
Combining Retiming and Sequential Redundancy Addition and Removal
for Sequential Logic Optimization

ENRIQUE SAN MILLÁN, LUIS ENTRENA, LUIS MENGIBAR, MICHAEL GARCÍA

Electronics Technology Department
University Carlos III of Madrid

Butarque 15, E-28911 Leganés (Madrid)
SPAIN

Abstract: - In this paper a new logic optimization method for sequential synchronous circuits is introduced. For
this purpose the current main approaches, “Retiming and Resynthesis” and “Redundancy Addition and
Removal” are considered. These techniques have some advantages and limitations that have been theoretically
proven by several authors. The goal of the new optimization method is to combine these two techniques to get
the best of each one. In particular the paper is focused on area optimization. The algorithm proposed in this paper
is efficient and delivers interesting optimization results.

Key-Words: - Sequential logic optimization, Digital Circuits, Retiming and Resynthesis, Redundancy Addition
and Removal

1 Introduction
Digital circuit logic optimization has been a very
important problem in the last decades. Obtaining a
good optimized circuit is essential to get smaller and
faster circuits. In particular, logic optimization for
synchronous sequential circuits is still an open and
challenging problem.
There are two main approaches to sequential logic
optimization, Retiming and Resynthesis (RaR) [1]
and Sequential Redundancy Addition and Removal
(SRAR) [2]. The Retiming technique performs the
optimization in two steps. The first step involves
moving flip-flops across combinational gates
(Retiming), and the second step is performed by
optimizing the resulting combinational blocks with
combinational techniques (Resynthesis). The set of
possible transformations that can be provided with
Retiming and Resynthesis is limited. The sets of
possible transformations have been formalized in [3]
and [4]. This method has become quite attractive
despite its limitations.
The Redundancy Addition and Removal technique is
based on the iterative addition and removal of
redundancies. This technique has been proved to
produce excellent results for combinational circuits
[2][5][6], being the major advantages the low
memory usage and the short run times. Sequential
logic optimization is also possible using this
technique by considering sequential redundancies
[2][7].
The goal of this paper is to obtain an algorithm to get
the best of both methods to improve optimization

results. For this purpose we first study which are the
limitations and advantages of RaR and SRAR. Then a
new method is proposed focusing into area
optimization.
The rest of this paper is organized as follows. Section
2 reviews the Retiming and Resynthesis technique for
sequential logic optimization and the set of possible
sequential transformations that provides. Section 3
reviews the Sequential Redundancy Addition and
Removal technique and its optimization capabilities.
Then in section 4 it is shown a new approach for
optimization based in a combination of the two
previous methods. In section 5 some experimental
results obtained with this algorithm are provided.
Finally, section 6 presents the conclusions of this
work.

2 Retiming and Resynthesis
Retiming and Resynthesis [1] is a sequential
optimization method that can be applied to optimize
sequential designs described at the logic level.
Retiming and Resynthesis consists on the application
of a sequence of two basic steps, Synthesis and
Retiming, which are described as follows:
Synthesis: In this step the flip-flops are untouched
and the flip-flop inputs and outputs are treated as
primary circuit inputs and outputs. This step provides
simple combinational optimization.
Retiming: Moves the flip-flops across combinational
blocks under certain rules, with the following effects:

a) Change in cycle time: The delay along the

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

combinational path between flip-flops can change,
because those flip-flops are moved.

b) Change in area: The number of flip-flops can
increase or decrease due to the movement across
combinational blocks

c) Change the interaction between combinational
blocks: This is the most important effect of retiming,
as it provides the way to further optimization of the
circuit by combinational optimization.

d) Changes on the state transition graph: Retiming
may change the state transition graph of the original
circuit by changing the different encodings of the
state transition graph, or changing the transition
between states.
That is, in Retiming the flip-flops are relocated across
combinational gates, changing the interaction
between different combinational blocks, followed by
a Resynthesis step that allows making logic
optimizations. A sequence of Retiming and
combinational Resynthesis steps provides the way to
optimize sequential circuits at the logic level. It can
be observed that some of these RaR optimization
transformations in the circuit are not possible by only
combinational methods.
The possible movements of flip-flops across
combinational gates can be built from a sequence of
four primitive retiming operations, as stated in the
following lemma [3]:

Lemma: A general retiming operation can be
constructed as the sequence of retiming moves across
primitive transformations i), ii), iii) and iv) shown in
the figure 1.

