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Abstract: - The performance of modeling and simulation tools is inherently tied to the platform on which they 
are implemented.  In most cases, this platform is a microprocessor, either in a desktop PC, PC cluster, or 
supercomputer.  Microprocessors are used because of their familiarity to developers, not necessarily their 
performance on the problems of interest.  We have developed the underlying techniques and technologies to 
produce supercomputer performance from a standard desktop workstation for a variety of applications.   This 
is accomplished through the combined use of graphics processing units (GPUs), field-programmable gate 
arrays (FPGAs), Cell processors, and standard microprocessors.  Each of these platforms has unique strengths 
and weaknesses but can be used in concert to rival the computational power of a high-performance computer 
(HPC).  In this paper, we discuss the relative advantages and disadvantages of each platform and how they can 
be combined in order to achieve high performance on a variety of applications. 
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1   Introduction 
The general-purpose nature of microprocessors has 
led to their incorporation into a wide array of 
platforms, from embedded systems to desktop 
computers, and used for applications ranging from 
encryption to word processing.  This flexibility, 
combined with their low price and simple 
programming model, has led to their popularity.  
However, this versatility comes at a cost; to 
maintain their generality, microprocessors sacrifice 
computational performance.  Instead of being 
optimized for numerical processing, 
microprocessors focus on integrating features that 
will benefit the widest variety of applications, thus 
appealing to the broadest audience.  However, many 
scientific computing applications, such as physics-
based simulations and image processing, require far 
more computational power (and memory) than is 
available from a standard desktop PC.  This has led 
to the advent of clustered computing, a technique 
that involves distributing a single problem to a 
group of commodity PCs and allowing them to 
perform computations in parallel.  This “more is 
better” approach is epitomized in modern 
supercomputer design, which typically consists of 
many standard microprocessors linked by high-
speed interconnects.  
 
Although aggregating commodity processors into 
larger systems provides more computational power 
than a standard PC, there are drawbacks to this 

approach.  First, the algorithm must be partitioned to 
run on multiple processing nodes.  This is often a 
nontrivial task and typically results in wasted 
computational power.  This problem is further 
compounded by the need to transfer information 
between microprocessors.  For a vast collection of 
processors to work together effectively, they must 
communicate and synchronize data.  This often 
forces processing elements to stall while waiting for 
other nodes to complete their tasks.  The second 
major drawback to traditional high-performance 
computers (HPC) is their size.  Clusters and 
supercomputers are large systems taking up an 
excessive amount of space and power, while 
generating tremendous heat.  Finally, 
microprocessor-based HPCs are costly.  While a 
single microprocessor is relatively cheap, building 
an HPC based on them can be quite expensive.  To 
build a cluster, it is necessary to acquire many 
standard computers and the infrastructure to connect 
them.  The hardware costs alone for a moderately 
sized cluster (35-50 nodes) can easily exceed 
$100,000.  Additionally, parallel computational 
software must be purchased, either through an 
independent software vendor (ISV) or by hiring 
programmers.   
 
While traditional microprocessor-based HPCs are 
frequently used, their performance, physical 
restrictions, and cost clearly make them far from an 
ideal solution.  To better meet the needs of the 
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scientific computing community, we have developed 
the underlying techniques and technologies to 
produce supercomputer performance from a 
standard desktop workstation (a “desktop 
supercomputer”).  This is accomplished through the 
combined use of graphics processing units (GPUs), 
field-programmable gate arrays (FPGAs), and 
standard microprocessors.  Each of these platforms 
has unique strengths that, when used in concert, can 
rival the computational power of traditional HPCs.  
Microprocessors, as discussed, are general purpose 
and can be easily programmed to target a variety of 
applications.  FPGAs are reconfigurable chips that 
can be modified at the gate level by mapping a given 
architecture directly into the hardware.  Because 
they are completely reconfigurable, FPGAs can be 
applied to many applications, but require lower-level 
programming than microprocessors and GPUs.  
GPUs are built for rendering graphics to a computer 
screen by performing the significant computations 
necessary to model a three-dimensional world.  
While far less flexible than microprocessors and 
FPGAs, GPUs are extremely efficient at performing 
single-precision arithmetic in a parallel fashion.  For 
algorithms capable of utilizing such an architecture, 
the GPU offers high performance from a commodity 
hardware device.   
 
