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Abstract: - In this paper a new logic optimization method for sequential synchronous circuits is introduced. For 
this purpose the current main approaches, “Retiming and Resynthesis” and “Redundancy Addition and 
Removal” are considered. These techniques have some advantages and limitations that have been theoretically 
proven by several authors. The goal of the new optimization method is to combine these two techniques to get 
the best of each one. In particular the paper is focused on area optimization. The algorithm proposed in this paper 
is efficient and delivers interesting optimization results.  
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1 Introduction 
Digital circuit logic optimization has been a very 
important problem in the last decades. Obtaining a 
good optimized circuit is essential to get smaller and 
faster circuits. In particular, logic optimization for 
synchronous sequential circuits is still an open and 
challenging problem.  
There are two main approaches to sequential logic 
optimization, Retiming and Resynthesis (RaR) [1] 
and Sequential Redundancy Addition and Removal 
(SRAR) [2]. The Retiming technique performs the 
optimization in two steps. The first step involves 
moving flip-flops across combinational gates 
(Retiming), and the second step is performed by 
optimizing the resulting combinational blocks with 
combinational techniques (Resynthesis). The set of 
possible transformations that can be provided with 
Retiming and Resynthesis is limited. The sets of 
possible transformations have been formalized in [3] 
and [4]. This method has become quite attractive 
despite its limitations. 
The Redundancy Addition and Removal technique is 
based on the iterative addition and removal of 
redundancies. This technique has been proved to 
produce excellent results for combinational circuits 
[2][5][6], being the major advantages the low 
memory usage and the short run times. Sequential 
logic optimization is also possible using this 
technique by considering sequential redundancies 
[2][7]. 
The goal of this paper is to obtain an algorithm to get 
the best of both methods to improve optimization 

results. For this purpose we first study which are the 
limitations and advantages of RaR and SRAR. Then a 
new method is proposed focusing into area 
optimization. 
The rest of this paper is organized as follows. Section 
2 reviews the Retiming and Resynthesis technique for 
sequential logic optimization and the set of possible 
sequential transformations that provides. Section 3 
reviews the Sequential Redundancy Addition and 
Removal technique and its optimization capabilities. 
Then in section 4 it is shown a new approach for 
optimization based in a combination of the two 
previous methods. In section 5 some experimental 
results obtained with this algorithm are provided. 
Finally, section 6 presents the conclusions of this 
work. 
 
 
2 Retiming and Resynthesis 
Retiming and Resynthesis [1] is a sequential 
optimization method that can be applied to optimize 
sequential designs described at the logic level. 
Retiming and Resynthesis consists on the application 
of a sequence of two basic steps, Synthesis and 
Retiming, which are described as follows: 
Synthesis: In this step the flip-flops are untouched 
and the flip-flop inputs and outputs are treated as 
primary circuit inputs and outputs. This step provides 
simple combinational optimization. 
Retiming: Moves the flip-flops across combinational 
blocks under certain rules, with the following effects: 

a) Change in cycle time: The delay along the 
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combinational path between flip-flops can change, 
because those flip-flops are moved. 

b) Change in area: The number of flip-flops can 
increase or decrease due to the movement across 
combinational blocks 

c) Change the interaction between combinational 
blocks: This is the most important effect of retiming, 
as it provides the way to further optimization of the 
circuit by combinational optimization. 

d) Changes on the state transition graph: Retiming 
may change the state transition graph of the original 
circuit by changing the different encodings of the 
state transition graph, or changing the transition 
between states. 
That is, in Retiming the flip-flops are relocated across 
combinational gates, changing the interaction 
between different combinational blocks, followed by 
a Resynthesis step that allows making logic 
optimizations. A sequence of Retiming and 
combinational Resynthesis steps provides the way to 
optimize sequential circuits at the logic level. It can 
be observed that some of these RaR optimization 
transformations in the circuit are not possible by only 
combinational methods. 
The possible movements of flip-flops across 
combinational gates can be built from a sequence of 
four primitive retiming operations, as stated in the 
following lemma [3]: 

 
Lemma: A general retiming operation can be 
constructed as the sequence of retiming moves across 
primitive transformations i), ii), iii) and iv) shown in 
the figure 1.  

