
Efficient Controller Implementations for Robot Control

S. COMMURI, V. TADIGOTLA, L. SLIGER

Stephenson Research and Technology Center

101 David L. Boren Blvd, Room 1050

University of Oklahoma, Norman, OK-73019

UNITED STATES OF AMERICA

{scommuri/viswanath/afterall} @ou.edu

Abstract: - Field Programmable Gate Arrays (FPGAs) have emerged as the platform of choice for the rapid

prototyping and testing of hardware circuits. The dynamic creation of hardware circuits in FPGAs provides an

efficient mechanism for customizing the hardware for specific task objectives. The ability of these devices to

be reprogrammed during run-time enables the hardware circuitry to adapt to changing task requirements and to

accommodate system faults. In this paper, the use of FPGAs in implementing different behaviors and

controllers for a mobile robot application is presented. It is shown that the computational hardware can be

optimized for each task and sophisticated behaviors and controllers implemented in an efficient manner. The

proposed approach is validated through a case study where a robot is configured to meet application specific

requirements and the controllers on this robot are modified dynamically using Xilinx Virtex-II Pro FPGAs.

Key-Words: - FPGA, reconfiguration, fault tolerance, controllers for mobile robots.

1 Introduction
 The complexity and the cost of conventional

robot controllers have limited their use to routine,

mundane tasks. Special purpose hardware and

software deigned for experimental robots have

increased the range of applications of the robots, but

the inflexible nature of the solution is a restriction to

their practical implementation. Recent advances in

computational hardware and software allows for

complex behaviors to be implemented in robots.

These behaviors permit the robot to handle

variations in the environment, and meet multiple

task objectives in an efficient manner.

 System On Chip (SoC) platforms based on

conventional Application Specific Integrated

Circuits (ASICs) cannot implement complex

systems in an efficient and flexible manner [1].

Reconfigurable SoC’s based on Field Programmable

Gate Arrays (FPGAs) are, therefore, being designed

to meet these requirements. This technology has

been popularized in the recent past and there are a

number of products based on high density FPGAs.

In contrast to standard cells and gate arrays, FPGAs

can be easily erased or reprogrammed [2], [3]. The

latest version of these FPGAs introduce the concept

of ‘Dynamic Run-time Reconfiguration’, where only

a small portion of the circuitry is modified at run-

time while the system remains functioning [4].

 FPGAs have the advantages of being

reconfigurable, having a reduced time to market and

reduced one-time cost compared to their ASIC

counterparts, but they are slower and use more

power. Implementing controllers in reconfigurable

hardware is one of the efficient and high-

performance alternatives to the controllers

implemented in conventional hardware [5], [6]. This

is especially useful in robotics where the robot

requires different control strategies for performing

different tasks. The availability of low cost FPGA-

based hardware [7] – [9] facilitates the

implementation of intelligent robots where the

hardware and software of individual robots can be

modified in run-time to suit the needs of the

application.While robots can attain limited

functionality through the use of ASICs and special

purpose microcontrollers, FPGA based

implementations can be simultaneously optimized to

meet the needs of different applications.

 In this paper, the implementation of different

controllers for specific tasks of a mobile robot is

addressed using Xilinx Virtex II-Pro FPGA system.

The configuration and selection of different sensor

suites and controllers for robot navigation and for

‘wall following’ and ‘leader following’ tasks are

demonstrated. The reconfiguration of the hardware

circuitry is exploited to accommodate system faults

and improve the robustness of the overall design.

Case studies show that the proposed approach

results in increased efficiency in the use of system

resources and in systems that are robust to failures.

The rest of the paper is organized as follows: A brief

background on implementing reconfigurable

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 48

systems using Xilinx FPGAs is discussed in Section

2. The design and implementation of reconfigurable

controllers for robot applications is discussed in

Section 3. The advantages of the proposed design

are demonstrated through a practical implementation

of an intelligent robot in Section 4. The summary of

the results of the research are summarized in Section

5 and the conclusions are presented in Section 6.

