
An Agent-Based Model for Virtual Tourism Using Object Petri Nets

Ali A. POUYAN, MEMBER IEEE
 Faculty of Computer and IT Engineering

Shahrood University of Technology
IRAN

ALI HASSAN BEIGI

Department of computer engineering
University of Birjand

IRAN

MAHNAZ KADKHODA
Department of computer engineering

University of Birjand
IRAN

Abstract – This paper presents a Petri net based agent model for virtual tourism. This model is based on object
oriented Petri nets. The object Petri net model of virtual tourism consists of three distinct layers. Petri net models
of agents are proposed to specify the components of mobile agent systems as autonomous modules. Each layer of
the system has been modeled by a Petri net sub-module. The upper layers of the model consist of transitions,
which are the encapsulated versions of the Petri net modules in a lower level layer. Communications among
agents are defined via interfaces that are specified by the agent.

Keywords: Modeling, object Petri nets, mobile agents, multi agent systems, virtual tourism.

1 Introduction
Web environment is undergoing a transformation into
a platform for highly distributed applications such as
web-based systems and electronic commerce.
Specifically, mobile software agents are a generic
network programming paradigm, where migrating
software components (computer programs) carry out
certain distributed tasks by roaming the heterogeneous
network systems.

Mobile software agents [1], [2], or simply mobile
agents, evolved from autonomous agents [3]
introduced a decade ago as a powerful abstraction for
conceptualizing large-scale distributed asynchronous
computer network systems [4]. It supports a wide
range of different types of computer applications such
as electronic commerce, network management,
distributed information retrieval, workflow
management, real-time conferencing; wireless/cellular
based mobile computing and the implementation of
telecommunication services. In general, the mobile

agent paradigm is considered as a solution to reducing
network congestion due to heavy traffic load in the
network and managing its complexity.

Mobile agents are executing programs that migrate
from machine to machine in a heterogeneous network
[5], [6]. They run within agent server programs as
logical places referred to as agencies. When a mobile
agent migrates to a specific node in the network, its
execution is suspended at the original agency. The
program code, control information, data and execution
status are transferred to the host agency. The mobile
agent resumes execution after being re-instantiated at
the destination environment. Mobile agents have the
ability to prevent or solve problems encountered in the
network during their journey, and they have the ability
to communicate with other. Mobile agent based
software systems have gained wide acceptance as a
conceptual framework that provides, among others,
the following benefits [7]: more efficient use of
communication resources by using much less
bandwidth than a conventional correspondent RPC-

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 149

based client; dynamic load balancing by partitioning a
task into components that are distributed across
multiple processors; flexible management for software
deployment and maintenance; adequate support for
interactions with environment and flexible support for
disconnected operations.

A critical issue in the development of software
systems based on mobile agents is the support of
formal reasoning and analysis of designed systems
[3]. For most real-world applications with a large
number of communicating agents, it is fundamental
that system behavior exhibits certain desired logical
properties such as absence of deadlocks and
reversibility or cyclic behavior. Although mobile
agent software systems have been investigated by
many researchers from different points of view and
diverse orientations [1], work in formal analysis of
design and communication behavior in distributed
systems implemented with mobile agents is still
needed. The aim of this paper is to develop a
theoretical framework and modeling approach for
communication behavior of mobile agents in
multiagent systems.

The paper is organized as follows: Section 2 gives
a brief introduction to mobile agents, Petri nets and
Object Petri nets and introduces a formal notion of
basic agent template. Section 3 describes the proposed
approach for modeling agent communications. In
section 4 communications of agents are modeled
based on the proposed approach. Finally, a conclusion
is presented and a sketch is discussed for the future
work.

2 Communication Behavior
In this section, we first introduce mobile agents
briefly. Then, the proposed modeling approach of
mobile agent communications using Petri nets will be
described.
 In mobile agent software systems servers and
agents are the most fundamental concepts [2]. A
mobile agent system includes a number of servers,
where various resources and services are provided and
computation can take place. Mobile agent paradigm
has evolved from two antecedents: client-server model
and remote evaluation (REV) model [8]. In client-
server model processes resided in the client and server
communicate synchronously either through message
passing or remote procedure call (RPC) mechanism.
In RPC, data is transmitted in both directions between
client and server. In REV model, client sends its own

procedure code to a server rather than calling a remote
procedure [9].