Forward (i)

Forward (iii)

Backward (ii)

Backward (iv)

Figure 1: Primitive retiming
operations

An example of Retiming and Resynthesis is
shown in Fig. 2. The initial circuit has two registers
and three combinational gates (fig. 2 a)). The step of
retiming reduces the number of registers to one, and
produces the interaction between the combinational
gates (fig 2 b)). The next step, resynthesis, allows the

optimization to be done. The final circuit has only
one register and only one gate (fig 2 c)).

a
b

out

a
b

out

out
a
b

a) Original circuit

b) Retimed circuit

c) Resynthesized circuit

Fig.2. Retiming and Resynthesis
example.

Retiming algorithms can be used for area or timing
optimization in sequential circuits. They are more
suitable for timing optimization because they provide
the necessary steps to equilibrate critical paths
between memory elements in the circuit. This can be
done by simple flip-flop movements. However,
Retiming can also be used for area optimization. In
this case the goal of the retiming algorithms is
obtaining the circuit with minimum number of flip-
flops [8].
Retiming and Resynthesis methods have been widely
studied, and their optimization capabilities have been
formally established by several authors [1] [3] [4].

It has been done by relating transformations in the
circuit made by retiming moves with the STG
transformations. The characterization of the
relationship between Retiming and Resynthesis and
STG transformations is given by the two following
theorems [1][3]:
Theorem (Malik): Given a machine implementation
M1, corresponding to a state transition graph G, with
a state assignment S1, it is always possible to derive a
machine M2 corresponding to the same state
transition graph G, and a state assignment S2 by
applying only a series of Resynthesis and Retiming
operations on M1.
Theorem: Let M1 be an implementation
corresponding to state assignment S1 and STG G1
and M2 be an implementation corresponding to state
assignment S2 and STG G2. Then M2 can be
obtained from M1 using only a sequence of Retiming

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

and Resynthesis operations if and only if G1 and G2
are 1-step equivalent.
These two theorems determine all the possible
transformations with the Retiming methods. The first
theorem shows the encoding capabilities of retiming.
Every state codification in a FSM can be reached
with retiming transformations. The second theorem
characterizes the set of possible transformations with
retiming in the STG of the circuit.
It is important to observe that the retiming set of
possible transformations is only a subset of all
possible transformations in the circuit. This limitation
of retiming can be shown by some examples [3][9]
where the circuits can not be optimized by only
retiming and resynthesis operations.

3 Sequential Redundancy Addition

and Removal
Redundancy Addition and Removal has been shown
to be a powerful logic optimization method by
several authors [2], [6], [7] [10], [11], [12] With this
method, a logic network is optimized by iteratively
adding and removing redundancies that are identified
using Automatic Test Pattern Generation techniques
based on the implication of mandatory assignments.
If the addition of k redundant wires/gates creates
more than k redundant wires/gates elsewhere in the
network, the removal of the created redundancies will
result in a smaller area.
Redundancy Addition and Removal is also applicable
to sequential circuits [2]. In this case, sequential
redundancies can be considered for addition and
removal. Sequential redundancies can be identified
by using the well-known time frame model and
performing the implication process across time
frames. Sequential redundancy addition may involve
also the addition of flip-flops [10] in order to
temporarily expand the state set and reduce it later on
with redundancy removal. Along with other general
improvements that have been proposed, such as using
BDDs for implication [7] and multiple wire/gate
addition [6], a large set of sequential optimization
transformations can be identified.
The basic redundancy addition and removal approach
can be summarized as follows. A target wire is
selected and tested for stuck-at fault. If no test is
possible, then the wire is redundant and can be
removed. Otherwise, we try to add a wire or a gate to
the circuit in order to make the target fault redundant.
If the wire or gate added is redundant then the
addition preserves the logic functionality of the
circuit. Once this redundant logic is added, the target

wire, which now has become redundant, can be
removed.
In the case of sequential circuits special care must be
taken with redundant wires. Only if a set of certain
conditions are satisfied an untestable fault can be
considered redundant. [13]. In practice in most cases
untestable faults are redundant, and the cases where
this is not true is always related to the initialitiation
state of the circuit. If all the flip-flops have a reset
state and the initial state is well defined then the
concepts of untestable fault and redundant wire are
equivalent.
The problem of identification of untestable faults in
sequential circuits is open to improvements, and
several authors are still working on it [14].

