
A Dataflow Graph Based Approach to Web Application 
Development 

 
DAVID BRÜLL, BJÖRN SCHWARZER, SEBASTIAN OSCHATZ,  

Meso - digital media systems design 
D-60329 Frankfurt  

http://vvvv.meso.net 
 

Prof. Dr. ARND STEINMETZ 
h_da - University of Applied Science ,Darmstadt  

Dept. of Media  
D-64295 Darmstadt, 

http://www.media.h-da.de 
 

 
 

Abstract: - This paper introduces a methodology for developing web applications within a dataflow graph based 
environment. In the first section we shortly introduce the programming environment we have extended for this work. 
The consecutive discussion focuses on the advantages of handling web resources by detaching them from the file 
system and leads to a conclusion for the implementation of the web-server components into a dataflow graph. We also 
present a dataflow based method for generating markup content and its style allocation. 
 
Key-Words: - visual, dataflow, web, application, development, HTTP, HTML, XML, vvvv 
 
1   Introduction 
Since the web has grown to a worldwide accepted 
platform for presenting, exchanging and consuming 
knowledge, goods and services, people are subjected to 
software development more than ever. Standards for 
directing the increasing possibilities of web technologies 
emerge in shorter intervals. Those standards mostly 
attend conventional methods of web application 
development like code based imperative approaches. 
Editing in WYSIWYG mode is the most famous 
complement to this evolution. Although, by trying to 
skip the code’s abstraction, a basic understanding of the 
underlying processes is lost.  In this paper we present an 
application of web standards with the aid of a visual 
dataflow programming paradigm. 
     Our work should be seen as an experimental research 
project and is not meant to completely substitute 
traditional techniques. In our opinion today’s 
development standards are subjected to firmly adopted 
programming methods, which hinders us to look beyond 
certain patterns. Our theory indicates the advantages of 
the abstract visualization of today’s web standards. 
 
2   Related Work 
There have been many attempts to proof the advantages 
of visual programming approaches. Nan C. Shu [1] 
approved the cognitive benefits of visual programming 
and Margret Burnet [2] classified the different visual 

paradigms. These contributions are proven to be still 
useful to today’s development situation as in different 
fields the dataflow paradigm is constantly established. 
As an example Max/MSP[3]  can be listed for the area of 
multimedia applications and LABView[4] for the field 
of laboratory automation. 
     Although the research in the area of dataflow based 
web application development is not very old, there have 
been a few works similar to our approach such as the 
VIPERS [5] system and the Lixto transformation server 
[6]. The Lixto TS e.g. provides an XML based system 
for designing a so called infopipe to build a data 
aggregation step by step. The processing model of the 
Lixto TS contains four component types for extracting, 
integrating, transforming and delivering information. 
The most important difference of both, VIPERS as well 
as Lixto TS to our own approach is the actual purpose 
for using the systems. While our approach shows how to 
program and provide a dynamic web application during 
runtime, VIPERS and Lixto TS are more suitable to 
preprocess programs.   Developers usually use scripting 
languages like PHP and Perl to add  dynamics to their 
static HTML pages. Our system shows, that a dataflow 
graph is able to provide the same flexibility without 
resorting to additional scripting languages. 
 
3   The Environment 
For the demonstration of our approach, we use vvvv [7], 
a visual programming environment whose core metaphor 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp723-727)



is a dataflow graph consisting of nodes and links which 
can be manipulated via an intuitive graphical interface 
during runtime. 
     vvvv is designed to facilitate the handling of large 
media environments with physical interfaces, real-time 
motion graphics, audio and video that can interact with 
many users simultaneously. Furthermore vvvv includes a 
wide range of possibilities to manipulate strings in 
general as well as special functionalities for handling 
XML data strings [8]. A build in HTTP server enables 
the supply of web resources directly out of the graph [8]. 
     Each node within a graph corresponds to a particular 
procedure whose input parameters are given by the upper 
edge “input-pins” of the node. The procedures result 
occurs on the lower “output-pins”. Each output pin can 
be linked to an arbitrary number of input pins of other 
nodes. vvvv’s graphical user interface prevents the 
developer from connecting nodes of different data types. 
In textual programming environments this feature is 
often left to the compiler and is a second step after 
authoring source files. The computation of the graph 
occurs in real-time, by splitting the time into calculation 
frames. With each calculation frame vvvv evaluates the 
complete graph. Therefore each node requests upstream 
nodes to evaluate their outputs. Various caching 
strategies avoid duplicate calculations in one frame. This 
method ensures the availability of every procedures 
result for the current frame. 
     A node can either be supplied by the environment or 
can be a vvvv graph itself (Sub-graph). Thus every graph 
can be at any other graph’s disposal as a node. 
 
