
High-Performance Computing with Desktop Workstations

Eric J. Kelmelis, John R. Humphrey, James P. Durbano, Fernando E. Ortiz
Accelerated Computing Division

EM Photonics, Inc.
51 E. Main St. Suite 203, Newark, DE, 19711

USA

Abstract: - The performance of modeling and simulation tools is inherently tied to the platform on which they
are implemented. In most cases, this platform is a microprocessor, either in a desktop PC, PC cluster, or
supercomputer. Microprocessors are used because of their familiarity to developers, not necessarily their
performance on the problems of interest. We have developed the underlying techniques and technologies to
produce supercomputer performance from a standard desktop workstation for a variety of applications. This
is accomplished through the combined use of graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), Cell processors, and standard microprocessors. Each of these platforms has unique strengths
and weaknesses but can be used in concert to rival the computational power of a high-performance computer
(HPC). In this paper, we discuss the relative advantages and disadvantages of each platform and how they can
be combined in order to achieve high performance on a variety of applications.

Key-Words: - Accelerator, Cluster, Desktop Supercomputer, FPGA, GPU, Cell Processor, HPC, Simulation,
Real-Time Processing

1 Introduction
The general-purpose nature of microprocessors has
led to their incorporation into a wide array of
platforms, from embedded systems to desktop
computers, and used for applications ranging from
encryption to word processing. This flexibility,
combined with their low price and simple
programming model, has led to their popularity.
However, this versatility comes at a cost; to
maintain their generality, microprocessors sacrifice
computational performance. Instead of being
optimized for numerical processing,
microprocessors focus on integrating features that
will benefit the widest variety of applications, thus
appealing to the broadest audience. However, many
scientific computing applications, such as physics-
based simulations and image processing, require far
more computational power (and memory) than is
available from a standard desktop PC. This has led
to the advent of clustered computing, a technique
that involves distributing a single problem to a
group of commodity PCs and allowing them to
perform computations in parallel. This “more is
better” approach is epitomized in modern
supercomputer design, which typically consists of
many standard microprocessors linked by high-
speed interconnects.

Although aggregating commodity processors into
larger systems provides more computational power
than a standard PC, there are drawbacks to this

approach. First, the algorithm must be partitioned to
run on multiple processing nodes. This is often a
nontrivial task and typically results in wasted
computational power. This problem is further
compounded by the need to transfer information
between microprocessors. For a vast collection of
processors to work together effectively, they must
communicate and synchronize data. This often
forces processing elements to stall while waiting for
other nodes to complete their tasks. The second
major drawback to traditional high-performance
computers (HPC) is their size. Clusters and
supercomputers are large systems taking up an
excessive amount of space and power, while
generating tremendous heat. Finally,
microprocessor-based HPCs are costly. While a
single microprocessor is relatively cheap, building
an HPC based on them can be quite expensive. To
build a cluster, it is necessary to acquire many
standard computers and the infrastructure to connect
them. The hardware costs alone for a moderately
sized cluster (35-50 nodes) can easily exceed
$100,000. Additionally, parallel computational
software must be purchased, either through an
independent software vendor (ISV) or by hiring
programmers.

While traditional microprocessor-based HPCs are
frequently used, their performance, physical
restrictions, and cost clearly make them far from an
ideal solution. To better meet the needs of the

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 83

mailto:kelmelis@emphotonics.com

scientific computing community, we have developed
the underlying techniques and technologies to
produce supercomputer performance from a
standard desktop workstation (a “desktop
supercomputer”). This is accomplished through the
combined use of graphics processing units (GPUs),
field-programmable gate arrays (FPGAs), and
standard microprocessors. Each of these platforms
has unique strengths that, when used in concert, can
rival the computational power of traditional HPCs.
Microprocessors, as discussed, are general purpose
and can be easily programmed to target a variety of
applications. FPGAs are reconfigurable chips that
can be modified at the gate level by mapping a given
architecture directly into the hardware. Because
they are completely reconfigurable, FPGAs can be
applied to many applications, but require lower-level
programming than microprocessors and GPUs.
GPUs are built for rendering graphics to a computer
screen by performing the significant computations
necessary to model a three-dimensional world.
While far less flexible than microprocessors and
FPGAs, GPUs are extremely efficient at performing
single-precision arithmetic in a parallel fashion. For
algorithms capable of utilizing such an architecture,
the GPU offers high performance from a commodity
hardware device.