Mobile agents can autonomously visit several
hosts without the need for continuously interacting
with originating host. Agents can have multiple hops
and can be detached from the client without being
permanently connected to the originating host. This
distinguished characteristic makes mobile agent-based
software systems ideal for handling temporary
network connections in mobile computing. This
makes mobile agents different from applets and from
the servlets according to the movement pattern. An
agent can visit a number of hosts and it does not need
to know the complete itinerary in advance.
Furthermore, the routing table of a mobile agent can
be changed based on information gathered at
intermediate hops during its journey in the network.
Two patterns of mobility can be defined based on the
state from which a mobile agent resumes execution
after migration: weak migration and strong migration
[10]. By weak migration, the code and part of the
execution state (code and data but no control state) are
moved. After migration, the execution resumes from
the beginning or from a specific procedure. Strong
migration allows the migration of both the code and
the whole execution state (code, data and state).
Mobile agent resumes execution from the point where
it was stopped before migration. Other aspects of
mobile agents relating to agent migration can also be
investigated based on the scope of the study.

2.1 Petri Nets
We use Petri Nets to model communication behavior
of software systems based on mobile agents. PNs; as a
high level graphical specification language, have a
sound and mature mathematical foundation. It allows
a formal and direct investigation of factors such as
resource conflicts, synchronization and concurrency in
distributed systems. For quick reference, a brief
overview of Petri nets is provided in this section, a
more detailed coverage can be found in [11].

A Petri net consists of a structural part and a
dynamic part. A PN structure, N, is a four-tuple, N =
(P, T, V, F) where P = {p1,p2,..., pn} is a finite set of
places, n ≥ 0. T = {t1,t2,..., tm} is a finite set of
transitions, m ≥ 0 (T∪P form the nodes of N) V
⊆{(P×T)∪(T×P) } is a set of directed arcs (or a flow
relation). F: V → ℵ is a multiplicity (incidence)
function, ℵ = {0,1,2,3…}. P ∩ T = ∅ and P ∪ T ≠ ∅

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 150

(F∩(T×T) = (F∩(P×P) = ∅). A PN structure can be
represented as a directed bipartite graph. In a Petri net
graph, places are represented by circles and transitions
by bars or boxes. Places and transitions are connected
with directed arcs. Assignment of tokens to the places
of a PN structure is called its marking and represents
the state of the modeled system at each time instance.
A marking µ of a Petri net N = (P, T, V, F) is a
mapping µ : P → ℵ. Tokens in a Petri net graph are
represented by dots or positive numbers in places. The
number of tokens in place p of a Petri net is formally
denoted by µ(p). A place p∈P is marked if µ(p)>0,
otherwise it is unmarked. A Petri net is marked if a
marking function can be assigned to it. The state of a
Petri net is defined by its marking. The dynamic part
of a Petri net involves the change in markings over
time.

2.2 Object Petri nets
Object Petri Nets (OPN) have been introduced as an
extension of the class of colored Petri nets [12] made
in a similar way to hierarchical colored Petri nets, but
in an object-oriented perspective.

An OPN is a tuple OPN=(T, C, C0) where:
a) T is a set of basic types that determines the

underlying component values, operators and
functions.

b) C is an OPN class hierarchy with inheritance
relations based on sub typing of data fields.

c) The class C0 ∈ C is a designated root class.
OPNs support a complete integration of object-

oriented concepts into Petri nets, including inheritance
and the associated polymorphism and dynamic
binding. A class is defined as a Petri net, which can
be, as usual, instantiated. In addition to places and
transitions, a class contains data fields and functions.
Data fields have types that may be simple (integer,
real Boolean), class, or multi-set, which generalizes
classical Petri net, places. New functions can be
defined assuming predefined types and functions.