 
Forward (i)

Forward (iii)

Backward (ii)

Backward (iv)  
 

Figure 1: Primitive retiming 
operations 

 
 

An example of Retiming and Resynthesis is 
shown in Fig. 2. The initial circuit has two registers 
and three combinational gates (fig. 2 a)). The step of 
retiming reduces the number of registers to one, and 
produces the interaction between the combinational 
gates (fig 2 b)). The next step, resynthesis, allows the 

optimization to be done. The final circuit has only 
one register and only one gate (fig 2 c)). 

 
a
b

out

a
b

out

out
a
b

a) Original circuit

b) Retimed circuit

c) Resynthesized circuit  
 

Fig.2. Retiming and Resynthesis 
example. 

 
 

Retiming algorithms can be used for area or timing 
optimization in sequential circuits. They are more 
suitable for timing optimization because they provide 
the necessary steps to equilibrate critical paths 
between memory elements in the circuit. This can be 
done by simple flip-flop movements. However, 
Retiming can also be used for area optimization. In 
this case the goal of the retiming algorithms is 
obtaining the circuit with minimum number of flip-
flops [8].  
Retiming and Resynthesis methods have been widely 
studied, and their optimization capabilities have been 
formally established by several authors [1] [3] [4]. 

It has been done by relating transformations in the 
circuit made by retiming moves with the STG 
transformations. The characterization of the 
relationship between Retiming and Resynthesis and 
STG transformations is given by the two following 
theorems [1][3]:  
Theorem (Malik): Given a machine implementation 
M1, corresponding to a state transition graph G, with 
a state assignment S1, it is always possible to derive a 
machine M2 corresponding to the same state 
transition graph G, and a state assignment S2 by 
applying only a series of Resynthesis and Retiming 
operations on M1. 
Theorem: Let M1 be an implementation 
corresponding to state assignment S1 and STG G1 
and M2 be an implementation corresponding to state 
assignment S2 and STG G2. Then M2 can be 
obtained from M1 using only a sequence of Retiming 
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and Resynthesis operations if and only if G1 and G2 
are 1-step equivalent. 
These two theorems determine all the possible 
transformations with the Retiming methods. The first 
theorem shows the encoding capabilities of retiming. 
Every state codification in a FSM can be reached 
with retiming transformations. The second theorem 
characterizes the set of possible transformations with 
retiming in the STG of the circuit. 
It is important to observe that the retiming set of 
possible transformations is only a subset of all 
possible transformations in the circuit. This limitation 
of retiming can be shown by some examples [3][9] 
where the circuits can not be optimized by only 
retiming and resynthesis operations.  
 
 
3 Sequential Redundancy Addition 

and Removal 
Redundancy Addition and Removal has been shown 
to be a powerful logic optimization method by 
several authors [2], [6], [7] [10], [11], [12] With this 
method, a logic network is optimized by iteratively 
adding and removing redundancies that are identified 
using Automatic Test Pattern Generation techniques 
based on the implication of mandatory assignments. 
If the addition of k redundant wires/gates creates 
more than k redundant wires/gates elsewhere in the 
network, the removal of the created redundancies will 
result in a smaller area. 
Redundancy Addition and Removal is also applicable 
to sequential circuits [2]. In this case, sequential 
redundancies can be considered for addition and 
removal. Sequential redundancies can be identified 
by using the well-known time frame model and 
performing the implication process across time 
frames. Sequential redundancy addition may involve 
also the addition of flip-flops [10] in order to 
temporarily expand the state set and reduce it later on 
with redundancy removal. Along with other general 
improvements that have been proposed, such as using 
BDDs for implication [7] and multiple wire/gate 
addition [6], a large set of sequential optimization 
transformations can be identified. 
The basic redundancy addition and removal approach 
can be summarized as follows. A target wire is 
selected and tested for stuck-at fault. If no test is 
possible, then the wire is redundant and can be 
removed. Otherwise, we try to add a wire or a gate to 
the circuit in order to make the target fault redundant. 
If the wire or gate added is redundant then the 
addition preserves the logic functionality of the 
circuit. Once this redundant logic is added, the target 

wire, which now has become redundant, can be 
removed. 
In the case of sequential circuits special care must be 
taken with redundant wires. Only if a set of certain 
conditions are satisfied an untestable fault can be 
considered redundant. [13]. In practice in most cases 
untestable faults are redundant, and the cases where 
this is not true is always related to the initialitiation 
state of the circuit. If all the flip-flops have a reset 
state and the initial state is well defined then the 
concepts of untestable fault and redundant wire are 
equivalent. 
The problem of identification of untestable faults in 
sequential circuits is open to improvements, and 
several authors are still working on it [14]. 
 
