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Abstract

A variety of biological processes can be modeled by a network composed of many
interacting component units (e.g. genes, proteins, neurons). It is of great biological
interest to learn the interactions among these units involved in a biological process
by network inference methods. However, one main obstacle in model-based network
inference is the high dimensionality of the corresponding mathematical problem due
to the large scale of the network model of the biological system under study. In
particular, for those models based on differential equations, the large number of model
parameters that need to be optimally estimated pose a major challenge due to the
high computational costs in the optimization search process. This paper presents a
new algorithm that decomposes the task of global search for the optimal parameters
for the entire network model into a set of sub-tasks each searching for a subset of
parameters associated with one unit in the network. (Such an algorithm can also be
easily implemented in parallel by a multiprocessor computer system with each processor
responsible for the computation for one or more of the units in the network.) The
improved algorithm makes it possible to address realistic problems involving large
number of components. The implementation details of the algorithm are discussed and
the simulation results based on synthetic data are presented.
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1 Introduction

In various fields in science and engineering, there may be the need to model a system under
study as a network composed of a set of component units, and to find how these units
interact with each other. Network (or circuit) inference is a general approach that could
be used to address such needs. In particular, various biological processes may be modeled
as a network, such as gene regulation networks [1] [2] [3], protein networks [4] [5] [6] [7],
and neural networks in the nervous system [8] [9] [10] [11] [12]. In any of these cases, the
component units (the genes, proteins, or neurons) can be activated (turned on, excited) or
deactivated (turned off, inhibited) to varying degrees at different times by other units in the
network. For example, when a gene is turned on it is transcribed to produce messenger RNA
(mRNA) which is subsequently translated into protein molecules. Some of these proteins
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are transcription factors which can bind to specific sites (promoter regions) of the DNA and
affect the corresponding genes to turn them on or off. As another example, large number of
neurons in the brain form networks responsible for various neural functions. A neuron may
be either excited or inhibited by the synaptic inputs received by its dendrites from many
other neurons, while its response to these inputs is in turn sent through its axon to interact
with still other neurons. The interplay of these component units in such networks can be
described as a network model, which controls the relevant biological processes, such as gene
expression, signal transduction, or neural signal processing. It is therefore of great biological
interest to learn how the component units in the network of a specific biological process
interact with each other, based on the observed time course data (gene expressions, protein
activities, neural activations, etc.), by various network inference methods.

Modeling and network inference can be considered as a reverse engineering problem.
Based on the understanding of the biological process under study, a mathematical or com-
putational model is to be developed to produce output data consistent with the observed
biological data, such as the expression levels of genes. A model should be able to simulate
the behaviors of the gene or neural networks and thereby reveal the interactions between
the genes or neurons. The goal of such modeling efforts is to gain insights into and better
understand the biological process under study.

Various types of models for network inference have been proposed, such as the Boolean
network models (Akutsu et al [13], Liang et al [14]) which simulate the genes by a set of
binary nodes interacting with each other following some simple logical operations; the linear
and quasi-linear models (D’Haeseleer [15], van Someren [16]) based on the assumption that
the genes are all linearly related in the network; the Bayesian networks methods (Friedman
et al [17]) which treat the gene interactions as complex stochastic processes and recover
the interactions by tools for learning Bayesian networks; and the differential equation (DE)
models (Cohen and Grossberg [18], Hopfield [19], Mjolsness and Rienitz [20], Chen [21],
Mjolsness et al [22]) which simulate the dynamic interaction of components in a biological
network by a set of differential equations and find the interaction of the units in the network
qualitatively. Compared to other model types, the differential equation models are more
realistic biologically, but are also most challenging computationally, not only because a large
set of differential equations (one for each component in the network) need to be solved, but
also, a large number of parameters, typically proportional to the square of the number of
differential equations, need to be optimally estimated to fit the observed data.

Due to the complexity of most of the biological systems of interest, the more realistic
models such as those based on differential equations have only been able to address small
scale problems with a network containing a small number of units. it is highly desirable to
extend this general modeling approach of network inference to address large scale problems of
many more units. In particular in order to analyze the huge amount of data produced by the
latest biotechnologies, such as the gene expression data massively produced by microarray
technology based on DNA hybidization, it is necessary to develop more robust and efficient
algorithms. The method presented in this paper is just the result of such an effort to
improve upon the existing network inference methods and to address larger scale problems
in biological network inference.