The recent release of the Cell processor by IBM has
provided another computational alternative to
standard microprocessors. We have explored the
integration of this new commodity device into our
desktop supercomputing platform and have begun
developing applications for this platform.

In this paper, we discuss the trade-offs of GPU,
FPGA, Cell, and microprocessor technology, and
how we efficiently partition algorithms to take
advantage of the strengths of each while masking
their weaknesses.

2 Hardware Platforms

2.1 Microprocessors
Whether in a standalone PC, a high-performance
workstation, a PC cluster, or a multiprocessor
system, microprocessors have been at the heart of
computational systems for decades. Their longevity
in this position can be attributed to their ease of
programming, generality, and widespread
availability. Advances in high-level programming
languages, coupled with sophisticated compiler
technology, have allowed users, with a variety of
scientific and technical backgrounds, to quickly and
efficiently program microprocessor platforms. Such

broad appeal has allowed them to gain significant
momentum as a computational tool, further
increasing their use and lowering their cost.

Microprocessors contain a fixed, high clock-rate
computational pipeline. This pipeline was designed
to address the needs of the widest array of users and
undergoes frequent changes to increase performance
as newer models are introduced. Although rarely
optimized for a given algorithm, microprocessors
provide an easy-to-program platform that is capable
of solving problems across many applications.

2.2 Field-Programmable Gate Arrays
Field-programmable gate arrays (FPGAs) can be
thought of as a “sea” of reprogrammable logic gates,
connected via configurable routing resources. That
is, the fundamental logic functions (e.g., AND, OR,
NOT) are user programmable and can be
interconnected to build complex logic designs.
FPGAs are programmed via a high-level hardware
description language (HDL), such as Very High
Speed Integrated Circuit Hardware Description
Language (VHDL) and Verilog. The use of a high-
level language abstracts the gate-level details away
from the designer, enabling rapid, efficient
programming. Once the developer’s code is
translated into an FPGA configuration file, the
actual chip reprogramming can be performed in less
than 100 ms.

FPGAs maintain several advantages over
microprocessors and digital signal processors
(DSPs). First, an FPGA can be ideally configured to
perform a given task. For example, programmers of
Intel’s Pentium 4 processor are restricted to a fixed
computational pipeline. Thus, operations that do not
map well into this architecture will experience
artificial performance degradation. FPGAs,
however, can be optimally configured for each
application by designing custom arithmetic
pipelines. Further, FPGAs are capable of massive
computational parallelism within a single chip. For
example, consider the Pentium 4, which has only
two floating-point arithmetic units. For applications
that require multiple floating-point operations, this
can represent an incredible performance bottleneck.
An FPGA, however, can be reprogrammed with well
over 100 floating-point units [1]. Thus, FPGAs
allow algorithms to take full advantage of the
underlying hardware for optimized performance.

Another advantage of FPGAs is that their processing
power is advancing faster than that of
microprocessors. FPGAs are a more recent

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 84

technology, with the first commercial products being
introduced decades after the microprocessor.
Moore’s Law has held true and this has led to
microprocessors operating in excess of 3 GHz.
However, the next-generation of microprocessor
technology is somewhat unclear. Physical
limitations of power consumption and heat
dissipation have led Intel to cancel their
development of a 4 GHz chip. While it is clear that
microprocessor development will continue, this field
is maturing and the next generation of advances in
computing will result not from simply shrinking
feature sizes but from a more clever use of the
underlying silicon. FPGAs, however, have not yet
come close to reaching their potential. In the
coming years, FPGA performance is expected to
advance much faster than that of microprocessors
because the field is far less mature (Fig. 1).
Additionally, as fabrication techniques improve,
FPGAs will take advantage of the same technology
as next-generation microprocessors, as they are both
built on standard CMOS processes.

