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Abstract: - Field Programmable Gate Arrays (FPGAs) have emerged as the platform of choice for the rapid 

prototyping and testing of hardware circuits.  The dynamic creation of hardware circuits in FPGAs provides an 

efficient mechanism for customizing the hardware for specific task objectives. The ability of these devices to 

be reprogrammed during run-time enables the hardware circuitry to adapt to changing task requirements and to 

accommodate system faults. In this paper, the use of FPGAs in implementing different behaviors and 

controllers for a mobile robot application is presented. It is shown that the computational hardware can be 

optimized for each task and sophisticated behaviors and controllers implemented in an efficient manner. The 

proposed approach is validated through a case study where a robot is configured to meet application specific 

requirements and the controllers on this robot are modified dynamically using Xilinx Virtex-II Pro FPGAs. 
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1   Introduction 
  The complexity and the cost of conventional 

robot controllers have limited their use to routine, 

mundane tasks. Special purpose hardware and 

software deigned for experimental robots have 

increased the range of applications of the robots, but 

the inflexible nature of the solution is a restriction to 

their practical implementation. Recent advances in 

computational hardware and software allows for 

complex behaviors to be implemented in robots. 

These behaviors permit the robot to handle 

variations in the environment, and meet multiple 

task objectives in an efficient manner. 

 System On Chip (SoC) platforms based on 

conventional Application Specific Integrated 

Circuits (ASICs) cannot implement complex 

systems in an efficient and flexible manner [1]. 

Reconfigurable SoC’s based on Field Programmable 

Gate Arrays (FPGAs) are, therefore, being designed 

to meet these requirements. This technology has 

been popularized in the recent past and there are a 

number of products based on high density FPGAs. 

In contrast to standard cells and gate arrays, FPGAs 

can be easily erased or reprogrammed [2], [3]. The 

latest version of these FPGAs introduce the concept 

of ‘Dynamic Run-time Reconfiguration’, where only 

a small portion of the circuitry is modified at run-

time while the system remains functioning [4]. 

 FPGAs have the advantages of being 

reconfigurable, having a reduced time to market and 

reduced one-time cost compared to their ASIC 

counterparts, but they are slower and use more 

power. Implementing controllers in reconfigurable 

hardware is one of the efficient and high-

performance alternatives to the controllers 

implemented in conventional hardware [5], [6]. This 

is especially useful in robotics where the robot 

requires different control strategies for performing 

different tasks. The availability of low cost FPGA-

based hardware [7] – [9] facilitates the 

implementation of intelligent robots where the 

hardware and software of individual robots can be 

modified in run-time to suit the needs of the 

application.While robots can attain limited 

functionality through the use of ASICs and special 

purpose microcontrollers, FPGA based 

implementations can be simultaneously optimized to 

meet the needs of different applications. 

 In this paper, the implementation of different 

controllers for specific tasks of a mobile robot is 

addressed using Xilinx Virtex II-Pro FPGA system. 

The configuration and selection of different sensor 

suites and controllers for robot navigation and for 

‘wall following’ and ‘leader following’ tasks are 

demonstrated. The reconfiguration of the hardware 

circuitry is exploited to accommodate system faults 

and improve the robustness of the overall design. 

Case studies show that the proposed approach 

results in increased efficiency in the use of system 

resources and in systems that are robust to failures. 

The rest of the paper is organized as follows: A brief 

background on implementing reconfigurable 
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systems using Xilinx FPGAs is discussed in Section 

2. The design and implementation of reconfigurable 

controllers for robot applications is discussed in 

Section 3. The advantages of the proposed design 

are demonstrated through a practical implementation 

of an intelligent robot in Section 4. The summary of 

the results of the research are summarized in Section 

5 and the conclusions are presented in Section 6. 