The recent release of the Cell processor by IBM has 
provided another computational alternative to 
standard microprocessors.  We have explored the 
integration of this new commodity device into our 
desktop supercomputing platform and have begun 
developing applications for this platform. 
 
In this paper, we discuss the trade-offs of GPU, 
FPGA, Cell, and microprocessor technology, and 
how we efficiently partition algorithms to take 
advantage of the strengths of each while masking 
their weaknesses.   
 
2   Hardware Platforms 
 

2.1 Microprocessors 
Whether in a standalone PC, a high-performance 
workstation, a PC cluster, or a multiprocessor 
system, microprocessors have been at the heart of 
computational systems for decades.  Their longevity 
in this position can be attributed to their ease of 
programming, generality, and widespread 
availability.  Advances in high-level programming 
languages, coupled with sophisticated compiler 
technology, have allowed users, with a variety of 
scientific and technical backgrounds, to quickly and 
efficiently program microprocessor platforms.  Such 

broad appeal has allowed them to gain significant 
momentum as a computational tool, further 
increasing their use and lowering their cost. 
 
Microprocessors contain a fixed, high clock-rate 
computational pipeline.  This pipeline was designed 
to address the needs of the widest array of users and 
undergoes frequent changes to increase performance 
as newer models are introduced.  Although rarely 
optimized for a given algorithm, microprocessors 
provide an easy-to-program platform that is capable 
of solving problems across many applications. 
 
2.2 Field-Programmable Gate Arrays 
Field-programmable gate arrays (FPGAs) can be 
thought of as a “sea” of reprogrammable logic gates, 
connected via configurable routing resources.  That 
is, the fundamental logic functions (e.g., AND, OR, 
NOT) are user programmable and can be 
interconnected to build complex logic designs.  
FPGAs are programmed via a high-level hardware 
description language (HDL), such as Very High 
Speed Integrated Circuit Hardware Description 
Language (VHDL) and Verilog.  The use of a high-
level language abstracts the gate-level details away 
from the designer, enabling rapid, efficient 
programming.  Once the developer’s code is 
translated into an FPGA configuration file, the 
actual chip reprogramming can be performed in less 
than 100 ms.   
 
FPGAs maintain several advantages over 
microprocessors and digital signal processors 
(DSPs).  First, an FPGA can be ideally configured to 
perform a given task.  For example, programmers of 
Intel’s Pentium 4 processor are restricted to a fixed 
computational pipeline.  Thus, operations that do not 
map well into this architecture will experience 
artificial performance degradation.  FPGAs, 
however, can be optimally configured for each 
application by designing custom arithmetic 
pipelines.  Further, FPGAs are capable of massive 
computational parallelism within a single chip.  For 
example, consider the Pentium 4, which has only 
two floating-point arithmetic units.  For applications 
that require multiple floating-point operations, this 
can represent an incredible performance bottleneck.  
An FPGA, however, can be reprogrammed with well 
over 100 floating-point units [1].  Thus, FPGAs 
allow algorithms to take full advantage of the 
underlying hardware for optimized performance.   
 
Another advantage of FPGAs is that their processing 
power is advancing faster than that of 
microprocessors.  FPGAs are a more recent 
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technology, with the first commercial products being 
introduced decades after the microprocessor.  
Moore’s Law has held true and this has led to 
microprocessors operating in excess of 3 GHz.  
However, the next-generation of microprocessor 
technology is somewhat unclear.  Physical 
limitations of power consumption and heat 
dissipation have led Intel to cancel their 
development of a 4 GHz chip.  While it is clear that 
microprocessor development will continue, this field 
is maturing and the next generation of advances in 
computing will result not from simply shrinking 
feature sizes but from a more clever use of the 
underlying silicon.  FPGAs, however, have not yet 
come close to reaching their potential.  In the 
coming years, FPGA performance is expected to 
advance much faster than that of microprocessors 
because the field is far less mature (Fig. 1).  
Additionally, as fabrication techniques improve, 
FPGAs will take advantage of the same technology 
as next-generation microprocessors, as they are both 
built on standard CMOS processes. 
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Fig. 1.  Growth in the power of FPGAs since 1986.  FPGAs 
have grown significantly in the last decade as shown by the 
number of configuration bits required to program the chips’ 
gates and built-in functions.  This advancement is expected to 
continue for the foreseeable future.  
 
