
Modular Software Process Simulation Models Through Metamodeling

MERCEDES RUIZ1, ISABEL RAMOS2, MIGUEL TORO2
Department of Computer Languages and Systems

1University of Cádiz
C/ Chile, 1, 11003 – Cádiz

2University of Seville
Avda. Reina Mercedes, s/n, 41012 – Seville

 SPAIN

2

Abstract: - In this paper we present the main concepts and principles of a multilevel architecture to help in the
development of modularized and reusable software process models under the System Dynamics approach. The
conceptual ideas of the multilevel architecture have been formalized using UML as a notation. Metamodeling is
used to support the process of abstract modules development. The architecture proposed is also based on ISO’s
Information Resource Dictionary System. The principles of the architecture and overall guide to develop
software process simulation models are described in this work.

Key-Words: - Software process simulation modeling, simulation models reusability, simulation modeling
architecture

1 Introduction

One of the factors limiting the development and wide
application of software process simulation modeling
in the industry has traditionally been the inability to
deal with the conceptual complexity of formulating,
building, calibrating and debugging complex models.
A well-recognized method for reducing complexity
involves structuring models as a set of distinct
modules with well-defined interfaces. This has been a
proven technique in the software development field,
which has been and still is strongly influenced by the
application of concepts such as modularization,
encapsulation, reutilization, and, definitely,
abstraction. Currently, there is a growing interest in
defining and applying a methodology to formally
develop software process simulation models. This
significant interest has been shown during the last
editions of ProSim where a good number of papers
dealt, direct or indirectly, with this subject [1, 2, 6, 7,
10].
 In recent papers, our research has been focused on
the application of dynamic modeling and simulation
as an effective tool for software process
improvement. As a consequence of our research
efforts, a Dynamic Integrated Framework for
Software Process Improvement (DIFSPI) has been
developed. This framework combines static
algorithmical methods assumed as traditional
techniques in the planning, monitoring and

management fields of the software engineering [3, 4],
with the dynamic methods of the software process
modeling and simulation under the System Dynamics
approach [11].
 Since the mentioned framework was oriented to
help in the process improvement field, the Capability
Maturity Model (CMM) [8] was used as the guiding
model to assess software process maturity. The
internal hierarchical structure of this reference model
served as a model upon which develop a multi-tier
architecture for the development of the dynamic
models of the framework.
 This paper shows an overview of the steps
followed to develop and implement this architecture.
It is organized as follows: Section 2 shows how the
proposed architecture can be formally modeled using
UML as a notation. Section 3 describes how these
concepts can be used to develop a software process
simulation model. Finally, Section 4 summarizes the
paper and draws the conclusions and further works.

2 Modeling the architecture using UML

2.1 Why UML

As the strategic value of software process simulation
modeling increases, it is necessary to look for
techniques to automate the production of software
process simulation models and to improve quality and
reduce both cost and time-to-develop. These

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

techniques should include component technology,
patterns and frameworks, techniques that have proven
valid to deal with the same problems in the software
development arena. When dealing with complex
systems such as software processes it is also
important to seek techniques to manage the
complexity of systems as they increase in scope and
scale.
 Bearing in mind that the development of software
process simulation models can be thought of as a kind
of software development project too, the techniques
or approaches that proved successful in the software
development field could help to solve the same
problems in the field of simulation modeling. One of
the techniques that were designed to respond to these
needs in the software engineering field is the Unified
Modeling Language (UML) [12].
 The UML is a standard visual language mainly
aimed to help designers and developers to specify,
develop and document software systems. UML also
serves as a tool to model business and processes.
The three main primary benefits of using UML in the
field of software process simulation modeling are:

1. Provide system dynamics modelers with an

expressive visual modeling language that works at
a higher level of abstraction than stock and flow
notation. UML can complement the causal
diagrams adding the meaning of the conceptual
architecture than would support the dynamic
model.

2. Modelers can benefit of the concepts of
specialization that help implement the principles
of vertical aggregation of dynamic models.