FPGA Growth

Year

C
on

fig
ur

at
io

n
B

its
 (M

ill
io

ns
)

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

50

40

30

20

10

0

Fig. 1. Growth in the power of FPGAs since 1986. FPGAs
have grown significantly in the last decade as shown by the
number of configuration bits required to program the chips’
gates and built-in functions. This advancement is expected to
continue for the foreseeable future.

Because FPGAs maintain several advantages over
microprocessors, many researchers [1-5] are looking
toward this technology to meet their computing
needs (see Fig. 2 for a picture of our custom FPGA
platform). Using FPGAs for scientific computations
requires a three-step process. First, the given
algorithm is analyzed to determine the
computational bottleneck. This is typically the
algorithm kernel and is where the majority of the
computations are performed. Next, this
computational kernel is mapped into the FPGA. To
do so efficiently requires knowledge of the internal
FPGA architecture, a hardware description
language, and the physics of the underlying
algorithm. It is critical to fully understand the
algorithm because code targeted for a
microprocessor-based platform will rarely be
optimized to run directly in the FPGA. Rather, the

algorithm must be modified to take advantage of
fully customizable computational pipelines and data
caching schemes. This process generally requires
manipulating the core equations. To do this in the
most efficient manner requires intimate knowledge
of the algorithm itself, not simply the equations that
describe it.

 Fig. 2. EM Photonics Celerity™ accelerator board. This card
connects to the standard PCI bus of a desktop machine and
houses a Xilinx Virtex-II 8000 FPGA and 16 GB of DDR
SDRAM.

2.3 Graphics Processing Units
Another recent trend in scientific computing is
harnessing the immense power of commodity
graphics processing hardware to accelerate
numerical algorithms. A current GPU costs roughly
the same amount as a high-end CPU, but is capable
of significantly higher floating-point performance.
The reason for this disparity is that the GPU needs
only to perform specialized calculations, such as
those required to render graphics to the screen, while
the CPU must offer a complete set of functions. The
benefit for scientific computing is that GPUs are
high-powered computation engines, which provide
hardware support for many common linear algebra
and trigonometric functions. As this is precisely
what many numerical algorithms require, there has
been considerable effort focused on achieving large
performance improvements by adapting existing
software solvers to this platform.

Many applications have been ported to GPUs,
including high-level algorithms and low-level
fundamental mathematical methods, demonstrating
the platform versatility for general-purpose
computing. The list of low-level techniques
includes the FFT [6] and linear algebra operations
on dense [7], banded [8], and sparse [9] matrices.
High-level examples encompass complete
algorithms and include computational fluid
dynamics [10], ray tracers [11], and image tone
mapping [12].

The main challenge in general-purpose computing
on GPUs is casting the problem into a form
amenable to the graphics pipeline (Fig. 3). The first
step is to convert all data into 1D or 2D arrays,
which are stored in the GPU as textures. Then, a
program is written for the fragment processor that is

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 85

intended to perform the given computational task.
In order to run this program, a quadrilateral polygon
is drawn in a manner that produces a 1:1 mapping
between pixels and texels (texture elements), thus
ensuring the desired function is executed once and
only once on each piece of input data. Because
some problems are extremely well suited for a GPU
implementation and others are not, we will describe
the advantages and disadvantages of using the GPU
for computations in the next section.