 

2 Reconfiguration in FPGA Based 

Systems 
 FPGAs provide an array of gates that can be 

configured to perform a logic function. The 

interconnection of these functional modules to 

execute a computational task is accomplished by 

loading a configuration file onto the FPGA. While 

in the past the FPGAs supported only static 

configurations, recent FPGAs support dynamic 

reconfiguration where the functionality of the FPGA 

can be changed during runtime. Further, these 

devices allow partial reconfiguration where a 

portion of the device can be reprogrammed during 

runtime. In this case, Dynamic Partial 

Reconfiguration (DPR) is done while the device is 

active, i.e. certain areas of the device are 

reconfigured while the other areas remain 

operational and are not affected by reconfiguration. 

Virtex FPGAs of Xilinx family support partial 

reconfiguration and are used to demonstrate the 

concepts presented in this paper. The following 

discussion is an abridged version of the FPGA 

background presented in [7]. 

 The Virtex-II Pro device is a user programmable 

gate array with embedded PowerPC processor [10], 

[11]. The key-component of the Virtex-II Pro is the 

Configuration Logic Block (CLB). These logic 

blocks are arranged in rows and columns, with each 

CLB consisting of four logic cells arranged in two 

slices. Each CLB also contains logic that 

implements a four-input look up tables (LUTs).   

Reconfiguration in Xilinx Virtex FPGA involves 

erasing the contents of the CLBs and configuring 

them with new logic. Full Reconfiguration is 

accomplished by erasing all the CLBs and 

configuring them with new logic elements. Partial 

Reconfiguration, on the other hand, replaces only 

the CLBs specified by the bitstream while the 

remaining CLBs retain their current configuration 

and remain functioning during the reconfiguration. 

       Reconfiguration in such systems can be 

accomplished using two different methods: 

Difference-based flow and Module based flow [10], 

[11]. Difference-based flow is suited for those 

applications requiring a minor change in the 

hardware configuration. System reconfiguration can 

be achieved by downloading a partial bitstream 

representing the difference onto the FPGA. This 

bitstream is utilized to change only the 

configuration of the affected CLBs on the platform 

while the remaining CLBs continue to function 

normally. During Module-based flow, the full design 

is partitioned into modules, some of which can be 

static while the others are reconfigurable. These 

modules communicate with each other through Bus 

Macros and individual reconfigurable modules can 

be reconfigured without affecting the overall 

system. 

      A detailed description of designing partial and 

dynamically reconfigurable applications on Virtex-

II FPGAs can be found in [12] – [15], [17] - [21]. In 

the next section, the application of FPGAs in the 

implementation of controllers for different robot 

tasks is presented. 

 

3. Experimental Test Bed and Design 

of the Controller 
 

      In this section, the implementation of 

dynamically reconfigurable controllers for different 

robot tasks is presented. The prototype testbed 

consists of a four wheeled Tamiya Xtreme Truck 

with 1/10 scale monster truck chassis and is shown 

in Fig 1.  This mobile base is retrofitted with 

Transmissive Optical Encoders (EM1 & HEDS-

9100-G00 manufactured by US Digital), IR Range 

sensors (SHARP GP2D02), low power multi-

channel wireless transceivers (RX-Wi 232 DTS 

manufactured by Radiotronix, Inc.), Vision based on 

CMUCam (CMUCam1 capable of transmitting 17 

frames per second) and high torque servos for 

steering (HiTec HS-945MG). The robot controller 

uses a Virtex-II Pro FPGA board (Memec 

V2PFF672) for reconfiguring the controllers. 

 

                
Fig 1.  Prototype Testbed used for the robot 

 

     The Virtex-II Pro FPGA platforms have an 

embedded IBM PowerPC 405 processor connected 

to the Peripheral Logic Bus (PLB) (Fig 2). The PLB 

is connected to the OnChip Peripheral Bus (OPB) 

through PLB/OPB Bridge. All the Static and 
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Reconfigurable modules (controllers) are connected 

to the OPB. Modules like Wireless Transceiver 

Interface Module, Motor Drive Interface Module, 

Wheel Encoder Interface Module, SRAM Controller 

etc., are the Static Modules as they are present in 

every configuration of the robot. 