2

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp727-738)



2 Differential Equation Gene Network Models

Models based on differential equations are inspired biologically (neural networks, gene regu-
lation networks) with the assumption that the dynamics of the interaction among the units
in the network can be approximated by a set of first order differential equations [18] [19] [20].
Let the time varying variable (time course data) associated with the ith unit of the network
with n units be denoted by vi(t), then how the units in the network interact with this ith
unit can be described by the following differential equation:

τi

d

dt
vi(t) + λivi(t) = g[

n∑

j=1

Tijvj(t) + hi] (i = 1, · · · , n) (1)

Among all the parameters τi, λi, hi and Tij of this differential equation model, the n by
n matrix T= [Tij ]n×n is most important, as it represents specifically how the n units in
the network interact with each other. Specifically, the ijth component Tij of the matrix
represents how the jth unit interacts with the ith unit. If Tij > 0, the jth units activates
(up-regulates, excites) the ith unit, whereas if Tij < 0, the jth unit represses (down-regulates,
inhibits) the ith unit. The two units are not related if Tij = 0. Note that these n differential
equations, one for each unit in the network, are coupled together by the T matrix, therefore
they have to be solved simultaneously.

The g(x) in the equation is a nonlinear monotonic sigmoidal function, typically defined
as

g(x) =
ex − 1

ex + 1
, or g(x) =

x√
1 + x2

to represent the overall effect (activation or suppression) of all n units in the network asserted
on the ith unit. In certain network models a constant needs to be added to the function
g(x) to make it non-negative (e.g., the gene expression level in gene regulation networks is
always positive), while in other models it should have both polarities (e.g., the excitation
and inhibition of neurons in recurrent neural networks).

The problem of network inference based on the differential equation network model de-
scribed above can be formulated as below: given a set of n time course data vi(t) (i =
1, · · · , n) each for one of the n component units in the biological process at k sampling times
t = 1, 2, · · · , k, we want to find the parameters in the differential equation system in Equa-
tion 1, including, τi, hi, λi and Tij for all n units (i, j = 1, · · · , n), which are optimal in
the sense that when the differential equation system is solved based on such parameters, its
solution, the reconstructed data, will fit the observed time course data with minimum error.
Once found, these optimal parameters, in particular, the matrix T= [Tij], will reveal the
interaction among the component units in the network. However, the simultaneous search
for these n(n + 3) optimal parameters poses a major computational challenge.

3 global optimization

The parameters in the differential equation model can be estimated by an optimization
process [22] that searches through an n(n + 3) dimensional parameter space spanned by
all the unknown parameters to find the optimal parameters including h= [h1, · · · , hn], τ=
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[τ1, · · · , τn], λ= [λ1, · · · , λn], as well as T= [Tij ]n×n, so that the cost function defined below
is minimized:

S(T , h, τ , λ) =
n∑

i=1

∑

t

[v̂i(t, T , h, τ , λ) − vi(t)]
2 (2)

Here h, τ , λ, are vectors each containing the n corresponding parameters for the n units in
the network. Whenever a set of estimated parameters is available, the differential equations
of the model can be solved to obtain the solutions v̂i(t, T , h, τ , λ), (i = 1, 2, · · · , n), i.e.,
the reconstructed data points, and the cost function, the error between the reconstructed
and observed time course data, can be found to represent how well the differential equation
network model fits the biological reality. Moreover, more terms may be added to this cost
function for various reasons. For example, a second term of

∑n
i,j=1

T 2

ij could be added to
encourage a sparse matrix T , as in general only a small number of units in a biological
network have direct links to other units. Other terms may be included in the cost function
to impose additional constraints, such as the upper bounds for the parameters. However, for
simplicity, all these additional terms are to be omitted in the following discussion.

The general approach of this kind of optimization problem is to iteratively search the
parameter space from an initial guess to find the optimal solution that minimizes the cost
function, i.e., the global minimum of the cost function in the parameter space. However, this
search process presents a major challenge due to the high dimensionality of the parameter
space. Moreover, to obtain the reconstructed value v̂i(t, T , h, τ , λ), needed in the cost
function to be minimized, the n differential equations which are coupled by matrix T have
to be solved simultaneously and repeatedly for the iterations. Consequently, the parameters
for all n units will have to be searched simultaneously. In general, there are O(n2) unknown
parameters to search for a network of n unit, including n2 components of the interaction
matrix T , together with n sets of additional parameters one for each unit ({hi, λi, τi}, i =
1, · · · , n). For a network model of moderate size of n = 10 units, a 130-dimensional parameter
space has to be searched.