Fig. 3. Showing data as it progresses through the GPU pipelin

.4 Cell Processor
dband Engine Architecture

e.
This figure shows a simple example of a box being drawn in the
GPU pipeline. The vertices are processed in the vertex
processor to form polygons, which are then passed to the
rasterizer for filling. The rasterizer produces “blank” fragments
that are “shaded” in the fragment processor. The images in this
figure were created using sample OpenGL code available at
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07 (as
of March 2006).

2
The Cell, or Cell Broa
(CBEA), is a processor developed through a joint
venture between IBM, Sony, and Toshiba. The chip
consists of a PowerPC core, known as the Power
Processing Element (PPE), coupled with eight
streamlined vector processors, known as Synergistic
Processing Elements (SPEs) (Fig. 4). The PPE is
general-purpose and, as such, is usually responsible
for running the operating system and coordinating
the work of the SPEs. Each SPE is a 128-bit SIMD
RISC processor with 256 KB local store for
instructions and data. In a single clock cycle, one
SPE can operate on 16 8-bit integers, 8 16-bit
integers, 4 32-bit integers, or 4 single-precision
floating-point numbers (there is no native double-
precision floating-point support).

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

SPE

SPU LS

PPE L1 L2PPE L1 L2

XDR DRAM
Interface

EIB (204.8 GB/sec)

I/O Controller

MIC

Fig. 4. Cell processor architecture. Shown is the conceptual

he Cell processor is currently being targeted for
several platforms, though few commercial products

uter

layout of the Cell processor, including the PPE unit connected
to the eight SPE units by a double-ring bus.

T

have reached the marketplace. It is scheduled to be
deployed in the gaming market through the Sony
Playstation 3, in the server market through blade and
rack-mountable computers, the workstation market
through PCI Express-based co-processing cards, and
the home video market through high-definition
equipment. While the form factors will be different,
the programming models for each will be the same.
There are currently four programming models
supported by the Cell. The first is function offload
where the PPE runs the majority of a program with
small portions offloaded to the SPEs for fast
computations. The second model is for the PPE to
hold a task queue from which SPEs can pull jobs
when they become available. The third option is
problem partitioning or self multi-tasking of SPEs
where a larger computational problem is divided
among the SPEs in the system. The final model is
stream processing, whereby the results from one
SPE fed to another SPE where the further operations
are performed on that data. How this technology
integrates with our desktop supercomputing
architecture is described in the next section.

3 Building a Desktop Supercomp
Each hardware technology integrated into our
desktop supercomputing platform has advantages
and disadvantages. It is the ability to maximize the
unique strengths of microprocessors, FPGAs, GPUs,
and Cell processors, while masking their
weaknesses, which allows our desktop
supercomputer to be applied to a wide variety of
applications and still perform at a high level (Fig. 5).

Fig. 5. Desktop supercomputer. Here we see our desktop
supercomputer platform, with a Pentium 4 microprocessor,

cessors, while cheaper than high-
nd FPGAs, can run over $1,000. They are general

NVIDIA GeForce 7800 GTX GPU, and Celerity™ FPGA-based
accelerator, shown in perspective to a standard monitor,
keyboard, and mouse.

High-end micropro
e
purpose and can be programmed to perform almost
any task. While they are easy to use and very
flexible, they are not optimized for most
computational tasks. Many of their key arithmetic
operations are not pipelined, or must be achieved

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 86

through several simpler operations, which results in
low computational performance. Microprocessors
also have a relatively low memory bandwidth. This
slow connection to memory, coupled with no fine-
grained control over the caching scheme, makes it
costly to read and write data. Despite these
limitations, however, microprocessors play a key
role in our platform. Their most obvious tasks
include running the underlying operating system,
managing hardware devices, and executing user
applications. Additionally, while the bulk of the
repetitive computations performed by our desktop
supercomputer are run on the GPU and FPGA, the
microprocessor performs many irregular, non-
computationally intense tasks related to setup and
post-processing.