3. Models built this way are independent of the final
simulation language. In fact, it is easy and quick
to develop a software tool to implement and run a
simulation model created this way.

4. It helps to design making use of reusability of
previous models already developed. It provides a
mechanism to develop a library of modules to be
used in the construction of complex dynamic
models.

2.2 Why a metamodeling approach

Once the notation to guide and represent the software
process simulation model has been chosen, the next
step before starting the development of models is to
determine the modeling approach. Traditionally,
simulation models are developed following an
iterative process that transforms the mental model
into a running one by using a certain modeling
approach and simulation language. It is often difficult
to separate or avoid the influence that the modeling

approach and the simulation language have over the
model developer and, consequently, the final model.
 Metamodeling supports the development of
conceptual models that offer abstract views on certain
aspects of the real world and the system to be
implemented. They can be used for different
purposes, such as a communication medium between
users and model developers, for managing and
understanding the complexity within the application
domain, and, for making experiences reusable, easing
the path to collaborative model building.
 The reasons for using metamodeling in the
software process simulation discipline are, among
others:

1. The complexity of the software process requires a

decomposition of the modeling task into subtasks.
2. It helps gather together different modelers

expertise in a conceptual view that can be easily
translated into a running model.

3. The community of software process simulation
modelers have acknowledged the need of analyze,
specify and document software process simulation
models [2]. The metamodeling approach offers
the tools to carry out these activities.

 There are many approaches and architectures
based on the concepts of metamodeling. Most of
them were developed in the information system
domain. For the purpose of this study, we use as a
starting point the approach proposed by the
International Standard Organization (ISO). ISO’s
Information Resource Dictionary System (IRDS) [5]
proposes an architecture that combines information
systems use and evolution. These two concepts are
applicable to the field of software process simulation
modeling since we need to represent models
functionality, that is, the way they are going to be
used and what the users can obtain from them, and
their evolution, that is, the different versions of
models that appear when working following the
incremental model building approach. The core of the
architecture proposed in this paper is composed of a
multilevel repository based on the ISO’s IRDS
Standard. However, while this standard recommends
a four-level structure for organizing the information,
a three-level architecture is considered to be adequate
to represent all the information associated with a
software process simulating model. Figure 1 shows
what is expected to find at every level of the
architecture. A brief description of what is intended
to be contained in each level follows:

1. Scenario Level. The Scenario Level contains

objects which cannot have instances. The main

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

goal of a model building process is to produce a
valid and running simulation model. This final
model is precisely the main element of this level.
Following an object-oriented terminology, it can
be said that the final model is obtained by the
instantiation of several classes in a set of objects.
It is that set of objects and their interactions what
constitute the final working simulation model.
For a model to effectively work, some kind of
information is also needed since all its parameters
must receive an initial value. The set of initial
values that populate the parameters of a model
constitute the information that defines the
scenario that the model will simulate.

2. Model Level. The Model Level represents the
classes of the objects at the instance level. Those
classes define the dynamic models as well as
rules for their manipulation and inter-model
communication. At the same time, these classes
are themselves instances of the schema defined at
the modeling language level. Using concepts
from the field of the object-oriented
programming, in this level a dynamic model can
be represented by a set of classes all
implementing an interface that collects the
common behavior and services of what a
dynamic model must offer.

3. Metamodeling Level. The Metamodeling Level
contains the metaclasses that define the structure
of the classes of the former level. In this level, the
abstractions of inheritance and interface are
plenty used to design modular dynamic models
and dynamic modules that, when instantiated,
will become a part of a running modular dynamic
model. In our case, the metamodel level helps to
describe the behavior of a dynamic simulation
model. In order to do this, the concept of
interface is used. Every dynamic model must
implement the operations of the metaclass which
are:

a. runOutput(). It computes the current state
of the level variables of the dynamic
model using the current values, the
auxiliary variables, and the value of the
integration step.

b. runDifferential(). It computes the value
of the differential step.

c. runNextState(). It computes the values
for the auxiliary variables, closing the
loop of computation.