FF1
FF2

a
b

z

b) A one-hot coded implementation
 (S0 = 01, S1 = 10)

b / 1

a) A two-state machine

a+b / 0

S0

a+b / 1

b / 0

S1

FF1
FF2

a
b

z

c) Adding a sequentially redundant connection
 do not alter the behaviour of the circuit

FF2

a

b
z

e) The resultant equivalent circuit
 has one flip-flop only

FF1
FF2

a
b

z

d) Another conexion in the circuit becomes
 nowredundant, so it can be removed

Fig. 3. Example of Sequential Redundancy Addition

and Removal

Example (taken from [2]). Fig.3 shows the state
graph of a two-state machine and a one-hot coded
implementation of this machine. The machine has
two inputs, a and b, and one output. To activate the
fault x2 stuck-at 1, the circuit must be in state S1 =
10, i.e., x1 = 1 and x2 = 0 are mandatory assignments
for this fault. Therefore, adding x1 to the input of g1
will block the propagation of the fault. If we add this
connection, as shown in Fig. 3(c), the sequential
behavior of the circuit will not change and x2 will
become sequentially redundant after this addition
(Fig. 3(d)). After removing x2 and its fanins which
become floating, the circuit has only one flip-flop and
is a minimal-bit encoded machine (Fig. 3(e)).

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

The search of candidate nodes for addition has been
improved by several authors, making the algorithms
of redundancy addition and removal very efficient.
The possible addition transformations can be
identified in only one test pass selecting the
appropriate faults [5][6].
Redundancy addition and removal techniques can be
used for area and timing optimization as is the case
with RaR. The main approaches for timing
optimization are based in the selection of target nodes
in critical paths in the circuit [15]. In the case of area
the approach is based in selecting as target nodes the
ones with more area weight, that is the nodes that
when removed from the circuit cause more area
optimization [2].
The optimization capabilities of these methods have
also been studied. It has been proven that these
methods are able to perform all the possible Retiming
transformations [15]. Additionally there are some
examples where a transformation is not possible by
Retiming but it is possible by redundancy addition
and removal. A transformation in a circuit that it is
possible with SRAR and not possible with RaR is
shown in the following example:

x

e

y

e

x

e o

y

e

e

e

s-a-1
0

0

0
0 0

Propagation path blocked

s-a-v
0

0

0 0 Propagation path blockedx

y

a) Original circuit

c)

d)

b) Equivalent circuit

g1

g1

g1

g2

g2

Figure 4. Example

Example: In this example it is not possible to reach
circuit b) from circuit a) by a sequence of Retiming
and Resynthesis transformations as it is shown in [9].
However, redundancy addition of a gate and removal
of a wire makes this transformation possible. The
addition of the redundant OR gate shown in figure c)
makes the wire shown in figure d) become redundant.
The removal of this redundant wire leads to circuit b).
This means that SRAR provides a larger set of
possible transformations in the circuit.
However this is a theoretical point of view and
successful application of a series of transformations
for optimization with any technique depends a lot on
the practical implementation.

4 Combining RaR and SRAR for

sequential logic optimization
Both RaR and SRAR techniques have their
limitations. For RaR there is a theoretical limitation
and some transformations are not possible. The
implementation is very dependent on the second step
in combinational resynthesis. Performing several
iterations with Retiming and Resynthesis is not very
efficient because it is needed to make a full
combinational optimization of the circuit in each step.
Besides, these methods are more oriented to timing
optimization than area.
On the other hand, for the SRAR techniques there are
more transformations available. The optimization is
very efficient because all transformations are found in
only one test step for each target connection.
However is more difficult to understand how the
transformations are affecting to the behavior of the
STG of the circuit. This means that even if all the
transformations in the STG are possible, it is
unknown how to select the target connections to
reach the desired STG.
But both methods have their strengths too: SRAR is a
very efficient optimization method that delivers good
results and, in general, a single retiming optimization
step without resynthesis is efficient and provides
some fast and easy sequential transformations.
We try to use the strengths of both methods. The new
algorithm proposed is a series of Retiming and SRAR
steps. It is a similar method to the original Retiming
and Resynthesis, but instead of a combinational only
resynthesis, a full sequential redundancy addition and
removal is performed. This way it is clear that it
should deliver better results than the original RaR, as
the SRAR step provides more optimization
possibilities.
Another point of view of this approach can be done.
The new method proposed is like the original SRAR,