Because FPGAs maintain several advantages over 
microprocessors, many researchers [1-5] are looking 
toward this technology to meet their computing 
needs (see Fig. 2 for a picture of our custom FPGA 
platform).  Using FPGAs for scientific computations 
requires a three-step process.  First, the given 
algorithm is analyzed to determine the 
computational bottleneck.  This is typically the 
algorithm kernel and is where the majority of the 
computations are performed.  Next, this 
computational kernel is mapped into the FPGA.  To 
do so efficiently requires knowledge of the internal 
FPGA architecture, a hardware description 
language, and the physics of the underlying 
algorithm.  It is critical to fully understand the 
algorithm because code targeted for a 
microprocessor-based platform will rarely be 
optimized to run directly in the FPGA.  Rather, the 

algorithm must be modified to take advantage of 
fully customizable computational pipelines and data 
caching schemes.  This process generally requires 
manipulating the core equations.  To do this in the 
most efficient manner requires intimate knowledge 
of the algorithm itself, not simply the equations that 
describe it.   

 
 Fig. 2.  EM Photonics Celerity™ accelerator board.  This card 
connects to the standard PCI bus of a desktop machine and 
houses a Xilinx Virtex-II 8000 FPGA and 16 GB of DDR 
SDRAM. 
 
2.3 Graphics Processing Units 
Another recent trend in scientific computing is 
harnessing the immense power of commodity 
graphics processing hardware to accelerate 
numerical algorithms.  A current GPU costs roughly 
the same amount as a high-end CPU, but is capable 
of significantly higher floating-point performance.  
The reason for this disparity is that the GPU needs 
only to perform specialized calculations, such as 
those required to render graphics to the screen, while 
the CPU must offer a complete set of functions.  The 
benefit for scientific computing is that GPUs are 
high-powered computation engines, which provide 
hardware support for many common linear algebra 
and trigonometric functions.  As this is precisely 
what many numerical algorithms require, there has 
been considerable effort focused on achieving large 
performance improvements by adapting existing 
software solvers to this platform. 
 
Many applications have been ported to GPUs, 
including high-level algorithms and low-level 
fundamental mathematical methods, demonstrating 
the platform versatility for general-purpose 
computing.  The list of low-level techniques 
includes the FFT [6] and linear algebra operations 
on dense [7], banded [8], and sparse [9] matrices.  
High-level examples encompass complete 
algorithms and include computational fluid 
dynamics [10], ray tracers [11], and image tone 
mapping [12]. 
 
The main challenge in general-purpose computing 
on GPUs is casting the problem into a form 
amenable to the graphics pipeline (Fig. 3).  The first 
step is to convert all data into 1D or 2D arrays, 
which are stored in the GPU as textures.  Then, a 
program is written for the fragment processor that is 
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intended to perform the given computational task.  
In order to run this program, a quadrilateral polygon 
is drawn in a manner that produces a 1:1 mapping 
between pixels and texels (texture elements), thus 
ensuring the desired function is executed once and 
only once on each piece of input data.  Because 
some problems are extremely well suited for a GPU 
implementation and others are not, we will describe 
the advantages and disadvantages of using the GPU 
for computations in the next section. 
 

 
Fig. 3.  Showing data as it progresses through the GPU pipelin  

.4 Cell Processor 
dband Engine Architecture 

e. 
This figure shows a simple example of a box being drawn in the 
GPU pipeline.  The vertices are processed in the vertex 
processor to form polygons, which are then passed to the 
rasterizer for filling.  The rasterizer produces “blank” fragments 
that are “shaded” in the fragment processor.  The images in this 
figure were created using sample OpenGL code available at 
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07 (as 
of March 2006). 
 
2
The Cell, or Cell Broa
(CBEA), is a processor developed through a joint 
venture between IBM, Sony, and Toshiba.  The chip 
consists of a PowerPC core, known as the Power 
Processing Element (PPE), coupled with eight 
streamlined vector processors, known as Synergistic 
Processing Elements (SPEs) (Fig. 4).  The PPE is 
general-purpose and, as such, is usually responsible 
for running the operating system and coordinating 
the work of the SPEs.  Each SPE is a 128-bit SIMD 
RISC processor with 256 KB local store for 
instructions and data.  In a single clock cycle, one 
SPE can operate on 16 8-bit integers, 8 16-bit 
integers, 4 32-bit integers, or 4 single-precision 
floating-point numbers (there is no native double-
precision floating-point support). 
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Fig. 4.  Cell processor architecture.  Shown is the conceptual 

he Cell processor is currently being targeted for 
several platforms, though few commercial products 

uter 
 

layout of the Cell processor, including the PPE unit connected 
to the eight SPE units by a double-ring bus. 
 