3 Using the architecture to design and

develop a software process model

This section illustrates how the proposed architecture
can be used to develop a software process simulation
model.

3.1. Structure of the model

The basic software process simulation model is
composed of four dynamic models that implement the
management processes as well as the system
development engineering ones that take place in the
software process. A description of these models
follows:

- Development model. Software development

process is aimed to the construction of a software
product. The development model encapsulates all
the cause-and-effect relations that determine the
software production process, as well as the
detection and correction of defects cycle.

- Plan model. This model collects the information
related to the initial project plan as well as the
current progress of the project. It helps the
control model to determine the actions needed to
keep the project on time and within budget.

- Control model. Using the information generated
by the plan model, the control model makes the
decisions aimed to improve the progress of a
project.

- Human Resource model. The Human Resource
model collects the causal relations that model the
human resource management activities within an
organization and/or a project.

 As Figure 1 shows, a software process simulation
model can be made of these four modules. This
figure also shows that a software process simulation
model can be composed of other software process
simulation models.
 This reflexive composition association helps to
extend the software process model to develop
complex models and provides flexibility of use of the
architecture. For instance, for software organizations

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

GenericDynamicModel

runOutput()
runDifferential()
runNextState()

<<Interface>>

HumanResourceModel PlanModel ControlModel DevelopmentModel

DynamicModel

Metamodel level
Metaclasses that define the
behavior of a dynamic model

Scenario

Model level
Classes that implement the
interface of the metamodel
level

user : User

scenario :
Scenario

dynamicModel :
DynamicModel

userInterface :
UserInterface

couplingStructure :
CouplingStructure

1: submitScenarioData 2: newScenario

inputDataNode :
InputDataNode

outputDataNode :
OutputDataNode

3: newInputData

4: newDynamicModel
7: runModel

5: newOutputData
8: saveResults 6: newCouplingStructure

Scenario level
Objects that instantiate the
classes of the model level

OutputDataNode InputDataNode

CouplingStructure

Fig. 1 Formalized structure of the software process simulation model

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

working with immature, not defined processes, it can
be useful to model the software process at a high
level of abstraction. For these kinds of organizations,
using a simulation model that is helps visualize the
evolution of the project and the main variables of the
four models described above can be useful.
However, for organizations that have defined,
repeatable and managed processes, such a simple
model is not very useful. As the maturity of the
software organization increases, the simulation
model that help model and simulate the processes
carried out within the organization must also evolve
and show a more complex behavior. In order to
provide a flexible mechanism to allow software
process simulation grow in complexity, the self-
composition association is used. Hence, a software
process simulation model can not only be composed
of the four main models, but of other process
simulation models.
 This feature is especially useful when a
hierarchical model such as CMM is used. In the
framework developed, the software process
simulation models for level 3 organizations are made
of as many process simulation models as main
activities figure at the top level of the WBS of a
project. Each of these process simulation models are
also made of the composition of the main four
models described at the beginning of this section.
This helps, for instance, gain control over the
resource allocation to each activity.

3.2. Designing a scenario

In order to run a simulation model, it is necessary to
define the scenario in which the software process
takes place. Scenarios are defined at the Model Level
of the architecture too. To define a scenario, the value
for each of input parameter of the model must be
provided. Input parameters are the mechanism to
customize the software process to the own features of
a software organization. Aspects such as the hiring
delays, assimilation rates, etc. are to be defined as
input parameters. As the maturity level of the
organization increases, the number of input
parameters required for the simulation model
also increases because the amount of information
that high level organizations have about their
processes is expected to be bigger too.

3.3. Running simulations

Once the scenario is defined, it is possible to run a
simulation of the model. Different policies or
decisions can be simulated by changing the values of

the adequate parameters or functions built in the
equations of the dynamic modules that form the final
simulation model.
 The simulation results can then be used for
different purposes. Simulation runs can be
graphically visualize to analyze the qualitative
behavior of the resulting variables. In the case that
the equations and functions of the simulation model
have been validated, the simulation outputs can also
be used in the quantitative field. In this way, they can
help to make decisions or select the software process
improvement action that offered the better results.
Finally, simulation runs offer also a good opportunity
to study the results of different improvement actions
using the techniques coming from the field of
machine learning, as simulation can be used to
generate datasets that act as inputs to these kinds of
algorithms [9].

