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1 Introduction
Symbolic analysis for analog circuits has re-
ceived quite some research interest over the last
ten years. In numerical simulation, the values
of all circuit elements are given and the circuit
response to an input excitation is calculated in
numerical form. In symbolic computation, the
circuit elements are represented by symbols and
the desired network characteristic is derived in
finite terms (or in physicist language: as an an-
alytic expression).

This paper focuses more particularly on the
symbolic computation of network functions of
linear passive circuits. The computation of net-
work functions in symbolic forms is a start-
ing point for tolerance analysis, fault diagnosis,
behavioral model generation, statistical circuit
analysis, optimization and the associated calcu-
lation of component values. In brief, symbolic
computation can be very useful in all applica-
tions which involve the repeated evaluation of a
circuit’s characteristics.

This paper proposes an implementation in
Maple language of the computation of any net-
work functions (E/I, E/E, I/E, I/I) of linear
passive circuits by means of the so–called Kirch-
hoff’s “third and fourth laws” [5]. These laws
allows one to express network functions, in a
very concise way, in terms of trees enumerations.
The symbolic computation of network functions
is closely related to the computation of the in-
verse of a nodal admittance matrix. Both of
problems are efficiently solved by tree enumer-
ation methods [2][1].

Section 2 recalls some definitions of graph
theory which are necessary to understand the

statement of the Kirchhoff’s laws. Sections 3
and 4 give the statement of the third and fourth
Kirchhoff’s laws. The proofs of these laws can
be found in [4](with minor corrections [3]). Two
hand calculations of these laws are detailed on
sections 5 and 6. Finally, sections 7 and 8
present the algorithm and propose a practi-
cal implementation of the Kirchhoff’s third and
fourth laws.

2 Graph Theory
Some definitions of graph theory are recalled in
this section. The terminology is standard except
for the terms split–tree and co–split–tree. These
new terms are proposed by the authors to give
an uniform statement of the third and fourth
Kirchhoff’s laws.

• Graph: A graph (or network) consists of a
set of nodes together with a set of edges
that connect the nodes.

Graph

Edge
Node

• Tree: A tree is any set of edges that con-
nects all the nodes but does not form any
loop.

• Cotree: The cotree of a tree is its comple-
ment, i.e. the set of all edges of the graph
that do not appear in the tree.
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Tree Cotree

• Loop: A loop is any set of edges that forms
a closed path.

• Coloop: The coloop of a loop is its comple-
ment, i.e. the set of all edges of the graph
that do not appear in the loop.

Loop Coloop

• Split–tree: A splittree (split into trees) is
any set of edges whose removal would dis-
connect a graph into two trees.

• Co–split–tree: The cosplittree of a split-
tree is its complement or the remaining two
trees, i.e. the set of all edges of the graph
that do not appear in the splittree.

Splittree CoSplittree

The definition of a split–tree must not be
confused with a cutset which is a set of edges
whose removal would disconnect a graph. Sim-
ilarly, the definition of a co–split–tree must not
be confused with a two–tree which is a set of
edges obtained by deleting an edge from a tree.

3 Kirchhoff’s “Third Law”
Given any connected resistance network G, if a
voltage generator El is inserted in a branch Rl,
then the current Ik through any branch Rk is
given [5] by Eq. 1.

Ik =
Nkl

D
El (1)

Nkl =

+/−∑

loops(Rk ,Rl)

∏

Rm∈coloop

Rm (2)

D =
∑

cotrees(G)

∏

Rm∈cotree

Rm (3)

• How to read the expression of D:

The summation is carried out over all the
cotrees of the network. A term in the
summation is the product of all the edges
(resistances) of a cotree.

• How to read the expression of N :

The algebraic summation is carried out
over all the loops that include as its edges
both Rk and Rl. The associated sign of the
term is positive if the directions of Ik and
El, along the loop, are in the same sense.
A term in the summation is the product of
all the edges (resistances) of the associated
coloop.

4 Kirchhoff’s “Fourth Law”
Given any connected conductance network G, if
a current source Il is placed across any branch
Gl, then the voltage Ek across any branch Gk

is given [5] by Eq. 4.