 
4   Dynamic and File-less 
Our approach shows a server side operation which is 
detached from the file system. By requesting a resource 
from the server, the corresponding string representation 
of that resource is held in memory and can be 
manipulated by the dataflow graph in real-time. The 
HTTP server itself receives the final string of the graph’s 
calculation and sends it back to the browser.  
     Considered from an ideological point of view, this 
method results into a better perception of what a web 
server does, because the string can be gripped in every 
state of the calculation. This leads to new opportunities 
of debugging web applications, since in conventional 
methods the developer depends completely on the 
processors support. Hence, the dataflow programming 
paradigm itself enables better debugging in an 
application. Furthermore, the string based approach of 
handling web resources provides unskilled developers 
with an understanding of the interaction between the 
application and the server by reducing the server’s 
activity to its core role. By passing data through the file 
system we loose information about path and extension of 
a resource. As this information is needed by the server in 

order to send the corresponding MIME-type back to the 
client, it has to be manually re-assigned on the 
application level, which, on the other  hand increases the 
flexibility of the content administration. Of course, it is 
also possible to build a graph which itself accesses the 
file system and extract the missing information and sets 
the appropriate properties automatically. This would 
then reflect the usual server behavior. 
     Resources with MIME-types that differ from text, e.g. 
images, are handled within vvvv as binary strings. In 
order to make those resources visible to human eyes, 
vvvv provides nodes for transforming binary strings to 
images and vice versa. Since vvvv is designed to solve 
tasks involving media like video and 3d animation, it is 
accordingly suitable for image transformations.      
 
 
5   The Dataflow Setup 
Within the dataflow paradigm, it is not the execution 
order of operations that has to be determined, but the 
dependence between nodes. Therefore, the order of 
operations execution results implicitly from the way 
nodes are being linked to each other [9]. Technologically 
the node’s arrangement is irrelevant as long as their 
linkage is correct. Simply the cognitive interpretation of 
a dataflow graph is much easier if all nodes were 
arranged in a linear fashion. 
     Detractors of visual programming often review the 
bad readability of dataflow diagrams. As we know from 
experience, this effect can be avoided by finding the 
right abstraction for the processes. By designing new 
nodes for a dataflow graph it is required to optimize the 
given functionalities to the developer’s perception to 
ensure efficient cognition of the dataflow. 
     Hence, for this work it is also essential to implement 
the processing of a web server request according to that 
pattern. Every activity starts with a HTTP request to the 
server and results in the delivery of the corresponding 
resource to the client. Fig.1 shows a straightforward 
implementation of the web server as one operation node 
which expects the extraditable resource as its input and 
delivers request header information as its output. This 
implementation causes recursive linking and overlapping 
connections if the resource properties depend to the 
request parameters. To avoid confusing diagrams it is 
important to reduce the necessity of recursive linking. 
 

 
Fig. 1: Recursive linking 
 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp723-727)



     As a logical conclusion one has to split the server 
operations into two nodes: The HTTP receiver node and 
the HTTP server node. The HTTP receiver node reads all 
parameters of the browsers request and provides them at 
its output pins. The HTTP server node on the other hand 
accepts the final resource as a string at its input pin(s) 
and delivers it to the client. 
     A graph of any given processing purpose can now be 
linked between the HTTP receiver and the HTTP server 
node.  
 
 

Fig. 2: The process of a HTTP request 
 

 
6   A simple dynamic scenario 
The following example demonstrates the setup 
mentioned in the previous section. The scenario in Fig. 3 
shows the dataflow graph for the initialization of a 
simple user login verification. The graph provides a 
HTML page with a simple form included.  
 