T

have reached the marketplace.  It is scheduled to be 
deployed in the gaming market through the Sony 
Playstation 3, in the server market through blade and 
rack-mountable computers, the workstation market 
through PCI Express-based co-processing cards, and 
the home video market through high-definition 
equipment.  While the form factors will be different, 
the programming models for each will be the same.  
There are currently four programming models 
supported by the Cell.  The first is function offload 
where the PPE runs the majority of a program with 
small portions offloaded to the SPEs for fast 
computations.  The second model is for the PPE to 
hold a task queue from which SPEs can pull jobs 
when they become available.  The third option is 
problem partitioning or self multi-tasking of SPEs 
where a larger computational problem is divided 
among the SPEs in the system.  The final model is 
stream processing, whereby the results from one 
SPE fed to another SPE where the further operations 
are performed on that data.  How this technology 
integrates with our desktop supercomputing 
architecture is described in the next section. 
 
3   Building a Desktop Supercomp
Each hardware technology integrated into our
desktop supercomputing platform has advantages 
and disadvantages.  It is the ability to maximize the 
unique strengths of microprocessors, FPGAs, GPUs, 
and Cell processors, while masking their 
weaknesses, which allows our desktop 
supercomputer to be applied to a wide variety of 
applications and still perform at a high level (Fig. 5). 

 
Fig. 5.  Desktop supercomputer.  Here we see our desktop 
supercomputer platform, with a Pentium 4 microprocessor, 

cessors, while cheaper than high-
nd FPGAs, can run over $1,000.  They are general 

NVIDIA GeForce 7800 GTX GPU, and Celerity™ FPGA-based 
accelerator, shown in perspective to a standard monitor, 
keyboard, and mouse. 
 
High-end micropro
e
purpose and can be programmed to perform almost 
any task.  While they are easy to use and very 
flexible, they are not optimized for most 
computational tasks.  Many of their key arithmetic 
operations are not pipelined, or must be achieved 
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through several simpler operations, which results in 
low computational performance.  Microprocessors 
also have a relatively low memory bandwidth.  This 
slow connection to memory, coupled with no fine-
grained control over the caching scheme, makes it 
costly to read and write data.  Despite these 
limitations, however, microprocessors play a key 
role in our platform.  Their most obvious tasks 
include running the underlying operating system, 
managing hardware devices, and executing user 
applications.  Additionally, while the bulk of the 
repetitive computations performed by our desktop 
supercomputer are run on the GPU and FPGA, the 
microprocessor performs many irregular, non-
computationally intense tasks related to setup and 
post-processing. 
 
FPGAs also maintain several disadvantages when 
ompared to the other hardware platforms.  First, 

t GPUs also have several 
eaknesses, the biggest of which is their limited 

ocessor is by far the least mature of these 
chnologies and, consequently, its future remains 

y maintains unique 
dvantages and disadvantages, every algorithm can 

mputationally intense 
lgorithms into the desktop supercomputer requires 

instead of simply implementing an 
ntire algorithm on a single hardware device, it can 

c
high-end FPGAs are relatively expensive (an order-
of-magnitude more costly than microprocessors and 
GPUs).  However, their performance typically 
justifies this cost, which is why they are included in 
our platform.  Second, they are the most difficult to 
program of the three computational platforms 
discussed.  While high-level programming 
languages are available, they are more complex than 
languages such as C and FORTAN, which were 
designed for microprocessors.  Also, FPGA 
synthesis (similar to the microprocessor concept of 
compiling) and debugging require significantly more 
time (by an order of magnitude) than their 
microprocessor language alternatives.  Finally, while 
our FPGA-based platform has demonstrated very 
high memory bandwidth for up to 16 GB of RAM, it 
does incur a one-time penalty due to the relatively 
slow transfer of problem initialization data over the 
PCI bus.  Although this overhead is trivial when 
running large simulations, it must be considered 
when determining whether the FPGA is suitable for 
a given algorithm or task. 
 