2 Reconfiguration in FPGA Based

Systems
 FPGAs provide an array of gates that can be

configured to perform a logic function. The

interconnection of these functional modules to

execute a computational task is accomplished by

loading a configuration file onto the FPGA. While

in the past the FPGAs supported only static

configurations, recent FPGAs support dynamic

reconfiguration where the functionality of the FPGA

can be changed during runtime. Further, these

devices allow partial reconfiguration where a

portion of the device can be reprogrammed during

runtime. In this case, Dynamic Partial

Reconfiguration (DPR) is done while the device is

active, i.e. certain areas of the device are

reconfigured while the other areas remain

operational and are not affected by reconfiguration.

Virtex FPGAs of Xilinx family support partial

reconfiguration and are used to demonstrate the

concepts presented in this paper. The following

discussion is an abridged version of the FPGA

background presented in [7].

 The Virtex-II Pro device is a user programmable

gate array with embedded PowerPC processor [10],

[11]. The key-component of the Virtex-II Pro is the

Configuration Logic Block (CLB). These logic

blocks are arranged in rows and columns, with each

CLB consisting of four logic cells arranged in two

slices. Each CLB also contains logic that

implements a four-input look up tables (LUTs).

Reconfiguration in Xilinx Virtex FPGA involves

erasing the contents of the CLBs and configuring

them with new logic. Full Reconfiguration is

accomplished by erasing all the CLBs and

configuring them with new logic elements. Partial

Reconfiguration, on the other hand, replaces only

the CLBs specified by the bitstream while the

remaining CLBs retain their current configuration

and remain functioning during the reconfiguration.

 Reconfiguration in such systems can be

accomplished using two different methods:

Difference-based flow and Module based flow [10],

[11]. Difference-based flow is suited for those

applications requiring a minor change in the

hardware configuration. System reconfiguration can

be achieved by downloading a partial bitstream

representing the difference onto the FPGA. This

bitstream is utilized to change only the

configuration of the affected CLBs on the platform

while the remaining CLBs continue to function

normally. During Module-based flow, the full design

is partitioned into modules, some of which can be

static while the others are reconfigurable. These

modules communicate with each other through Bus

Macros and individual reconfigurable modules can

be reconfigured without affecting the overall

system.

 A detailed description of designing partial and

dynamically reconfigurable applications on Virtex-

II FPGAs can be found in [12] – [15], [17] - [21]. In

the next section, the application of FPGAs in the

implementation of controllers for different robot

tasks is presented.

3. Experimental Test Bed and Design

of the Controller

 In this section, the implementation of

dynamically reconfigurable controllers for different

robot tasks is presented. The prototype testbed

consists of a four wheeled Tamiya Xtreme Truck

with 1/10 scale monster truck chassis and is shown

in Fig 1. This mobile base is retrofitted with

Transmissive Optical Encoders (EM1 & HEDS-

9100-G00 manufactured by US Digital), IR Range

sensors (SHARP GP2D02), low power multi-

channel wireless transceivers (RX-Wi 232 DTS

manufactured by Radiotronix, Inc.), Vision based on

CMUCam (CMUCam1 capable of transmitting 17

frames per second) and high torque servos for

steering (HiTec HS-945MG). The robot controller

uses a Virtex-II Pro FPGA board (Memec

V2PFF672) for reconfiguring the controllers.

Fig 1. Prototype Testbed used for the robot

 The Virtex-II Pro FPGA platforms have an

embedded IBM PowerPC 405 processor connected

to the Peripheral Logic Bus (PLB) (Fig 2). The PLB

is connected to the OnChip Peripheral Bus (OPB)

through PLB/OPB Bridge. All the Static and

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 49

Reconfigurable modules (controllers) are connected

to the OPB. Modules like Wireless Transceiver

Interface Module, Motor Drive Interface Module,

Wheel Encoder Interface Module, SRAM Controller

etc., are the Static Modules as they are present in

every configuration of the robot.

Fig 2. Internal Architecture of the Robot Controller

 The Reconfigurable Modules shown in Fig 2

are the controllers required by the behaviors to

interface to the necessary hardware on the testbed.

For example, in the ‘Leader/Follower’ mode the

robot utilizes a CMUCam while in the ‘Wall-

Following’ mode the control is based on the input

from IR Sensors. When the system is running,

changing task requirements will lead to the selection

of appropriate behaviors. These behaviors are

executed under software control and result in the

selection of appropriate modules and drivers. This

process is controlled by the PowerPC processor by

the downloading of an appropriate partial bitstream

through the ICAP interface.