  
Fig. 3: A simple HTML form. 
 
This page has the URL login.html assigned. Once the 
server receives a HTTP post requesting that URL (e.g. a 
user clicked the submit button), the HTTP receiver node 
reads and then outputs all transmitted HTTP header 
information including the typed username and password. 
The node chkLoginData is a sub-graph which verifies 
the incoming login information e.g. against a database 
query. Depending to the resulting boolean value, the 
graph selects as output either an error or a welcome page 
which will be served back to the client by the HTTP 
server node. 
     As one can see in Fig. 3, the error page contains an 
image which is also provided as a binary string on the 
bottom of the graph. The general flexibility becomes 
even more obvious by considering the welcome page to 
be dynamically concatenated, too.  
 

 
Fig. 4: The login verification graph.  
 
     Another aspect of the flexible HTTP adoption is the 
possibility to use a multitude of as many HTTP receiver 
nodes as needed. Furthermore it is possible to restrict 
their output by adjusting the URL and HTTP Method it 
listens to. Parameters, which result from requesting an 
URL like  
http://localhost/login.html?username=MyUsername&pa
ssword=MyPassword will be listed the same way as the 
graph in Fig. 3 shows. Since the HTTP receiver outputs 
the complete requested URL it is also possible to define 
a special URL syntax and let the graph parse the 
necessary information. 
 
 
 
 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp723-727)



7   Dataflow Based Markup Generation 
All information transmitted during a web request 
consists of strings that match a certain pattern. Even a 
HTML page is a string that matches a pattern. In order to 
dynamically generate or manipulate these patterns, 
generic string operations are necessary. vvvv provides a 
wide range of common string operations in form of 
special nodes e.g. for concatenation, reduction, search 
and replacement of string tokens. In general it would be 
possible to generate HTML markup with these 
operations. However, it turned out to be extremely 
impractical as every single tag and their corresponding 
attributes have to be typed in manually.  
     Since XHTML [10] is an expedient extension of 
HTML which follows the XML syntax [11], it opens up 
new possibilities for manipulating web pages. XSLT 
[12], which itself follows the XML syntax, provides 
powerful operations for transforming XML strings. The 
XML syntax, however, consist of a nested set of tags. As 
demonstrated by others, representing a XML-tree 
graphically is most natural [13]. Some achievements in 
the area of graphical XML representation have been 
query languages such as XML-GL [14], VQL [15], and 
Xing [16]. Hence, we are certain that markup generation 
with a dataflow environment is the next step to be taken. 
Following the principle of separating the content of a 
web resource from its presentation, we pursue the 
approach of supplying both, (X)HTML nodes for 
generating markup, and CSS nodes for style allocation.  
. 

 
Fig. 5: A HTML tree concatenated by a dataflow graph 
 
The simple HTML error page from the scenario in 
section 6 of this paper would be extended by the graph 
shown in Fig. 5. 
     CSS specifies a priority pattern to determine which 
style rules apply if more than one rule matches against a 

particular HTML element [17]. In the cascade, priorities 
are calculated and assigned to rules, so that the results 
are predictable. Writing CSS, however, requires the 
developer either to reconstruct given naming 
conventions or to define his own structure. In common 
use more complex projects lead the author to lose the 
overview of the CSS attributes. Often developers have to 
switch between multiple files in order to set the right 
order of precedence.  
     Our dataflow based approach frees the author from 
following the CSS cascading model. The dataflow model 
provides the correlation by visually linking the CSS 
nodes with the HTML nodes.  
 

 
Fig. 6: A HTML tree with allocated CSS nodes 
 
While the HTML nodes in Fig. 6 strictly follow the 
HTML elements name, the brighter CSS nodes are 
grouped to logical compositions of CSS properties. The 
HTML nodes functions are very simple. Each node 
encloses the incoming string in its equivalent html tags. 
The CSS nodes procedures are more complex. CSS 
nodes can inherit other CSS properties from connected 
CSS nodes above. Therefore internally the parameters 
are held in memory for every frame. A straightforward 
implementation would insert the CSS properties into the 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp723-727)



html tags itself. Future implementations can move 
common elements automatically in the head section of 
the resulting HTML page. 
 