  

FF1
FF2
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b

z

b) A one-hot coded implementation
 (S0 = 01, S1 = 10)

b / 1

a) A two-state machine

a+b / 0

S0

a+b / 1

b / 0

S1

FF1
FF2
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b

z

c) Adding a sequentially redundant connection
     do not alter the behaviour of the circuit

FF2

a

b
z

e) The resultant equivalent circuit
     has one flip-flop only

FF1
FF2

a
b

z

d) Another conexion in the circuit becomes
     nowredundant, so it can be removed

 
Fig. 3. Example of Sequential Redundancy Addition 

and Removal 
 
Example (taken from [2]). Fig.3 shows the state 
graph of a two-state machine and a one-hot coded 
implementation of this machine. The machine has 
two inputs, a and b, and one output. To activate the 
fault x2 stuck-at 1, the circuit must be in state S1 = 
10, i.e., x1 = 1 and x2 = 0 are mandatory assignments 
for this fault. Therefore, adding x1 to the input of g1 
will block the propagation of the fault. If we add this 
connection, as shown in Fig. 3(c), the sequential 
behavior of the circuit will not change and x2 will 
become sequentially redundant after this addition 
(Fig. 3(d)). After removing x2 and its fanins which 
become floating, the circuit has only one flip-flop and 
is a minimal-bit encoded machine (Fig. 3(e)).  
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The search of candidate nodes for addition has been 
improved by several authors, making the algorithms 
of redundancy addition and removal very efficient. 
The possible addition transformations can be 
identified in only one test pass selecting the 
appropriate faults [5][6]. 
Redundancy addition and removal techniques can be 
used for area and timing optimization as is the case 
with RaR. The main approaches for timing 
optimization are based in the selection of target nodes 
in critical paths in the circuit [15]. In the case of area 
the approach is based in selecting as target nodes the 
ones with more area weight, that is the nodes that 
when removed from the circuit cause more area 
optimization [2]. 
The optimization capabilities of these methods have 
also been studied. It has been proven that these 
methods are able to perform all the possible Retiming 
transformations [15]. Additionally there are some 
examples where a transformation is not possible by 
Retiming but it is possible by redundancy addition 
and removal. A transformation in a circuit that it is 
possible with SRAR and not possible with RaR is 
shown in the following example: 
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Figure 4.  Example  
 

Example: In this example it is not possible to reach 
circuit b) from circuit a) by a sequence of Retiming 
and Resynthesis transformations as it is shown in [9]. 
However, redundancy addition of a gate and removal 
of a wire makes this transformation possible. The 
addition of the redundant OR gate shown in figure c) 
makes the wire shown in figure d) become redundant. 
The removal of this redundant wire leads to circuit b).  
This means that SRAR provides a larger set of 
possible transformations in the circuit.  
However this is a theoretical point of view and 
successful application of a series of transformations 
for optimization with any technique depends a lot on 
the practical implementation. 
 
 
4 Combining RaR and SRAR for 

sequential logic optimization 
Both RaR and SRAR techniques have their 
limitations. For RaR there is a theoretical limitation 
and some transformations are not possible. The 
implementation is very dependent on the second step 
in combinational resynthesis. Performing several 
iterations with Retiming and Resynthesis is not very 
efficient because it is needed to make a full 
combinational optimization of the circuit in each step. 
Besides, these methods are more oriented to timing 
optimization than area. 
On the other hand, for the SRAR techniques there are 
more transformations available. The optimization is 
very efficient because all transformations are found in 
only one test step for each target connection. 
However is more difficult to understand how the 
transformations are affecting to the behavior of the 
STG of the circuit. This means that even if all the 
transformations in the STG are possible, it is 
unknown how to select the target connections to 
reach the desired STG. 
But both methods have their strengths too: SRAR is a 
very efficient optimization method that delivers good 
results and, in general, a single retiming optimization 
step without resynthesis is efficient and provides 
some fast and easy sequential transformations. 
We try to use the strengths of both methods. The new 
algorithm proposed is a series of Retiming and SRAR 
steps. It is a similar method to the original Retiming 
and Resynthesis, but instead of a combinational only 
resynthesis, a full sequential redundancy addition and 
removal is performed. This way it is clear that it 
should deliver better results than the original RaR, as 
the SRAR step provides more optimization 
possibilities. 
Another point of view of this approach can be done. 
The new method proposed is like the original SRAR, 
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but now an additional Retiming step is performed 
each iteration. This helps specially in those cases 
where SRAR can not found a new transformation. In 
these cases a simple retiming movement of flip-flops 
can transform the circuit into another one (changing 
the STG) with new generated SRAR possibilities. 
This way the new algorithm is able to optimize the 
circuit in some situations where original SRAR is not. 
This new method can be summarized in the following  
algorithm: 
1- Perform a Retiming Step. In this step constraints 

of area or delay can be considered. 
2- Perform a SRAR Step. Again, area or delay 

optimization oriented. 
3- If the selected number of iterations is reached 

then stop, else iterate (go to step 1). 
This new algorithm can be used both for area or 
timing optimization. In the next section we show 
some experimental results for area optimization. The 
reason why area optimization is selected is because it 
is the case where Retiming and Resynthesis is more 
limited, and therefore more space for optimization is 
available. 
 