FPGAs also maintain several disadvantages when
ompared to the other hardware platforms. First,

t GPUs also have several
eaknesses, the biggest of which is their limited

ocessor is by far the least mature of these
chnologies and, consequently, its future remains

y maintains unique
dvantages and disadvantages, every algorithm can

mputationally intense
lgorithms into the desktop supercomputer requires

instead of simply implementing an
ntire algorithm on a single hardware device, it can

c
high-end FPGAs are relatively expensive (an order-
of-magnitude more costly than microprocessors and
GPUs). However, their performance typically
justifies this cost, which is why they are included in
our platform. Second, they are the most difficult to
program of the three computational platforms
discussed. While high-level programming
languages are available, they are more complex than
languages such as C and FORTAN, which were
designed for microprocessors. Also, FPGA
synthesis (similar to the microprocessor concept of
compiling) and debugging require significantly more
time (by an order of magnitude) than their
microprocessor language alternatives. Finally, while
our FPGA-based platform has demonstrated very
high memory bandwidth for up to 16 GB of RAM, it
does incur a one-time penalty due to the relatively
slow transfer of problem initialization data over the
PCI bus. Although this overhead is trivial when
running large simulations, it must be considered
when determining whether the FPGA is suitable for
a given algorithm or task.

It is important to note tha
w
memory. Top-of-the-line GPUs currently have only
1 GB of onboard memory. This is significantly less
than the microprocessor can access and is far less
than the 16 GB on our FPGA co-processing card. A
second major consideration for GPUs is that, while
extremely good at single-precision, floating-point
computations, they lack native support for double-
precision arithmetic. Both of these limitations are
unlikely to change in the near future because neither
larger memories nor double-precision computations
are required for rendering graphics. Additionally,

though not as complex as FPGAs, GPUs are
relatively difficult to program. Efficient use of the
underlying hardware requires intimate knowledge of
the graphics pipeline and the ability to map the
algorithm into the computational resources
available.

The Cell pr
te
somewhat unclear. Initial performance benchmarks
have shown promise, but it remains to be seen how
the final systems will be deployed. Due to its
architectural similarities to the GPU, it is unlikely
both would be added as coprocessors to the same
desktop workstation, however, for certain
applications, one could be chosen over the other
based on price, power, form factor, programming
model, and other considerations. A more likely
scenario for using the Cell processor in the same
system with an FPGA and GPU would be to replace
the standard microprocessor with the Cell. With its
PPE, the Cell processor could handle the operating
system and control tasks generally targeted for the
microprocessor and its SPE units would support
high-performance computations.

Because each hardware technolog
a
be mapped onto the platform for which it is best
suited. For instance, an algorithm that requires
single-precision calculations on two-dimensional
solution spaces, such as many explicit time-domain
methods, maps well onto a GPU. However, an
algorithm that requires double-precision, complex
arithmetic will likely map better into the FPGA,
where the programmer can build custom, ideally
pipelined arithmetic units.

Effectively mapping co
a
maximizing the strengths of each hardware
technology while minimizing their weaknesses. As
shown, no single technology is ideal for all
applications. By intelligently mapping a given
algorithm, however, developers are able to achieve
HPC performance from a single desktop
workstation.

Additionally,
e
be partitioned to utilize the strengths of all four. By
decomposing an algorithm into its functional
components and then mapping these smaller units to
the most suited device, we can achieve greater
performance than any individual hardware platform

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 87

could offer. By combining all of the technologies
discussed, one desktop machine is able to support an
ideal mapping of each formulation in a single
environment.

4 Conclusion
Performing comprehensiv
phenomena require

e simulations of physical
s significant computational

r grows, so does
e need for novel approaches to address this

1] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, and
rather, "FPGA-Based Acceleration of

[2]
FPGAs,"

[3]
ogical cell

[4]
me assignment of reconfigurable

[5]
detection

[6]
T," in GPU Gems 2,

[7]

[8]
n of

[9]
:

[10
he GPU," in GPU Gems, R.