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

but now an additional Retiming step is performed
each iteration. This helps specially in those cases
where SRAR can not found a new transformation. In
these cases a simple retiming movement of flip-flops
can transform the circuit into another one (changing
the STG) with new generated SRAR possibilities.
This way the new algorithm is able to optimize the
circuit in some situations where original SRAR is not.
This new method can be summarized in the following
algorithm:
1- Perform a Retiming Step. In this step constraints

of area or delay can be considered.
2- Perform a SRAR Step. Again, area or delay

optimization oriented.
3- If the selected number of iterations is reached

then stop, else iterate (go to step 1).
This new algorithm can be used both for area or
timing optimization. In the next section we show
some experimental results for area optimization. The
reason why area optimization is selected is because it
is the case where Retiming and Resynthesis is more
limited, and therefore more space for optimization is
available.

5 Experimental results
In this section we show experimental results for area
optimization obtained in ISCAS89 [16] and MCNC
benchmark circuits[17].
For the retiming steps SIS Tool from Berkeley is
used. Options for area optimization are selected
within this tool [18]. For the SRAR steps RAMBO_S
is used [7] with some modifications taken from [6].
The results are summarized in the following tables:
Table 1 shows the results for a subset of sequential
circuits of ISCAS89, and Table 2 shows the results
for a subset of MCNC.
Columns labeled as #G, #C and #F show the number
of gates, connections and flip-flops in the circuits.
As we are interested in the sequential optimization
provided by the different algorithms, the initial
circuits are obtained from a previous strong
combinational optimization using script.rugged in
SIS and RAMBO_C Redundancy Addition and
Removal Algorithm. Thus the optimization results
shown in these tables are consequence of sequential
transformations.
The results show a 22% average optimization in the
number of connections in the circuits. These results
can be compared with the ones obtained with the
previous RaR [8] and SRAR algorithms [7].

Inicial SRAR+Retiming

Circuit #G #C #F #G #C #F %

s298 103 230 14 72 158 14 30,10

s344 138 295 15 99 240 15 28,26

s382 143 322 54 100 246 19 30,07

s386 88 227 27 63 180 6 28,41

s400 140 311 21 109 228 19 22,14

s420 157 330 41 126 280 16 19,75

s444 141 311 21 85 213 19 39,72

s499 200 502 22 124 330 22 38,00

s526n 174 386 21 145 337 21 16,67

s635 194 480 32 148 394 32 23,71

s820 179 469 41 136 385 5 24,02

s832 168 433 5 133 364 5 20,83

s838 313 658 32 255 572 32 18,53

s953 340 818 29 227 596 23 33,24

s967 314 749 29 212 588 23 32,48

s991 339 695 19 286 610 19 15,63

s1512 488 1068 57 445 999 57 8,81

s3384 1426 2971 183 1215 2638 157 14,80

s4863 1560 3173 84 1179 2481 75 24,42

s6669 2630 5421 231 2381 5081 201 9,47
Table 1. ISCAS 89 results

Inicial SRAR+Retiming

Circuit #G #C #F #G #C #F %

bbara 48 118 4 34 92 4 29,17

bbsse 64 177 4 50 137 4 21,88

bbtas 20 49 3 12 35 3 40,00

beecount 30 79 3 19 65 3 36,67

dk14 63 152 3 46 122 3 26,98

dk15 43 106 2 26 85 2 39,53

dk512 45 110 4 33 93 4 26,67

ex1 130 351 5 104 299 5 20,00

ex2 86 222 5 64 191 5 25,58

ex5 39 97 3 24 65 3 38,46

ex6 60 159 3 39 109 3 35,00

ex7 52 127 4 27 84 4 48,08

lion 14 31 2 9 23 2 35,71

lion9 22 48 3 17 38 3 22,73

mc 26 57 2 14 41 2 46,15

opus 47 128 4 33 110 4 29,79

s1 197 492 5 143 392 5 27,41

sand 273 747 5 225 653 5 17,58

tav 19 46 2 15 41 5 21,05

train11 46 103 4 36 86 4 21,74
Table 2. MCNC results

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

In this comparison it can be observed that the
optimization is improved in most cases.