2.3 Agent Model
In this section we give a definition of agent which is
consistent with our approach. The environment of
agents can be considered as a composite system made
of agents of different kinds. Each agent is a flow of
actions processing certain objects, is triggered by
events, and changes the state of the system.
Communicating agents have characteristics and

behaviors that need to be taken into account to
correctly model the behavior of the system.

An agent can be defined as an autonomous (having
control over its own actions) software entity that is
situated within an executing environment. It can also
interact (communicate) with its environment and other
agents while it is bond to certain predefined task on
the user’s behalf. From an object-oriented point of
view, an agent is conceptualized as an encapsulated
software entity that can send messages to and receive
messages from other objects. It has a number of
methods to process the messages and change its state
as an encapsulated entity. An autonomous agent, as an
active object has its own tasks that may be composed
of several kinds of sequential or concurrent subtasks
to be accomplished. An agent with the property of
mobility (migration) between different servers is a
mobile agent.

A multi-agent system is a set of communicating
agents; each agent is situated in some environment
and is able to interact with its environment and with
other agents. This definition appears to be adequate
for capturing the characteristics of the systems we are
dealing with. But we need a formal definition of the
concept of agent which is also consistent with our
proposed approach. The definition of agent needs to
be the one that can be used to compare or to combine
different approaches. Moreover, the definition of
agent can be used to describe relevant entities
uniformly, independently of their physical nature. If a
single system model has to represent different kinds of
entities, a unique concept of agent provided by the
definition is used to uniformly describe conceptual
interfaces among them. Using mathematical notions
enables us to reach a common interpretation of the
concept of agent.

We model agent behavior as consisting of several
concurrent actions. Each of these actions can execute
in parallel to define the behavior of the agent. Actions
are used to specify actual functions carried out by the
agent and are performed inside the agent states. Each
action may have a set of invariants that must hold
during the entire life of the action. Actions are defined
in the form of functions. Each function may return a
result and may have a number of input parameters.
While these actions execute concurrently and carry
out high-level behavior, they can be coordinated using
internal events. States encompass the processing that
goes on internal to the agent. This processing is
specified by a sequence of activities specified in a
functional form. Transitions describe communications

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 151

among agents. To communicate with other agents,
external messages can be sent and received.

3 Hierarchical Multi Agent System
In this section we provide an OPN representation
based on the definition of agent and other concepts
provided in sections 2. In the proposed method the
interaction between agents, or message passing, takes
place through Petri net structures rather than an arc
between two nodes (place or transition) as suggested
in other methods in the literature. In other words,
inter-agent communications happen as events via
certain communicative acts containing the type and
information of a message. These rules may be defined
according to the structural relationships between Petri
net modules that specify the entire model as a set of
inter-related components or modules which hide their
internal details. The advantage of this method is that
the resultant net model of the system has already been
extended as a correct Petri net system and there is no
need for any posterior analysis while it grows in
complexity. This reduces the modeling effort by a
major amount. It should be noted that in Petri net
modeling when the systems become large, the state-
space explosion problem happens, so net system
analysis becomes computationally difficult and in
some cases impractical. Theoretically, the augmented
PN models are guaranteed to be well-behaved
regardless of the application domain and the design
level. For instance, to host a mobile agent after
migration, each host is supposed to provide the
execution environment and the facilities for agent
activation and deactivation. To accomplish its task,
the mobile agent communicates with stationary
environment, which consists of resources such as
service agents. All these details can be modeled as PN
structures, and the describing modules can then be
composed and integrated to the PN model at system
level. In OPN, similarly we have places and
transitions but here tokens are instantiated from
classes and may be changed from place to place. In
fact tokens can be the system’s objects or object
oriented marking of system. We exemplify the
proposed method in section 2 by constructing a
multiagent system for virtual tourism. In this example,
in addition to an object oriented approach a
hierarchical architecture of analysis and design has
also been observed.