 

 
Fig 2.  Internal Architecture of the Robot Controller 

 

       The Reconfigurable Modules shown in Fig 2 

are the controllers required by the behaviors to 

interface to the necessary hardware on the testbed. 

For example, in the ‘Leader/Follower’ mode the 

robot utilizes a CMUCam while in the ‘Wall-

Following’ mode the control is based on the input 

from IR Sensors. When the system is running, 

changing task requirements will lead to the selection 

of appropriate behaviors. These behaviors are 

executed under software control and result in the 

selection of appropriate modules and drivers. This 

process is controlled by the PowerPC processor by 

the downloading of an appropriate partial bitstream 

through the ICAP interface. 

 

3.1 Implementation of Controllers 
      In a typical application, different tasks require 

different navigational capabilities of the robot. For 

example, a simple navigation command could result 

the robot to attain a specified heading and forward 

velocity. On the other hand, autonomous behaviors 

would require the robot to navigate along a wall or 

follow a beacon or a leader. In either case, changing 

navigational requirements require the adoption of 

different control logic and the use of appropriate 

sensors. In this section, we explore the 

implementation of the controller for two such 

scenarios, namely ‘wall following’ mode and 

‘leader following’ mode.  

 

3.1.1 Controller for following the wall 

In the task where the robot is required to navigate 

along a wall, the control problem can be decoupled 

and the heading control treated independent of the 

velocity control for the robot. The robot is required 

to move forward at a constant velocity unless this 

behavior is modified by the need to avoid obstacles. 

The heading control in this case is specified as  
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where f rd d,
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deviation from the line parallel to the wall, d is the 

desired spacing, and h dK K,
are the feedback gains. 

It can be easily seen that the control strategy ensures 

proper wall following by correcting errors in 

heading 
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   (Fig 3). 
 

3.1.2 Controller for following a leader:  
      A simple leader-follower configuration of two 

autonomous robots is shown in the Fig 4. Here R1 is 

the lead robot with the control input vector 
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 and R2 is the follower robot with 

the control input vector
T
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desired separation between the two robots is 
dd12  

and the desired relative bearing is
d

12ϕ
. The current 

separation between the robots 12d
 and the current 

relative bearing 12ϕ
 can be found based on the 

visual tag as seen in the follower camera image 

plane. 
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Where 

1 2x + x
x=

2   and 

1 2x' + x'
x'=

2 (as seen in the 

image plane Fig 4) and N is the number of pixels of 

the beacon as seen in the camera image plane. kb1, 

kb2, kd1, and kd2 are the gains to be tuned to estimate 

the calculated distance and heading values.  

 

4. Case Study 
      In this case study, the advantages of partial 

reconfiguration are demonstrated through a practical 

implementation of an intelligent robot. Basic 

navigation is accomplished through the use of the 

wheel encoders and a PID controller. This behavior 

is modified by an obstacle avoidance scheme where 
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Fig 3.  Block Diagram of the Controller for Wall Following 

                                                
Fig  4(a).   Leader/Follower Configuration                                               Fig  4(b).  Image of Beacon in the Camera Frame 

an obstacle is detected using infrared proximity 

sensors or the CMU CAM. Using these basic 

building blocks, sophisticated behaviors like Wall 

Following and Leader-following are implemented. 

Two IR sensors (SHARP GP2D02) on the side of 

the mobile robot are used to determine the distance 

from the wall as well as the heading of the robot. 

These sensors have a range between 10cm (~4") to 

80cm (~30") and an accuracy of 2± cms (~1 

inches) when the sensors are stationary at a distance 

of 40cms (~16 inches) from the wall. 

 In this case study, Autonomous fault handling 

and self-reconfiguration [22] are used to 

demonstrate the dynamic run-time implementation 

of controllers in a robot. Here, the robot is initialized 

and a task is assigned to it. Specifically, the robot is 

required to move forward a distance of 2 m (~6 feet) 

while maintaining a distance of 0.35 m (~14 inches) 

from a straight wall. In case of an error with the 

sensors, then the on-board fault handling algorithm 

checks available resources and reconfigures the 

appropriate sensors and drivers to complete the task. 