3.1 Implementation of Controllers
 In a typical application, different tasks require

different navigational capabilities of the robot. For

example, a simple navigation command could result

the robot to attain a specified heading and forward

velocity. On the other hand, autonomous behaviors

would require the robot to navigate along a wall or

follow a beacon or a leader. In either case, changing

navigational requirements require the adoption of

different control logic and the use of appropriate

sensors. In this section, we explore the

implementation of the controller for two such

scenarios, namely ‘wall following’ mode and

‘leader following’ mode.

3.1.1 Controller for following the wall

In the task where the robot is required to navigate

along a wall, the control problem can be decoupled

and the heading control treated independent of the

velocity control for the robot. The robot is required

to move forward at a constant velocity unless this

behavior is modified by the need to avoid obstacles.

The heading control in this case is specified as

090 () ()
2

f r

h h f r d

d d
u K d d K d

+
= + − + −

 (1)

where f rd d,
 are the distance of the front and the

rear wheels from the wall.
()f rd d−

 represents the

deviation from the line parallel to the wall, d is the

desired spacing, and h dK K,
are the feedback gains.

It can be easily seen that the control strategy ensures

proper wall following by correcting errors in

heading
()f rd d−

 and the error in the average

distance from the wall
2

f rd d
d

+
−

 (Fig 3).

3.1.2 Controller for following a leader:
 A simple leader-follower configuration of two

autonomous robots is shown in the Fig 4. Here R1 is

the lead robot with the control input vector

,][111

T

hd uuu =
 and R2 is the follower robot with

the control input vector
T

hd uuu][222 = . The

desired separation between the two robots is
dd12

and the desired relative bearing is
d

12ϕ
. The current

separation between the robots 12d
 and the current

relative bearing 12ϕ
 can be found based on the

visual tag as seen in the follower camera image

plane.

12 1 2

12 1 2

(')

()

b b

d d

k k x x

d k k N

ϕ = + −

= +

�

 (2)

Where

1 2x + x
x=

2 and

1 2x' + x'
x'=

2 (as seen in the

image plane Fig 4) and N is the number of pixels of

the beacon as seen in the camera image plane. kb1,

kb2, kd1, and kd2 are the gains to be tuned to estimate

the calculated distance and heading values.

4. Case Study
 In this case study, the advantages of partial

reconfiguration are demonstrated through a practical

implementation of an intelligent robot. Basic

navigation is accomplished through the use of the

wheel encoders and a PID controller. This behavior

is modified by an obstacle avoidance scheme where

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 50

Fig 3. Block Diagram of the Controller for Wall Following

Fig 4(a). Leader/Follower Configuration Fig 4(b). Image of Beacon in the Camera Frame

an obstacle is detected using infrared proximity

sensors or the CMU CAM. Using these basic

building blocks, sophisticated behaviors like Wall

Following and Leader-following are implemented.

Two IR sensors (SHARP GP2D02) on the side of

the mobile robot are used to determine the distance

from the wall as well as the heading of the robot.

These sensors have a range between 10cm (~4") to

80cm (~30") and an accuracy of 2± cms (~1

inches) when the sensors are stationary at a distance

of 40cms (~16 inches) from the wall.

 In this case study, Autonomous fault handling

and self-reconfiguration [22] are used to

demonstrate the dynamic run-time implementation

of controllers in a robot. Here, the robot is initialized

and a task is assigned to it. Specifically, the robot is

required to move forward a distance of 2 m (~6 feet)

while maintaining a distance of 0.35 m (~14 inches)

from a straight wall. In case of an error with the

sensors, then the on-board fault handling algorithm

checks available resources and reconfigures the

appropriate sensors and drivers to complete the task.