Further more, due to the many possible local minima in the parameter space, usual search
methods such as gradient descent does not guarantee the optimal solution corresponding to
the global minimum in the parameter space. For this reason, simulated annealing search
algorithms (with the capability of getting out of a local minimum) have been used for this
optimization problem [20]. However, due to the extremely high computational cost and the
algorithm’s very slow rate of convergence, only some relatively small scale problems can be
practically solved within a reasonable time.

It is practically impossible to solve a network inference problem of realistic size involving
hundreds or even more units without some major improvement in both the search algorithm
and the computational implementation. New effective algorithms are needed to address the
difficulty of high dimensionality (the number of units in the network and the parameters in
the model). In the following, we will present a new network inference algorithm as such an
effort.

4 New Approach for Solving DE Model

Our algorithm is carried out in a sequence of steps as discussed below.
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4.1 Interpolation of raw data

The time course data vi(t) obtained biologically are usually highly constrained due to various
limitations in the laboratory setting. For example, the data are inevitably contaminated by
noise of various sorts, and the number of time samples is likely to be small, due to the cost
of the data collection process. To clean up the data, and to ensure the availability of enough
time samples of the data required by the algorithm (more time samples than number of units
in network, as discussed later), the first step is to interpolate the collected data samples by,
for example, cubic spline interpolation. From this point on, we can assume the availability
of the analytical expressions of the time course data vi(t). The immediate benefit of this
interpolation is not only the arbitrary number of data points usable, but, more importantly,
the fact that the time derivatives of the data v′

i(t) = dvi(t)/dt can be obtained analytically,
rather than numerically, without computational error. This turns out to be an essential
advantage based on which the following algorithm is developed.

4.2 Decomposition of the network in the search process

Searching the high dimensional space (O(n2)) for the optimal parameters of the model is the
most difficult part in the minimization of the cost function S defined by Equation 2 above.
In general, the chance of finding the global minimum in such a high dimensional parametric
space by any search-based algorithm is slim, due to the local minimum problem and the
tremendously high computational cost. The hope for such a search problem is the reduction
of the dimensionality of the parameter. This becomes possible if we use an alternative cost
function based on the time derivatives v′

i(t) of the observed time course data vi(t) and the
estimated data generated by the model:

S(T , h, τ , λ)

=
n∑

i=1

Si(Ti, hi, τi, λi) =
n∑

i=1

∑

t

[
d

dt
v̂i(t, Ti, hi, τi, λi) −

d

dt
vi(t)]

2 (3)

where

Si(Ti, hi, τi, λi)
△
=

∑

t

[
d

dt
v̂i(t, Ti, hi, τi, λi) −

d

dt
vi(t)]

2 (4)

is the cost function for the ith unit, representing the difference between the time derivatives
of the observed data dvi(t)/dt and the derivatives dv̂i(t)/dt of the reconstructed data from
the model, which can be obtained directly from the model as a function of the parameters,
τi, λi, hi and Ti. Here Ti is the ith row of the n by n matrix T , representing how the ith
unit is affected by other units (as well as by itself if Tii 6= 0).

The time derivative dvi(t)/dt in the cost function Si can be found analytically from the
interpolation of the observed data vi(t), while the time derivative of the reconstructed data
dv̂i(t)/dt based on the estimated parameters is readily available in the differential equation
model as the right-hand side of Equation 1:

d

dt
v̂i(t) =

1

τi

g[
n∑

j=1

Tijvj(t) + hi] −
λi

τi

vi(t) (5)
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Note that the derivative of the reconstructed data dv̂i(t)/dt is given directly as the right-
hand side of the above expression, i.e., finding this derivative no longer requires solving the
differential equation system.

Two major advantages can be gained from this method associated with the alternative
cost function in Equation 3. First, Equation 1 for the network model is no longer a set
of differential equations, because now the derivative of the time course data dvi(t)/dt is
known as well as the time course data vi(t), and the equations become algebraic, instead of
differential. Consequently, the effort of repeatedly solving the differential equation system is
avoided altogether. Second, just because of the avoidance of solving the differential equation
systme, the task of finding the optimal parameters for the model can be completely decoupled
so that the n sets of parameters can be estimated independently for each of the n units.