After referring a tourist to system (internet site or
office) a secretary fills the personal information forms
and creates a Consulting Agent (CA) to assign to

customer. The CA consult the tourist about his/her
preferences (available places to visit, accommodation,
how to travel, etc.) and costs, and help him/her to
choose any of possible alternatives. Then the tourist
makes a decision based on the information provided
by the CA. The consulting agent then passes this
information to the Envoy Agent (EA) to perform the
relevant formalities (room and ticket booking and
other necessary coordination). The envoy agent
reports to the consulting agent after completing the
assigned tasks by the CA. The tourist will be informed
of the result by the consulting agent. Finally, in the
end of the journey CA save all travel information in a
system “log file”. The consulting agent will also be
removed (deleted) by the system. It should be
mentioned that there does not exist a one-to-one
mapping from the set of CA’s to the set of EA’s. This
is because to each customer (tourist) a consulting
agent is assigned which will be removed after
finishing its mission (end of the journey. On the other
hand, the number of envoy agents is usually constant
and they accept various orders from different
consulting agents in the system. They are able to
perform concurrently. The relationship between
secretary, CA and EA is depicted in Fig.1.

Fig.1. Interactions between types of agents

The components of the system are defined in four

distinct classes as follows: the class of Secretary, the
class of consulting agents, the class of envoy agents
and the class of customers. These classes have been
specified as follows:

Now, we can instantiate objects from these classes

as tokens in the hierarchical model of object oriented
Petri nets. The entire system can be represented in a 3-
layer architecture. These layers are: layer 1 system
(company), layer 2 Secretary and consulting agent,

Secretary Consulting
agent

Customer (Tourist)

Envoy

Tourist referring

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 152

and layer 3 envoy agents. In OPNs each token in the
PN model in a specific state is an object, which
belongs to a class. Type of objects can vary as the
system transforms from one state to another state.

Company or system tasks are represented in layer
1, Fig.2. Type of tokens is shown as place labels.
Transitions t2 and t3 contain a series of encapsulated
operations. Therefore, layer 2 can be constructed by
expanding transitions t2 and t3.

Fig.2. Layer 1 system layer

In this layer modeled as PN in Fig.2, transitions are

interpreted as follows: t1 customer referring, t2
registration and assigning a consultant to a consumer,
t3 performing the consulting task, t4 saving task
information in system log file, and t5 removing
(deleting) the consulting agent.

In OPNs an arc can be labeled (can contain) an
object function. This function can be executed and its
outcome will be returned to transition as input. In
Fig.3, when function refer() from tourist object is
invoked (in fact when a tourist is referred to the
agency) transition t1 will fire.

Fig4. Secretary work flow in layer 2

As shown in Fig.4, except place p4 (that is of
customer type) and place p6 (that is of consulting
agent type), all other places have tokens of secretary
type because at this stage the main task is conducted
by the secretary. Transitions are labeled as follow: t1
filling registration forms, t2 acquiring brief
information about trip and estimating trip costs, t3

request for basic credit creation, t4 customer
disagreement with declared costs, t5 customer
agreement and creating basic credit, t6 creating a
consulting agent and assign it to the customer
(initialization CA). Note that places p1 and p6 in Fig.2
are the same as places p2 and p3 in Fig.3, respectively
with the same token type.

The second part of layer 2 is the PN model of the
consulting agent task, which corresponds to transition
t3 in layer 1 (Fig.2). This part is shown in Fig.3.

Fig.3. Consulting agent work flow in layer 2

Transition labels in PN model of Fig.3 are as
follows: t1 initializing and start running, t2 consulting
with customer about tourism attractions and region of
trip, t3 deciding region of trip by customer, t4
confirming the region of trip, t5 consulting with
customer about accommodation and duration of trip,
t6 choosing accommodation and duration of trip by
customer, t7 confirming the accommodation and trip
duration, t8 consulting about transportation, t9
choosing the vehicle type by customer, t10 confirming
the means of transportation and passing trip
information to the envoy agent, t11 booking and
coordination (by envoy), and t12 online consulting
during the trip.