In the example shown (Fig 5), the IR sensors fault

out 9 seconds after task initiation, rendering the

robot incapable of completing the task. The on-

board fault handling algorithm then initiates a partial

reconfiguration of the FPGA to configure a

CMUCAM. The robot then continues the task using

a beacon to maintain the desired heading. The screen

shot of the Partial Reconfigurable Module, Static

Modules and Bus Macros within the FPGA is shown

in Fig 6. The Partial Reconfigurable Module (PR

Module) communicates with the Static Modules

using the Bus Macros. This designed occupied 59%

of the FPGA and was developed using Xilinx Early-

Access Partial Reconfiguration Design Flow method

(EA PR Design Flow). This methodology is

expected to reduce the complexity of the Partial

Reconfiguration by 30% [5]. One important feature

in EA PR design flow is that, it allows for Partial

Reconfiguration regions of any rectangular size

allowing the efficient use of the FPGA. It can be

seen in Fig 6 that the Static Module can occupy the

same columns as the Reconfigurable Module. The

EA PR flow also allows signals in the base design to

cross through a partially reconfigurable region

without the use of a Bus Macro. This improves the

timing performance and simplifies the process of

building a partially reconfigurable design.

5 Summary
 In this paper, the development of intelligent

robots using reconfigurable hardware and software

was presented. In the implementation, the static

module was designed to include the PowerPC

processor core, ICAP interface, Bus Macros, and the

OPB and PLB buses. Modules requiring dynamic

modification in real-time are implemented as

reconfigurable modules and communicate with the

rest of the hardware through the Bus Macros. The

screen shot of the FPGA_Editor showing the FPGA

containing Partially Reconfigurable Module, Static

Module and Bus Macros is given in Fig 6. This

design is modular and incurs minimal hardware and

computational overhead for each operational mode

of the system.

 The design in the case studies was developed

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 51

 Fig 5. Plot of the data obtained from the robot depicting dynamic implementation of self-reconfigurable

controllers

 Fig 6. Screen shot of the FPGA_Editor showing PR Modules and Static Modules

using Xilinx Early-Access Partial Reconfiguration

Design Flow method (EA PR Design Flow). In

contrast with earlier methods where there were

restriction on the size and location of the

reconfigurable modules, this design method allows

the assignment of any rectangular region for the

reconfigurable modules. This minimizes unused

FPGA space and improves resource utilization. The

EA PR flow also allows signals in the base design to

cross through a partially reconfigurable region

without the use of a Bus Macro. This improves the

timing performance and simplifies the process of

building a PR design. The basic navigation, wall

following, and leader following modules are

implemented in the partially reconfigurable

modules. In the case study discussed above, static

modules occupy 58.1% of the available FPGA space

while the ‘wall follower’ behavior module and the

‘leader follower’ behavior modules occupy 2.4%

and 8.4% of the FPGA space respectively.

Implementing all these modules in the static portion

 of the FPGA without partial reconfiguration would

require 71.2 % of the FPGA space with the additional

software overheads. As the number of behavior

modules on the robot increases, the slice count

increases. So the FPGA is restricted to only a few

behaviors when partial dynamic reconfiguration is not

used. This is a serious proble if a single robot is to be

used for executing numerous tasks.

 The problem discussed above can be addressed

by implementing the same design in the FPGA using

partial dynamic reconfiguration. In this case, the

overall slice count is the sum of slice count of the

static portion and the slice count of the partial

reconfigurable module. The size of the PR Module

should be at least of the largest behavior module size.

In our design we allocated 9% of the FPGA for the PR

Module which is sufficient to accommodate any

behavior. Using partial reconfigurable FPGAs, all the

three behavior modules can be accommodated within

65% of the FPGA space. The bitstream of all the

behavior modules are stored in an external

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 52

memory and the appropriate behavior is

accommodated into the PR Module as of when

required. So as the number of the behavior modules

increases, the slice count of the FPGA doesn’t vary

much. This gives the flexibility of using a singlrobot

for performing various tasks without increasing the

slice count on the FPGA.

 The average resulting bit-stream for each of the

configurations is 1175 kBytes resulting in a

reconfiguration time of 23.4 milli-seconds and a

worst net delay of about 9.686 nano-seconds. From

these results, it can be seen that the reconfiguration

can be achieved within the duration of a standard

control cycle. While these results demonstrate the

implementation for two simple behaviors in the

robots, the FPGA utilization and efficiency becomes

significant as the number of required behaviors in a

robot increase.

6. Conclusions
In this paper, the run-time reconfiguration of FPGA

based robot controllers was presented. For the first

time, the dynamic reconfiguration of FPGAs was

harnessed to extend the capability of a robot. Fault

accommodation and behavior reassignment of robots

was addressed using the concept of hardware and

software reconfiguration. In our future work, the

reconfiguration will be extended to embed

intelligence and control algorithms into the robot

architecture.