It is important to note tha
w
memory.  Top-of-the-line GPUs currently have only 
1 GB of onboard memory.  This is significantly less 
than the microprocessor can access and is far less 
than the 16 GB on our FPGA co-processing card.  A 
second major consideration for GPUs is that, while 
extremely good at single-precision, floating-point 
computations, they lack native support for double-
precision arithmetic.  Both of these limitations are 
unlikely to change in the near future because neither 
larger memories nor double-precision computations 
are required for rendering graphics.  Additionally, 

though not as complex as FPGAs, GPUs are 
relatively difficult to program.  Efficient use of the 
underlying hardware requires intimate knowledge of 
the graphics pipeline and the ability to map the 
algorithm into the computational resources 
available. 
 
The Cell pr
te
somewhat unclear.  Initial performance benchmarks 
have shown promise, but it remains to be seen how 
the final systems will be deployed.  Due to its 
architectural similarities to the GPU, it is unlikely 
both would be added as coprocessors to the same 
desktop workstation, however, for certain 
applications, one could be chosen over the other 
based on price, power, form factor, programming 
model, and other considerations.  A more likely 
scenario for using the Cell processor in the same 
system with an FPGA and GPU would be to replace 
the standard microprocessor with the Cell.  With its 
PPE, the Cell processor could handle the operating 
system and control tasks generally targeted for the 
microprocessor and its SPE units would support 
high-performance computations. 
 
Because each hardware technolog
a
be mapped onto the platform for which it is best 
suited.  For instance, an algorithm that requires 
single-precision calculations on two-dimensional 
solution spaces, such as many explicit time-domain 
methods, maps well onto a GPU.  However, an 
algorithm that requires double-precision, complex 
arithmetic will likely map better into the FPGA, 
where the programmer can build custom, ideally 
pipelined arithmetic units.   
 
Effectively mapping co
a
maximizing the strengths of each hardware 
technology while minimizing their weaknesses.  As 
shown, no single technology is ideal for all 
applications.  By intelligently mapping a given 
algorithm, however, developers are able to achieve 
HPC performance from a single desktop 
workstation.   
 
Additionally, 
e
be partitioned to utilize the strengths of all four.  By 
decomposing an algorithm into its functional 
components and then mapping these smaller units to 
the most suited device, we can achieve greater 
performance than any individual hardware platform 
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could offer.  By combining all of the technologies 
discussed, one desktop machine is able to support an 
ideal mapping of each formulation in a single 
environment. 
 
4   Conclusion 
Performing comprehensiv
phenomena require

e simulations of physical 
s significant computational 

r grows, so does 
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power.  The majority of modern solvers are built 
around the most well known computational 
hardware:  the microprocessor.  While easy to 
program and familiar to most engineers, 
microprocessors are far from the most powerful 
computational devices available.  In this paper, we 
presented three alternative platforms:  FPGAs, 
GPUs, and Cell processors.  These devices are very 
powerful when applied to scientific computing tasks 
and each is well suited for large classes of problems.  
While others have used the technologies discussed 
in this paper individually, we have found that they 
are most effective when used together.  
Consequently, we have created a desktop 
supercomputer that combines a high-end 
microprocessor, a state-of-the-art GPU, and the 
largest FPGA available.  We are currently 
integrating the Cell processor into this platform, 
both through a co-processing board and by building 
a workstation that uses the Cell as the system’s 
microprocessor.  By tailoring a given problem to this 
combined platform and intelligently utilizing the 
underlying hardware, we are able to achieve cluster-
like performance from a single desktop machine.  
Effectively mapping a problem to this platform 
involves reformulating an algorithm and partitioning 
it to map each piece into the most appropriate 
hardware solver.  By maximizing the strengths of 
each device while hiding its weaknesses, an ideal 
problem mapping can be obtained. 
 
As the need for computational powe
th
demand.  It is clear that building faster 
microprocessors and larger clustered systems is only 
part of the solution.  By utilizing newer hardware 
technologies, we are able to achieve equivalent 
computational performance in a much smaller form 
factor.  We see this as a trend that will continue, 
driven by the need for more detailed simulations and 
complex analyses. 
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