Ek =
N ′

kl

D′
Il (4)

N ′

kl =

+/−∑

splittrees(Gk ,Gl)

∏

Gm∈cosplittree

Gm (5)

D′ =
∑

trees(G)

∏

Gm∈tree

Gm (6)

• How to read the expression of D′:

The summation is carried out over all
the trees of the network. A term in the
summation is the product of all the edges
(conductances) of a tree.

• How to read the expression of N ′:

The algebraic summation is carried out
over all the splittrees that include as its
edges both Gk and Gl and so that Gk and
Gl connect the two trees. The associated
sign of a term is positive if the direction of
Ek and Il, connecting the two trees, are in
the same sense. A term in the summation is
the product of all the edges (conductances)
of the associated two trees (cosplittree).
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5 Hand calculation of
Kirchhoff’s third law

The third Kirchhoff’s law is illustrated in the
network shown in Fig. 1. We want to ex-
press the current I5 through the resistance R5

in terms of the supply E0 and the given resis-
tances.

R1

R3

R2

R4

R5

a

b

c d
I5

E0

R0

Fig. 1: Bridge resistance example.

All the subgraphs, that contains edges 0 and
5 and possessing one loop, are shown in Fig. 2.
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Fig. 2: Loops of network in Fig. 1.

The respective coloops of the previous sub-
graphs is given on Fig. 3.

a

c d

2

OOOOOOOOOOOOOOOO

b

3

�
�

�
�

�
�

�
�

�

a

c

1

?
?
?
?
?
?
?
?
?

d

b

4

oooooooooooooooo

Fig. 3: Coloops of network in Fig. 1.

The trees and their associated cotrees are
given in Fig. 7 and 8. By inspection of sub-
graphs on Fig. 2, 3 and 8, the current I5 is:

I5 =
+R2R3 − R1R4

R3R4R5 + R2R3R5 + · · · + R0R1R3
E0

(7)

6 Hand calculation of
Kirchhoff’s fourth law

The fourth Kirchhoff’s law is illustrated in the
network shown in Fig. 4. We want to express
the voltage E5 across the resistance R5 in terms
of the supply I0 and the given conductances.
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Fig. 4: Bridge conductance example.

All the subgraphs, composed of edges whose
removal would split the graph into two trees
linked by edges 0 and 5, are shown in Fig. 2.
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Fig. 5: Split–trees of network in Fig. 4.

The two remaining trees of the previous sub-
graphs are given in Fig. 6. Edges 0 and 5 are
represent in dashed line for clarity.
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Fig. 6: Co–split–trees of network in Fig. 4.

The trees and their associated cotrees are
given in Fig. 7 and 8. By inspection of sub-
graphs on Fig. 5, 6 and 7, the voltage E5 is:

E5 =
+G1G4 − G2G3

G0G1G2 + G0G1G4 + · · · + G2G4G5
I0

(8)
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7 Algorithm
The theoretical statements of the so–called third
and fourth Kirchhoff’s laws (Eq. 1 and 4) are
intricate and one needs some time to get accus-
tomed to it. At the opposite the algorithms [5]
to compute them are straitforward and lead to
very concise Maple programs.

Computation of D

1. Compute the determinant of the nodal resis-
tance matrix.

2. The denominator D is the complement of
each term.

Computation of N

1. Choose those terms of D that contain Rk and
divide each of them by Rk.

2. Choose those terms of D that contain Rl and
divide each of them by Rl.

3. The numerator N is the common terms in
these two sets. The signs of the terms are
determined by inspection of the respective
subgraphs.

Computation of D’

1. The denominator D’ is the determinant of
the nodal conductance matrix.

Computation of N ′

1. Choose those terms of D′ that contain Gk

and divide each of them by Gk.

2. Choose those terms of D′ that contain Gl and
divide each of them by Gl.

3. The numerator N ′ is the common terms in
these two sets. The signs of the terms are
determined by inspection of the respective
subgraphs.

8 Implementation
The two Maple programs given in this section
are the core of the implementation of the Kirch-
hoff’s third and fourth laws. The code follow
almost litteraly the algorithms given in the pre-
vious section. The remaining Maple code and
numerous examples of use are available by In-
ternet at http://www.lpmo.edu/~ratier.

Computation of third law (Eq. 1)
Imp1 is the resistance of the branch through
which the voltage generator is inserted. Imp2

is the resistance of the branch through which
the current is measured. G is the graph of the
circuit.