References
[1] K. Compton, S. Hauck, Reconfigurable Computing: A

Survey of Systems and Software, ACM Computing Surveys, Vol.

34, No. 2, 2002, pp 171-210.

[2] G. Goslin, A guide to using field programmable gate arrays

(FPGAs) for application-specific digital signal processing

performance, Tech. Rep., Xilinx Inc., San Jose, 1995.

[3] D.Buell, J.Arnold, and W.Kleinfelder, Splash 2. FPGAs

in a Custom Computing Machine. New York: IEEE

Press May 1996.

[4] Michael Barr, A Reconfigurable Computing Primer,

Multimedia Systems Design, Sep. 1998, pp. 44-47.

[5] M. Bednara, K. Danne, M. Deppe, O.Oberschelp, F.

Slomka, and J. Teich, Design and Implementation of

digital linear control systems on reconfigurable

hardware, EURASIP Journal on Applied Signal

Processing, 2003, pp: 102-127.

[6] R. Kasper and T. Reinemann, Gate level

implementation of high speed controllers and filters for

mechatronic systems, Mechatronic Workshop , 2000.

[7] Virtex – II platform FPGA user guide, version 1.8,

Xilinx Inc., 2005.

[8] www.xilinx.com

[9] www.altera.com

[10] Virtex Series Configuration Architecture User

Guide, Xilinx Application Note XAPP151, version 1.1,

Xilinx, Inc. ,1999.

[11] Virtex –II Pro Platform FPGA User Guide, version

1.8, Xilinx, Inc ., 2004.

[12] Two Flows for Partial Reconfiguration: Module

Based or Difference Based, Xilinx Application Note

XAPP 290, version 1.2, Xilinx Inc., 2004.

[13] C. Bobda, B. Blodget, M. Huebner, A. Niyonkuru,

A. Ahmadinia, M. Majer, Designing Partial and

Dynamic Reconfigurable Applications on Xilinx Virtex-

II Pro FPGAs using Handel-C, Technical Report,

University of Erlangen-Nuremberg, Germany, Nov.

2004.

[14] H. Tan, R.F. DeMara, A.J. Thakkar, A. Ejnioui, J.D.

Sattler, Complexity and Performance Tradeoffs with

FPGA Partial Reconfiguration Interfaces, submitted to

13
th
Reconfigurable Architectures Workshop(RAW’06),

Greece., April-2006

[15] Klaus Danne, Christopher Bobda, and Heiko Kalte,

Run-Time Exchange of Mechatronic Controllers using

Partial Hardware Reconfiguration, Lecture Notes in

Computer Science (LNCS) 2778, FPL-2003, pp: 272-

281.

[16] www.ibm.com/rational

[17] Yan Meng, A Dynamic Self-Reconfigurable Mobile

Robot Navigation System, Proceedings of IEEE/ASME

International Conference on Advanced Intelligent

Mechatronics, July 2005, pp: 1541-1546

[18] Fabrizio Ferrandi, Macro D. Saantambrogio,

Donatella Sciuto, A design methodology for dynamic

reconfiguration: the CARONTE Architecture,

Proceedings of 19
th
 IEEE International Symposium on

Parallel and Distributed Processing, April 2005, pages:

4.

[19] Sergio Lopez-Buedo, Javier Grrido and Eduardo I.

Boemo, Dynamically Inserting, Operating and

Eliminating Thermal Sensors of FPGA-based systems,

IEEE Transactions on Components and Packaging

Technologies”, Vol. 25, Decemeber-2002, pp.561-566.

[20] Gregory Mermoud, A Module-Based Dynamic

reconfiguration tutorial, Technical Report, Logic

Systems Laboratory, Ecole Polytechnique Federale de

Lausanne, November 2004.

[21] Brandon Blodget, Scott McMillan, A lightweight

approach for embedded reconfiguration of FPGAs,

Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition (DATE’03), Vol. 3,

2003, pp: 1530-1531.

[22] V. Tadigotla, L. Sliger, S. Commuri, FPGA based

dynamic Run-Time behavior reconfiguration of

robots, submitted to IEEE International Symposium on

Intelligent Control, Oct 2006.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 53