 
5 Experimental results 
In this section we show experimental results for area 
optimization obtained in ISCAS89 [16] and MCNC 
benchmark circuits[17]. 
For the retiming steps SIS Tool from Berkeley is 
used. Options for area optimization are selected 
within this tool [18]. For the SRAR steps RAMBO_S 
is used [7] with some modifications taken from [6]. 
The results are summarized in the following tables: 
Table 1 shows the results for a subset of sequential 
circuits of ISCAS89, and Table 2 shows the results 
for a subset of MCNC. 
Columns labeled as #G, #C and #F show the number 
of gates, connections and flip-flops in the circuits. 
As we are interested in the sequential optimization 
provided by the different algorithms, the initial 
circuits are obtained from a previous strong 
combinational optimization using script.rugged in 
SIS and RAMBO_C Redundancy Addition and 
Removal Algorithm. Thus the optimization results 
shown in these tables are consequence of sequential 
transformations. 
The results show a 22% average optimization in the 
number of connections in the circuits. These results 
can be compared with the ones obtained with the 
previous RaR [8] and SRAR algorithms [7]. 

Inicial SRAR+Retiming

Circuit #G #C #F #G #C #F %

s298 103 230 14 72 158 14 30,10

s344 138 295 15 99 240 15 28,26

s382 143 322 54 100 246 19 30,07

s386 88 227 27 63 180 6 28,41

s400 140 311 21 109 228 19 22,14

s420 157 330 41 126 280 16 19,75

s444 141 311 21 85 213 19 39,72

s499 200 502 22 124 330 22 38,00

s526n 174 386 21 145 337 21 16,67

s635 194 480 32 148 394 32 23,71

s820 179 469 41 136 385 5 24,02

s832 168 433 5 133 364 5 20,83

s838 313 658 32 255 572 32 18,53

s953 340 818 29 227 596 23 33,24

s967 314 749 29 212 588 23 32,48

s991 339 695 19 286 610 19 15,63

s1512 488 1068 57 445 999 57 8,81

s3384 1426 2971 183 1215 2638 157 14,80

s4863 1560 3173 84 1179 2481 75 24,42

s6669 2630 5421 231 2381 5081 201 9,47  
Table 1. ISCAS 89 results 

 
 
 

Inicial SRAR+Retiming

Circuit #G #C #F #G #C #F %

bbara 48 118 4 34 92 4 29,17

bbsse 64 177 4 50 137 4 21,88

bbtas 20 49 3 12 35 3 40,00

beecount 30 79 3 19 65 3 36,67

dk14 63 152 3 46 122 3 26,98

dk15 43 106 2 26 85 2 39,53

dk512 45 110 4 33 93 4 26,67

ex1 130 351 5 104 299 5 20,00

ex2 86 222 5 64 191 5 25,58

ex5 39 97 3 24 65 3 38,46

ex6 60 159 3 39 109 3 35,00

ex7 52 127 4 27 84 4 48,08

lion 14 31 2 9 23 2 35,71

lion9 22 48 3 17 38 3 22,73

mc 26 57 2 14 41 2 46,15

opus 47 128 4 33 110 4 29,79

s1 197 492 5 143 392 5 27,41

sand 273 747 5 225 653 5 17,58

tav 19 46 2 15 41 5 21,05

train11 46 103 4 36 86 4 21,74  
Table 2. MCNC results 
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In this comparison it can be observed that the 
optimization is improved in most cases. 
 
 
6   Conclusions 
We have presented a new approach to sequential 
logic optimization which combines the original 
Retiming and Resynthesis and Sequential 
Redundancy Addition and Removal methods. 
This new algorithm uses efficiently the strengths of 
both of them. It has the advantage of the SRAR 
efficiency and improves the optimization by adding 
fast retiming capabilities. Another strong point of the 
algorithm proposed is that it does not add extra 
computational effort to perform the optimizations. 
The experimental work for area optimization shows 
that this method improves the results obtained with 
the original RaR and SRAR algorithms.  
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