4 Conclusion

In this work, we have presented a description of a
multilevel architecture for building dynamic models.
The models built under this architectural pattern are
made of the integration of different dynamic modules
that can be easily added to the existing set of models
and can be either enabled or disabled during a
simulation course. The core of the architecture is
based on ISO IRDS.
 The architecture has been formally modeled using
the UML notation that provides not only formality to
the approach but the ability to direct translation to the
programming constructors that implement the
conceptual ideas of the architecture.
 The software classes that result from this
translation implement the principles of data
encapsulation, reutilization, and operational
abstraction in the field of software process modeling
under the approach of System Dynamics. We are now
working on the enhancement of the framework by
adding a set of dynamic modules that model the
engineering processes under different software
development approaches.
 Our future work is mainly concentrated on the full
development of new dynamic modules In addition,
although the experiments carried out with the current
modules prove that they reproduce the expected
behavior from a qualitative point of view, we intend
to obtain real data to validate them from a
quantitative perspective.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

References:

[1] Angkasaputra, N., Pfahl, D., Making Software
Process Simulation Modeling Agile and Pattern-
based. Proceedings of the 5th. International
Workshop on Software Process Simulation and
Modeling, pp. 222-227. Edinburgh, Scotland (UK)
2004.

[2] Ahmed, R., Hall, T., Wernick, P., Simulation
Modelling Practices of ProSim03 participants: a
survey. Proceedings of the 5th. International
Workshop on Software Process Simulation and
Modeling, pp. 67-76. Edinburgh, Scotland (UK)
2004.

[3] Boehm B., Software Engineering Economics.
Prentice-Hall Inc. 1981.

[4] Boehm B., E. Horowitz, R. Madachy, D. Reifer,
BK. Clark, B. Steece, AW. Brown, S. Chulani,
and C. Abts, Software Cost Estimation with
COCOMO II. Prentice-Hall Inc. 2000.

[5] ISO/IEC International Standard. Information
Resource Dictionary System (IRDS) -Framework
ISO/IEC 10027, 1990.

 [6] Kirk, D., Tempero, E., Proposal for a Flexible
Software Process Model. Proceedings of the 5th.
International Workshop on Software Process
Simulation and Modeling, pp. 161-170.
Edinburgh, Scotland (UK) 2004.

[7] Neu H, Rus I., Reuse in Software Process
Simulation Modeling, Proceedings of the 4th
International Workshop on Software Process
Modeling and Simulation. Paper nº 17 Portland,
OR (USA) 2003.

[8] Paulk M., SM. Garcia, MB. Chrissis, and M.
Bush., Key practices of the capability maturity
model. Version 1.1 Technical Report CMU/SEI-
93-TR-25. Software Engineering Institute,
Carnegie Mellon University, Pittsburg, PA.1993.

[9] Quinlan JR. C4.5: Programs for machine
learning. Morgan Kauffman, 1993.

[10] Raffo D, Spehar G, Nayak U., Generalized
Simulation Models: What, Why and How?
Proceedings of the 4th International Workshop on
Software Process Modeling and Simulation. Paper
nº 26. Portland, OR (USA) 2003.

 [11] Ruiz M. Ramos I. Toro M., A Dynamic
Integrated Framework for Software Process
Improvement. Software Quality Journal, Vol. 10,
Nº2, pp.181-194 2002.

[12] Object Management Group. Unified Modeling
Language. http://www.uml.org/

Acknowledgements:

The authors wish to thank the Comisión
Interministerial de Ciencia y Tecnología, Spain,
(under grant TIN2004-06689-C03-03) for supporting
this research effort.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp1-6)