KirchhoffThirdLaw := proc(Imp1,Imp2,G)

local Tmp1,Tmp2,Tmp3,Tmp4,Num,Den:

Tmp1 := CoTrees(G);

Tmp2 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Imp1);

Tmp3 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Imp2);

Tmp4 := Tmp2 intersect Tmp3;

Den := convert(map(proc(x)

convert(x,‘*‘): end, Tmp1),‘+‘);

Num := convert(map(proc(x)

LoopSign(Imp1,Imp2,x,G)

*convert(x,‘*‘): end, Tmp4),‘+‘);

RETURN(Num/Den):

end:

Example
In order to illustrate the execution of this pro-
gram, the circuit depicted in Fig. 1 is defined
and analysed by the following Maple code. Ver-
tices and edges are added to the graph using
the commands addvertex, and addedge. Edge
names must begin with the letter “e”. Edges
can be specified as sets or lists of vertices. A
list indicates a directed edge, while a set indi-
cates an undirected edge. Current and voltage
sources as components though or across which
current or voltage are mesured are defined by
directed edges.

> new(G):

> addvertex({a,b,c,d},G):

> addedge([b,a],names=eR0,G):

> addedge({a,c},names=eR1,G):

> addedge({a,d},names=eR2,G):

> addedge({c,b},names=eR3,G):

> addedge({d,b},names=eR4,G):

> addedge([c,d],names=eR5,G):

> KirchhoffThirdLaw(eR0,eR5,G);

(-eR1*eR4+eR3*eR2)/(eR0*eR5*eR4

+eR3*eR0*eR1+eR2*eR4*eR0+eR4*eR3*eR2

+eR2*eR5*eR1+eR0*eR3*eR2+eR3*eR1*eR4

+eR3*eR1*eR2+eR3*eR5*eR4+eR0*eR5*eR2

+eR0*eR3*eR5+eR4*eR1*eR5+eR4*eR1*eR2

+eR3*eR5*eR2+eR0*eR1*eR5+eR0*eR1*eR4)
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Computation of fourth law (Eq. 4)
Adm1 is the conductance of the branch across
which the current source is placed. Adm2 is the
conductance of the branch across which the volt-
age is measured. G is the graph of the circuit.

KirchhoffFourthLaw := proc(Adm1,Adm2,G)

local Tmp1,Tmp2,Tmp3,Tmp4,Num,Den:

Tmp1 := Trees(G);

Tmp2 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Adm1);

Tmp3 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Adm2);

Tmp4 := Tmp2 intersect Tmp3;

Den := convert(map(proc(x)

convert(x,‘*‘): end, Tmp1),‘+‘);

Num := convert(map(proc(x)

SplitTreeSign(Adm1,Adm2,x,G)

*convert(x,‘*‘): end, Tmp4),‘+‘);

RETURN(Num/Den):

end:

Example
The circuit depicted in Fig. 4 is defined and
analysed by the following Maple code.

> new(G):

> addvertex({a,b,c,d},G):

> addedge([b,a],names=eG0,G):

> addedge({a,c},names=eG1,G):

> addedge({a,d},names=eG2,G):

> addedge({c,b},names=eG3,G):

> addedge({d,b},names=eG4,G):

> addedge([d,c],names=eG5,G):

> KirchhoffFourthLaw(eG0,eG5,G);

(-eG3*eG2+eG1*eG4)/(eG0*eG1*eG2

+eG0*eG1*eG4+eG3*eG2*eG4+eG3*eG2*eG5

+eG3*eG1*eG5+eG0*eG1*eG5+eG0*eG2*eG5

+eG5*eG2*eG4+eG0*eG4*eG5+eG0*eG3*eG2

+eG0*eG3*eG4+eG3*eG1*eG2+eG0*eG3*eG5

+eG2*eG1*eG4+eG3*eG1*eG4+eG5*eG1*eG4)

9 Conclusion
The unrecognized Kirchhoff’s third and fourth
laws have been recalled in this paper. These
laws allow one to compute network functions,
of linear passive circuits, in straight formulas.
The statement of these two laws have been de-
tailed as they are stated in a formalism which is
unusual to most scientists from the electronics
comunity. A very concise Maple programs to
compute them have been proposed.
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Fig. 7: Trees of network in Fig. 1 or 4.
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Fig. 8: CoTrees of network in Fig. 1 or 4.
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