6 Conclusions
We have presented a new approach to sequential
logic optimization which combines the original
Retiming and Resynthesis and Sequential
Redundancy Addition and Removal methods.
This new algorithm uses efficiently the strengths of
both of them. It has the advantage of the SRAR
efficiency and improves the optimization by adding
fast retiming capabilities. Another strong point of the
algorithm proposed is that it does not add extra
computational effort to perform the optimizations.
The experimental work for area optimization shows
that this method improves the results obtained with
the original RaR and SRAR algorithms.

References:
[1] S. Malik, E. M. Sentovich, R. Brayton, A.

Sangiovanni-Vincentelli. “Retiming and
Resynthesis: Optimizing Sequential Circuits
Using Combinational Techniques”, IEEE
Transactions on CAD of Integrated Circuits and
Systems, vol. 10, p. 74-84. January 1991

[2] L.A. Entrena, K.-T. Cheng. “Combinational and
sequential logic optimization by redundancy
addition and removal”, IEEE Trans. on CAD,
Vol. 14, No. 7, July 1995, p. 909-916

[3] R.K. Ranjan, V. Singhal, F. Somenzi, R.K.
Brayton. “On the optimization Power of
Retiming and Resynthesis Transformations”.
Proc. ICCAD’98, p 402-407, November 1998.

[4] H.Zhou, V. Singhal, A. Aziz. “How Powerful is
Retiming?”. Proc. IEEE/ACM intl. Workshop on
Logic Synthesis, p 111-125, May 1998.

[5] C.J. Chang, M. Hsiao, M. Marek-Sadowska, A
new reasoning scheme for efficient redundancy
addition and removal, IEEE Trans. on CAD, Vol.
22, No. 7, July 2003, p. 945-952

[6] J. A. Espejo, L. Entrena, E. San Millán, C. López.
“Generalized Reasoning Scheme for Redundancy
Addition and Removal”, IEICE Transactions on
Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E84-A. pp 1665-
1672. November 2002.

[7] E. San Millán, L. Entrena, J.A. Espejo, Silvia
Chiusano, Fulvio Corno. “Integrating symbolic
Techniques in ATPG-Based Sequential Logic
Optimization”, Proc. DATE’99, p. 516-523
March 1999.

[8] N. Maheshware, S. S. Sapatnekar.S”An Improved
Algorithm for Minimun-Area Retiming”, Proc.
DAC-97, June 1997

[9] R.K.Ranjan. “Design and Implementation
Verification of Finite State Systems”. PhD thesis.
Electronics Research Laboratory. University of
California. Berkeley. CA 94720. 1997.
Memorandum No. UCB/ERL M97/99.

[10] U. Gläser, K.-T. Cheng. “Logic Optimization by
an Improved Sequential Redundancy Addition
and Removal Technique”, Proc. ASP-DAC.
September, 1995

[11] W. Kunz, P. R. Menon. “Multi-level Logic
Optimization by Implication Analysis”, Proc.
ICCAD-94, pp. 6-13. November, 1994

[12] S. C. Chang, M. Marek-Sadowska, Perturb and
Simplify: Multi-level Boolean Network
Optimizer, Proc. ICCAD-94, p. 2-5. November,
1994

[13] V. Singhal, C. Pixley, A. Aziz, R. K. Brayton,
“Theory of safe replacements for sequential
circuits”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol.
20, No 2, February 2001.

[14] M. Syal, M. Hsiao, New techniques for
untestable fault identification in sequential
circuits, IEEE Trans. on CAD, Vol. 25, No. 6,
June 2006, p. 1117-1131

[15] L. Entrena, J.A. Espejo, E. Olías, J. Uceda,
“Timing optimization by an improved
redundancy addition and removal technique”,
Proc. European Design Automation Conference,
September 1996

[15] Enrique San Millán, Luis Entrena, José A.
Espejo, Celia López, “Theoretical Comparison
between Sequential Redundancy Addition and
Removal and Retiming Optimization
Techniques”, Journal of Systems Architecture
on Synthesis and Verification, vol. 49, pp 529-
541, 2003

 [17] SIS: A System for Sequential Circuit Synthesis”,
Report M92/41, University of California,
Berkeley, May 1992.

 [16] F. Brglez, D. Bryant, K. Kozminski:
”Combinational Profiles of Sequential
Benchmark Circuits”, Proc. International
Symposium on Circuits and Systems (ISCAS),
1989.

[18] S. Yang. ”Logic Synthesis and Optimization
Benchmarks. User Guide”. PMicroelectronics
Center of North Carolina, Technical Report,
January 1991.

Proceedings of the 10th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp355-360)