The second advantage above is most essential as the problem of searching an O(n2) dimen-
sional space to minimize S =

∑n
i=1

Si can now be divided into n independent sub-problems
each for searching an O(n) dimensional space to minimize Si. To see the improvement, as-
sume there are L discrete values to consider along each dimension of the parameter space. If
we need to minimize the cost function n Equation 2, we have to search a O(n2) dimensional
parameter space of size O(Ln2

) for all n units. However, if the cost function in Equation
3 is used, the problem is decoupled so that we will solve n subproblems each for searching
a O(n) dimensional subspaces of size O(Ln). Obviously, with the second method, both the
complexity and computational cost are tremendously reduced, as the computational cost is
linearly related to the size of the network model.

4.3 Solving the algebraic subproblems

To find the optimal parameters for each of the n subproblems, say the ith one, we first
consider an arbitrary point in the 2D space spanned by the two parameters τi and λi on
the left-hand side of Equation 1. For this particular point (τi, λi), together with the known
time derivative dvi(t)/dt as well as the data point vi(t), we can obtain a specific value
x = τidvi(t)/dt+λivi(t), and then its inverse function g−1(x), which is also the value for the
right-hand side of the equation:

g−1(x) = g−1[τi

dvi(t)

dt
+ λivi(t)] =

n∑

j=1

Tijvj(t) + hi, (t = 1, · · · , k)

This is a linear algebraic equation system with n + 1 unknowns (hi, Tij , j = 1, · · · , n) and
k equations each for one of the k data samples at time t = 1, · · · , k. If we assume k > n,
i.e., there are more time samples than components in the network, this equation system can
be solved for the n + 1 unknown parameters by the least square method, with a certain
error. This process is repeated for each of the points in the 2D space spanned by (τi, λi)
(with a reasonable range and resolution), and the solution corresponding to the smallest
least square error can chosen as the optimal parameters for the network model. Moreover,
we could also keep the solutions associated to the lowest few mean square errors during
the search process. If these errors are similar to the absolute lowest error, the corresponding
solutions can also be kept as the sub-optimal parameters, which may provide a few alternative
interaction patterns of the network model, potentially meaningful for understanding the
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biological process. However, if the number of such sub-optimal solutions is to large, we will
need to consider taking more data points to increase the number of constraining equations.

4.4 Meaningfulness of solutions

It is in general impossible to determine the existence and uniqueness of the solutions of a
nonlinear algebraic system such as the one discussed above. However, when using least square
method, if we can have significantly more constraining equations than unknown variables,
i.e., the number of time samples k is much larger than the number of component units n
in the network, we can still obtain one or a small number of meaningful solutions for the
algebraic equation system.

In the case where there are a large number of units (e.g., number of genes in microarray
data) but limited time samples (due to constraints imposed by the biological experiments),
clustering analysis can be carried out to combine similarly behaving units (e.g. co-expressing
genes) to reduce the number of independent units in the network.

Since the estimated parameters of the mode are constants instead of time variables, the
network model describes a biological process that is stable, i.e., the way the units in the
network interact does not change over time. However, for an unstable process, the time-
varying characteristics of the process can also be captured by a time window that shifts
along in time, generating the model parameters for the corresponding time pariod along the
way.

5 Simulation Results

The algorithm discussed above was tested by synthetic data. Based on a set of parameters
hi, τi, λi, Tij randomly selected, the differential equation system in Equation 1 was solved to
generate a set of n = 8 time functions vi(t), (i = 1, · · · , n = 8) each containing k = 50
time samples, to simulate the time course values of eight component units in the network.
Also four sets of data were generated to simulate the data collected from the same biological
process repeated four times. Next the analytical derivatives dvi(t)/dt of data were obtained,
and, together with vi(t), fed into the program of the algorithm to estimate the network model
parameters.

Based on the cost function Si in Equation 4, the parameters for each of the eight units
were estimated separately, and then compared to the actual parameters used to generate
the synthetic data. The estimated parameters obtained by the optimal parameter search
algorithm for hi, τi, λi (i = 1, · · · , n) were almost identical to those actually used to generate
the data, as shown in the tables below:
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Parameters used to generate the data

h 2.10 4.60 -5.50 10.50 3.40 -6.60 -7.90 -7.60
τ 0.90 24.90 24.90 19.20 25.20 6.60 20.70 26.40
λ 0.60 0.90 1.00 0.60 0.50 0.30 0.90 1.10

Estimated parameters

ĥ 2.11 4.49 -5.48 10.49 3.35 -6.60 -7.93 -7.59
τ̂ 0.91 24.75 24.88 19.20 25.17 6.60 20.68 26.39

λ̂ 0.60 0.89 1.00 0.60 0.50 0.30 0.90 1.10

The two tables below show the T matrix used for generating the data and the estimated
T̂ matrix obtained by the search algorithm. As can be seen, the estimated T̂ matrix closely
resemble the actual T matrix. The estimation errors for most of the matrix components are
small (within 10 percent), although there may be some individual entries with larger errors.