8 Conclusion 
In this paper, we have first introduced the dataflow 
based programming environment vvvv. We further 
explained the need for the right abstraction level by 
designing operation nodes for a dataflow graph. By 
breaking the server down to its two core functions 
(receiving requests and serving resources) we have 
ensured a logical dataflow perception without 
recusion. Starting from this basic setup we 
explained the resulting increased flexibility by 
going through small login verification scenario. 
Furthermore, we have presented an extension to 
XML markup nodes and CSS style allocation nodes. 
While the XML concatenation follows it own 
straight forward hierarchical conditions, we 
introduced the allocation of CSS statements in a 
new approach which passes on the CSS cascade 
priorities for the benefit of visual linking.  
     For the future we are also planning to implement 
nodes for XSLT stylesheet generation and 
expanding the server features to completely support 
HTTP 1.1.  
      We believe that dataflow based web 
development is a warrantable alternative to 
conventional methods as we have shown in this 
paper. 
 
 
References: 
[1] Nan C. Shu, Visual Programming, Van Nostrand 

Reinhold, 1988 
[2] Margeret M. Burnett,, Marla J. Baker, A Classifi-

cation System for Visual Programming, Journal of 
Visual Languages and Computing  Graphical Web-
Server Programming, No. 5, 1994, pp. 287-300. 

[3] Cycling 74, http://www.cycling74.com/products/ 
maxmsp, date: May 2006. 

[4] National Instruments, http://www.ni.com/labview/,             
date: May 2006. 

[5] Mauro Mosconi, Marco Porta, A visual approach to 
Internet Application Development, Proceedings of 
the 8th International Conference of Human-Computer 
Interaction(HCT’99), Vol. 1, pp. 22-27, 1999 

[6] Robert Baumgartner, Georg Gottlob, Marcus 
Herzog, Visual Programming of Web Data 
Aggregation Applications, Eighteenth International 
Join Conference on Artificial Intelligence / Workshop 
on Information Integration on the web, 1999 

 

[7] Meso, official vvvv webpage, http://vvvv.meso.net, 
date: May 2006 

[8] David Brüll and Björn Schwarzer, Graphical Web-
Server Programming, Thesis, University of Applied 
Science Darmstadt, 2006 

[9] Stefan Schiffer, Visuelle Programmierung: Grund-
lagen und Einsatzmöglichkeiten, Addison-Wesley-
Longman, 1998 

[10] W3C, XHTML 1.0, The Extensible HyperText 
Markup Language. W3C Recommendation, 
http://www.w3.org/TR/2000/REC-xhtml1-20000126/, 
2000. 

[11] W3C, XML 1.1, Extensible Markup Language. 
W3C Recommendation, http://www.w3.org/TR/2004 
/REC-xml11-20040204/, 2004. 

[12] W3C, XSL Transformations (XSLT) Version 1.0. 
W3C Recommendation, http://www.w3.org/TR/xslt, 
2004. 

[13] Kang Zhang, Da-Qian Zhang, Yi Deng, A visual 
approach to XML Docuemtn Design and 
Transformation, Proceedings of 2001 IEEEE 
Human-Centric Computing Language and 
Environments, Stresa, Italy, 2001. 

[14] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. 
Paraboschi, and L. Tancia, XML-GL: a graphical 
language for querying and representing XML 
documents, Proc. 8th Int. World Wide Web Conf., 
1999. 

[15] K. Vadaparty, Y.A. Aslandogan, and G. Ozsoyoglu, 
Towards a unified visual database access, Proc. ACM 
SIGMOD Conf. on Management of Data, 357-366, 
1993. 

[16] M. Erwig, A Visual Language for XML, Proc. 
2000 IEEE Symp. on Visual Languages, Seattle, 
USA, 47-54, 2000. 

[17] W3C, Cascading Style Sheets, level 2, CSS2 
Specification, http://www.w3.org/TR/REC-CSS2/, 
1998. 

 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp723-727)


