the

policy

Based on risks

Risk basedModelling Method

Improving

Risk reduction

Development approach

Guided by design

constraints

Based on Experts

Recommandations

Risk analysis method

Policy based

Based on requirements

Raffinement

Threats based

approach

Preventive solution

Exploration

Factorisation

Learning Factorisation

Implementation
Optimisation

Selection

Review

Plans based

Extending

Test techniques

Verification

Audit

Technique

CorrectionCorrection

Solve Threats

ISG 2.7

Adding rules

Solving Method

Specification

enriching

Validate

ISG 2.13

Validation

Correction
Reduction

Based on risks

Fig.4 : Our security oriented approach MAP

 The approach application consists in instantiating

the proposed meta process. As instance – just to

illustrate a possible process, the application engineer

can define a security policy using a global approach

and then specify the application requirement with

respect to the defined policy. Then he can analyse

risks depending on the application domain using a

risk analysis method. This phase will allow

identifying possible threats and vulnerabilities to

consider later. Next, the application engineer can

model threats using a threat modelling technique.

This will allow defining security tests scenari. Later,

he can solve threats and vulnerabilities and inject

solution elements in (1) the requirements

specification phase for completeness (2) the design

phase for implementation fault prevention (3) the

security policy defining phase for improvement (4)

and the security mechanism choosing phase for an

efficient and well targeted choice and so on.

6 Experimentation
The experimentation aims to verify the efficiency of

guidance provided for identifying and solving

security problems when instantiating the process

model. Solving security problem in early phases

considerably helps reducing the development costs

and helps providing solutions that are independent of

coding techniques and technologies. The

experimentation also helps exploration of possible

(ISO 15408) – Part 3 : Security assurance requirements – version 2.1

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

ways provided to application engineers, who are not

necessarily security experts, in addressing software

application security issues.

 The experimentation produces different artefacts.

We give the following examples: 1) security test

plans deduced from possible attacks scenari and 2)

security solutions, which can be formally, semi-

formally or informally expressed. These solutions

can be considered in security requirements

specification, policy definition, design and

implementation. In Fig.5, we illustrates an example

of artefacts that is a buffer overflow attack tree. This

results from 1) risk analysis phase that helps

identifying threats and associated vulnerabilities, and

2) threat modelling phase that allows understanding

how threats will be transformed into attacks and

required conditions for their achievement.
Exploit a Buffer

Overflow

Identify a program

vulnerability

Form a malicious

input

Notice an

abnormal

behaviour of the

program

Force the program

jumping to a target

address

Have the source

code

Change a return

adresse value

Overflow a buffer

using a long input

Violate the buffer

boundaries limits

and and

Use a Trojan Hors
Violate the buffer

boundaries limits

Fig.5 : Buffer overflow attack tree artefact

 As we can see on Fig.5, to exploit a buffer

overflow, many attack scenari are possible with logic

operators between exploiting preconditions (here

only AND operators are illustrated). So, to realise

such kind of attacks, one must (have the source code

OR Notice an abnormal behaviour of the program)

AND (use a Trojan Hors to form a malicious input)

AND (overflow a buffer using a long input OR

violate the buffer boundaries limits to modify a

return address value and so on). Some of these attack

scenari could be used during security testing to

verify if the defined solutions are efficient to prevent

this kind of exploit. Solutions are defined in contrast

with the preconditions to break them and prevent

their satisfaction.

 With ANDs between preconditions, partial

solutions are thus possible. As sufficient solution

that could be identified in the “solve threats” step

using a formal strategy as solving method, the

application engineer could try verifying the

following constraints for each input buffer (that

could be a command line argument, a parameter, a

file, a register, a field, a dialog box, etc.):
BufferCapacity ≤ DestinationBufferLength
BufferCapacity  ≥ SourceBufferLength

BufferIndex ≥ BufferLowerBound

BufferIndex ≤ BufferUpperBound

BufferUpperBound ≤ BufferLength

 If verified, these constraints would relax the

precondition “Force the program jumping to a target

address” and then the attack will miss an important

part for its release success.

7 Conclusion
A development process that includes security is now

critical with today’s software invasion. Security

needs to be part of an end-to-end development.

Today, it is recognized that there are different ways

for producing secure software, but, the high level of

abstraction in models limits their usefulness in

actually supporting and helping in development.

 Security policies, standards, guidelines and best

practices should be inherent in the process and

should be accessible to developers who lack

knowledge about how to address vulnerabilities.

 This paper proposes a strategic oriented process

model, which supports non-formal, semi formal and

informal techniques for addressing software security

concerns. This model offers strategic and tactic

guidance performing the development process.

 Experimentation allowed demonstrating the

efficiency of our approach even for reviewing the

security of already existing software.

 We are now developing the environment denoted

“ASASI” for Addressing Software Application

Security Issues aiming at assisting the application

engineer in this critical and complex task. Our goal is

to thwart him from taking hypothesis and ad hoc

decisions including security requirements.

References:

[1] Abie H., Aredo D., Kristoffersen T., Mazaher S.,

Raguin T., Integrating a Security Requirement

Language with UML, In the Proc. of the Seventh

International Conference on UML Modeling

Languages and Applications, LNCS 3273,

Lisbon, Portugal, October, pp. 350-364, 2004.

[2] Alexander I., Misuse Cases: Use Cases with

Hostile Intent, IEEE Software, vol. 20, no. 1,

2003, pp. 58–66.