[11
tanford University, March 2004.

L

power. The majority of modern solvers are built
around the most well known computational
hardware: the microprocessor. While easy to
program and familiar to most engineers,
microprocessors are far from the most powerful
computational devices available. In this paper, we
presented three alternative platforms: FPGAs,
GPUs, and Cell processors. These devices are very
powerful when applied to scientific computing tasks
and each is well suited for large classes of problems.
While others have used the technologies discussed
in this paper individually, we have found that they
are most effective when used together.
Consequently, we have created a desktop
supercomputer that combines a high-end
microprocessor, a state-of-the-art GPU, and the
largest FPGA available. We are currently
integrating the Cell processor into this platform,
both through a co-processing board and by building
a workstation that uses the Cell as the system’s
microprocessor. By tailoring a given problem to this
combined platform and intelligently utilizing the
underlying hardware, we are able to achieve cluster-
like performance from a single desktop machine.
Effectively mapping a problem to this platform
involves reformulating an algorithm and partitioning
it to map each piece into the most appropriate
hardware solver. By maximizing the strengths of
each device while hiding its weaknesses, an ideal
problem mapping can be obtained.

As the need for computational powe
th
demand. It is clear that building faster
microprocessors and larger clustered systems is only
part of the solution. By utilizing newer hardware
technologies, we are able to achieve equivalent
computational performance in a much smaller form
factor. We see this as a trend that will continue,
driven by the need for more detailed simulations and
complex analyses.

References:
[

D. W. P
the 3D Finite-Difference Time-Domain

Method," presented at 12th Annual IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2004.
Z. K. Baker and V. K. Prasana, "Time and area
efficient pattern matching on
presented at ACM/SIGDA Twelfth ACM
International Symposium on Field-
Programmable Gate Arrays, 2004.
J. F. Keane, C. Bradley, and C. Ebeling, "A
compiled accelerator for biol
signaling simulations," presented at
ACM/SIGDA Twelfth ACM International
Symposium on Field-Programmable Gate
Arrays, 2004.
H. Quinn, L. A. S. King, M. Leeser, and W.
Meleis, "Runti
hardware components for image processing
pipelines," presented at 11th Annual IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2003.
J. Frigo, D. Palmer, M. Gokhale, and M.
Popkin-Paine, "Gamma-ray pulsar
using reconfigurable computing hardware,"
presented at 11th Annual IEEE Symposium on
Field-Programmable Custom Computing
Machines (FCCM), 2003.
T. Sumanaweera and D. Liu, "Medical Image
Reconstruction with the FF
M. Pharr, Ed. Boston: Addison-Wesley, 2005.
K. Fatahalian, J. Sugerman, and P. Hanrahan,
"Understanding the Efficiency of GPU
Algorithms for Matrix-Matrix Multiplication,"
presented at Eurographics/SIGGRAPH
Workshop on Graphics Hardware, 2004.
J. Kruger and R. Westermann, "Linear Algebra
Operators for GPU Implementatio
Numerical Algorithms," ACM Transactions on
Graphics (TOG), vol. 22, pp. 908--916, 2003.
J. Bolz, I. Farmer, E. Grinspun, and P.
Schroder, "Sparse Matrix Solvers on the GPU
Conjugate Gradients and Multigrid," ACM
Transactions on Graphics (TOG), vol. 22, pp.
917-924, 2003.

] M. J. Harris, "Fast Fluid Dynamics
Simulation on t
Fernando, Ed. Boston: Addison-Wesley, 2004,
pp. 637-665.

] T. J. Purcell, "Ray Tracing on a Stream
Processor," S

[12] N. Goodnight, C. Woolley, G. Lewin, D.
uebke, and G. Humphreys, "A Multigrid

Solver for Boundary Value Problems Using
Programmable Graphics Hardware," presented
at Eurographics/SIGGRAPH Workshop on
Graphics Hardware, 2003.

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 88