Matrix T used to generate the data

0.40 2.00 -0.80 -0.40 -2.00 -0.40 1.20 0.40
-3.00 1.60 0.00 0.00 0.40 1.60 0.40 -0.40
-1.60 -1.20 0.40 -10.00 -0.80 1.20 -1.20 0.40
0.80 -1.20 5.00 0.40 -0.40 0.40 -1.60 -2.00
1.60 -0.40 0.40 -2.00 -1.60 5.00 0.40 1.20

-0.40 -0.80 0.00 -1.20 -4.00 -0.80 0.40 0.00
1.20 -0.40 -2.00 -1.60 -1.20 -0.40 1.60 7.00
0.40 -2.00 0.40 -1.60 0.40 1.60 -6.00 1.20

Estimated matrix T̂

0.40 2.01 -0.80 -0.40 -2.00 -0.40 1.20 0.40
-2.87 1.57 -0.01 -0.01 0.33 1.51 0.42 -0.36
-1.58 -1.21 0.41 -9.85 -0.81 1.15 -1.16 0.41
0.80 -1.20 5.00 0.40 -0.40 0.40 -1.60 -2.00
1.57 -0.37 0.37 -1.97 -1.57 4.93 0.41 1.20

-0.40 -0.80 0.00 -1.20 -4.00 -0.80 0.40 -0.00
1.19 -0.43 -1.99 -1.59 -1.17 -0.41 1.58 6.98
0.40 -2.00 0.40 -1.60 0.40 1.60 -5.99 1.20

Moreover, to further validate the estimated parameters obtained above, the differential
equation system was re-solved based on the estimated parameters to reconstruct the data
v̂i(t), which were then compared with the original data vi(t), as shown in the two figures
below. These two figures each contain eight curves vi(t), (i = 1, · · · , n = 8) colored
differently for the n = 8 units. The horizontal axis is divided into four segments each
containing 50 time points for the four sets of data of the same model but under different
initial conditions. As shown in the figures above, the difference between the two sets of
curves for v̂i(t) and vi(t) is hardly noticeable.
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Figure 1: The simulation of observed data

Figure 2: The reconstructed data based on estimated parameters
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6 Conclusion and Future Work

We have presented a new parameter estimation algorithm by which the differential equation
network model can be converted to a set of algebraic equations which can be further decom-
posed into a set of sub-problems each addressing one individual unit in the network. The
computational cost of this algorithm for the estimation of the network model parameters is
reduced to be linearly related to the number of units in the network model, and the optimal
search in a high dimensional parameter space commonly encountered in such problems and
the associated computational cost (typically growing exponentially as the number of units
in the network increases) can be totally avoided. Consequently it becomes more likely to
be able to address larger scale network problems in realistic biological systems with tens or
even hundreds of units.

Moreover, as the algorithm presented here decomposes the multi-component system lin-
early into a set of independent sub-problems, it is highly suitable to be parallelized and
implemented by a multiprocessor computer system with each processor responsible for the
computation for one or more of the units in the network. With such a system, the compu-
tational task of the algorithm can be significantly sped up.

The main goal of the continuation of this research is to apply the algorithm to realistic
biological problems. Inevitably various challenges will be encountered. For example, the
number of samples of the time course data collected by the biological experiments is likely
to be quite limited, possibly smaller than the number of units in the network model for the
biological system, e.g, the number of genes in microarray data. In such cases, there will be
more unknown parameters than constraining equations, consequently many sets of solutions
could be obtained but revealing little relevant information of the biological process. In this
case, clustering analysis methods can be used to combine similarly behaving units (e.g. co-
expressing genes) to reduce the number of independent units in the network. Yet another
possible challenge is that sometimes the time course data are not available in the linear scale,
for example, the gene expression data are commonly collected as the ratio to some reference
level. In such cases, some conversion process is needed before the algorithm discussed above
can be applied.
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