[3] Anderson, R., Why Cryptosystems Fail, In Proc.

1st Conf. On Computer and Communications

Security, 1993.

[4] Ball, T., The verified software challenge: A call

for a holistic approach to reliability. In Verified

Software: Theories, Tools, Experiments, October

2005.

[5] Ben Ghezala H., Bayoudh I., Jamoussi Y.,

Formalization of Navigation Strategies in a Map,

5th World Multiconference on Systemics,

Cybernetics and Informatics, Orlando, 2001.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

[6] Besson F., Jensen T., Le Métayer D., Thorn T.,

Model checking security properties of control

flow graphs, Journal of Computer Security ,

Volume 9, Issue 3, January 2001.

[7] Bieber P., Interprétation d'un modèle de sécurité,

Techniques et Sciences Informatiques, Editions

Hermes, Avril 1996.

[8] Burke R., Mobasher B., Zabicki R., Bhaumik R.,

Identifying Attack Models for Secure

Recommendation, Workshop: Beyond

Personalization 2005, IUI'05, January 9, 2005,

San Diego, California, USA.

[9] Chen, H., Wagner, D., MOPS : An Infrastructure

for Examining Security Properties of Software,

CCS’02, ACM, USA, November 2002.

[10] Davis N., Humpphery W., Samuel T.,

Redwine JR., Zibulski, G., McGraw, G.,

Processes for Producing Secure Software,

Published By The IEEE Computer Society, IEEE

Security & Privacy, May/June 2004.

[11] Dowson M., Iteration in the Software

Process, Proceedings of the 9th International

Conference on Software Engineering, pp. 36-41,

California, USA, May 1987

[12] Essafi M., Ben Ghezala H., Secure Software

Engineering Processes, 3rd International

Conference on Computing, Communications and

Control Technologies (CCCT ‘05), July 24-27,

2005 - Austin, Texas, USA.

[13] Evans, D., Larochelle, D., Improving

Security Using Extensible Lightweight Static

Analysis, IEEE Software, January/February 2002

[14] Gilliam D., Kelly J., Bishop M., Reducing

Software Security Risk Through an Integrated

Approach, Proc. of the Ninth IEEE International

Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(June, 2000), Gaithersburg, MD, pp.141-146.

[15] Gilliam, D. P., Wolfe, T. L., Sherif J. S.,

Bishop, M., Software Security Checklist for the

Software Life Cycle, Proceedings of the Twelfth

IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative

Enterprises (WETICE’03), 2003

[16] Gilliam, D., Powell, J., Haugh, E., Bishop,

M., Addressing Software Security and

Mitigations in the Life Cycle, Proceedings of the

28th Annual NASA Goddard Software

Engineering Workshop (SEW’03), IEEE

Computer Society, 2003.

[17] Grosz, G., Modeling and Engineering the

Requirements Engineering Process : An overview

of the Nature Approach, Requirements

Engineering Journal, Vol2 n°3, pp. 115-131,

1997.

[18] Hoglund, G., McGraw, G., Exploiting

Software How to Break Code, Addison Wesley,

February 17, 2004.

[19] Howard, M., LeBlanc, D., Writing Secure

Code, Microsoft Press- Microsoft Corporation,

2002.

[20] Improving Security Across The Software

Development Life Cycle, Task Force Report,

April 1, 2004.

[21] Jaquith A., The Security of Applications:

Not All Are Created Equal, Research Report,

@Stake, February 2002, pp. 1-12.

[22] Mann, C., Why Software Is so Bad,

Technology Review, July/August 2002.

[23] Mark G. Graff, Kenneth R. van Wyk, Secure

Coding : Principles & Practices, O'Reilly, June

2003

[24] McGraw G., Misuse and Abuse Cases:

Getting Past the Positive, published by The IEEE

Computer Society, IEEE Security & Privacy,

May/June 2004.

[25] McGraw G., Software Assurance for

Security, IEEE Computer 32(4), pp. 103-105

(April, 1999).

[26] McGraw G., Software Security : Building

Security IN, In IEEE Computer Society, IEEE

Security and Privacy, 2004.

[27] McGraw, G., Testing for Security During

Development : Why We Should Scrap Penetrate-

and–Patch, IEEE Aerospace and Electronic

Systems, vol. 13, no. 4, 1998, pp.13-15.

[28] NIST. The Economic Impacts of Inadequate

Infrastructure for Software Testing, Planning

Report, Gaithersburg, MD: National Institute of

Standards and Technology, 2002.

[29] Pescatore, J., Keys to Achieving Secure

Software Systems, Gartner Inc., September 22,

2004.

[30] Rolland C., Prakash N., Benjamen A., A

Multi-Model View of Process Modelling,

Requirements Engineering Journal, 1999.

[31] Siemens, Current Formal Security Models,

Information and Communication Security, 2003.

[32] Viega J., McGraw G., Building Secure

Software: How to avoid Security Problems the

Right Way, Addison-Wesley, Boston, 2001.

[33] Wimmel G., Wisspeintner A., Extended

description techniques for security engineering,

In Michel Dupuy and Pierre Paradinas, editors,

Trusted Information-The New Decade Challenge,

IFIP TC11 16th International Conference on

Information Security (IFIP/Sec'01), June 11-13,

2001, Paris, France, pages 470-485. Kluwer

Academic Publishers, 2001.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp362-367)