Each place can reside a token of a specific type,
which depends on the agent that performs the major
task. As shown in Fig. 4, except places p3, p5 and p7,
which are of customer type other places will reside
tokens of type consulting agent. In every cycle of
choice, transition t2 (consulting) will fire if function
consult() is called by the consulting object. And
transition choice will fire if function choose() is
invoked by the customer object.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 153

After completing decision process about trip
parameters, official tasks and formalities assigned to
an envoy object, which is represented by transition
t11. Thus, the envoy task constitutes third layer of the
proposed architecture of the model. Note that places
p1 and p10 in Fig.4 are the same as places p3 and p4
in Fig.3 with the same type.

Layer 3 represented in Fig.5; include envoy agent
workflow.

Fig.5. Envoy task makes layer 3 of architecture

Transition labels in Fig. 5 are: t1 assigning task to
envoy by consulting agent, t2 acquiring the necessary
information from related databases, t3 booking
according to received orders, and t4 reporting the
result of mission to consulting agent. Places p1 and p5
are the same as places p8 and p9 in PN model in
Fig.4. This layer should contain more details than
upper layers in our proposed model.

4 Conclusion
In this paper, we have presented an agent-based model
using object oriented Petri nets. Our proposed model
consists of three layers. Each layer has been modeled
by a Petri net module. An agent has been defined to
support formal reasoning for agent communications in
multi agent systems. The proposed Petri nets model
consists of transitions, which are the encapsulated
versions of the Petri net modules in the lower levels of
the system. The interfaces of each layer (modeled by
Petri net modules) are defined as transitions that are
unidirectional interfaces with simple data transfer
capacity.

References:
[1] R. Guttman, A. Moukas, and P. Maes, “Agent-

mediated Electronic Commerce: A Survey
Knowledge Engineering Review,” June 1998.

[2] S. Green, L. Hurst, B. Nangle, P. Cunningham, F.
Somers, and R. Evans, “Software Agents: A
Review,” Technical report TCD-CS-1997-06,
Trinity College, Dublin, May 1997.

[3] T.J. Rogers, R. Ross, and V.S. Subramanian,
“IMPACT: A System for Building Agent
Applications,” J. Intelligent Information Systems,
Vol. 14, 2000, pp. 95-113.

[4] F.M.T. Brazier, Dunin, B. Keplicz, N. Jennings,
and J. Truer, ” DESIRE: Modeling Multi-Agent
Systems in a Compositional Formal Framework,”
in Int’l J. Cooperative Information Systems, Vol.
6, Special Issue on Formal Methods in
Cooperative Information Systems: Multi-Agent
Systems, 1997, pp. 67-94.

[5] M. Iglesias, Garrijo, and J. Centeno-González, “A
Survey of Agent-Oriented Methodologies,” in
Proc. Fifth Int’l Workshop (ATAL-98), 1998, pp.
317-330.

[6] M. Wooldridge, and N.R. Jennings, “Special Issue
on Intelligent Agents and Multi-Agent Systems,”
J. Applied Artificial Intelligence, 1996.

[7] M. Petit, P. Heymans, and P.Y. Schobbens,
“Agents as a key concept for Information Systems
Engineering Requirements,” Position paper, Dept.
Comp. Science., Namur Univ, Belgium, 1999.

[8] M. Kolp, P. Giorgini, and J. Mylopoulos,
“Organizational multi-agent architectures: A
mobile robot example,” Proc. AAMAS, 2002,
Bologna, Italy, 2002, pp. 94-95.

[9] G. Di. Marzo Seregeundo, et al, “Survey of
theories for mobile agents,” Technical report, No.
106, Geneva Univ, 1996.

[10] H. Xu, and S.M. Shatz, “An Agent-Based Petri
Net Model with Application to Seller/Buyer
Design in Electronic Commerce,” in Proc. Fifth
Int. Symposium on Autonomous Decentralized
Systems (ISADS 2001), March 26-28, Dallas,
Texas, USA 2001, pp. 11-18.

[11] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proc. IEEE, Vol.77, No.4, April
1989, pp. 541-580.

[12] T. Miyamoto, “A Survey of Object-Oriented
Petri Nets and Analysis Methods,” IEICE Trans.
Fundamentals, VOL.E88–A, NO.11 November
2005.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 154