In the example shown (Fig 5), the IR sensors fault 

out 9 seconds after task initiation, rendering the 

robot incapable of completing the task. The on-

board fault handling algorithm then initiates a partial 

reconfiguration of the FPGA to configure a 

CMUCAM. The robot then continues the task using 

a beacon to maintain the desired heading. The screen 

shot of the Partial Reconfigurable  Module, Static 

Modules and Bus Macros within the FPGA is shown 

in Fig 6. The Partial Reconfigurable Module (PR 

Module) communicates with the Static Modules 

using the Bus Macros. This designed occupied 59% 

of the FPGA and was developed using Xilinx Early-

Access Partial Reconfiguration Design Flow method 

(EA PR Design Flow). This methodology is 

expected to reduce the complexity of the Partial 

Reconfiguration by 30% [5]. One important feature 

in EA PR design flow is that, it allows for Partial 

Reconfiguration regions of any rectangular size 

allowing the efficient use of the FPGA. It can be 

seen in Fig 6 that the Static Module can occupy the 

same columns as the Reconfigurable Module. The 

EA PR flow also allows signals in the base design to 

cross through a partially reconfigurable region 

without the use of a Bus Macro. This improves the 

timing performance and simplifies the process of 

building a partially reconfigurable design.  

 

5 Summary 
      In this paper, the development of intelligent 

robots using reconfigurable hardware and software 

was presented.  In the implementation, the static 

module was designed to include the PowerPC 

processor core, ICAP interface, Bus Macros, and the 

OPB and PLB buses. Modules requiring dynamic 

modification in real-time are implemented as 

reconfigurable modules and communicate with the 

rest of the hardware through the Bus Macros. The 

screen shot of the FPGA_Editor showing the FPGA 

containing Partially Reconfigurable Module, Static 

Module and Bus Macros is given in Fig 6. This 

design is modular and incurs minimal hardware and 

computational overhead for each operational mode 

of the system.  

 The design in the case studies was developed  
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          Fig 5.   Plot of the data obtained from the robot depicting dynamic implementation of self-reconfigurable      

controllers  

                                               
                                   Fig 6.  Screen shot of the FPGA_Editor showing PR Modules and Static Modules 

using Xilinx Early-Access Partial Reconfiguration 

Design Flow method (EA PR Design Flow). In 

contrast with earlier methods where there were 

restriction on the size and location of the 

reconfigurable modules, this design method allows 

the assignment of any rectangular region for the 

reconfigurable modules. This minimizes unused 

FPGA space and improves resource utilization. The 

EA PR flow also allows signals in the base design to 

cross through a partially reconfigurable region 

without the use of a Bus Macro. This improves the 

timing performance and simplifies the process of 

building a PR design. The basic navigation, wall 

following, and leader following modules are 

implemented in the partially reconfigurable 

modules. In the case study discussed above, static 

modules occupy 58.1% of the available FPGA space 

while the ‘wall follower’ behavior module and the 

‘leader follower’ behavior modules occupy 2.4% 

and 8.4% of the FPGA space respectively. 

Implementing all these modules in the static portion 

 of the FPGA without partial reconfiguration would 

require 71.2 % of the FPGA space with the additional 

software overheads. As the number of behavior 

modules on the robot increases, the slice count 

increases. So the FPGA is restricted to only a few 

behaviors when partial dynamic reconfiguration is not 

used. This is a serious proble if a single robot is to be 

used for executing numerous tasks.  

 The problem discussed above can be addressed 

by implementing the same design in the FPGA using 

partial dynamic reconfiguration. In this case, the 

overall slice count is the sum of slice count of the 

static portion and the slice count of the partial 

reconfigurable module. The size of the PR Module 

should be at least of the largest behavior module size. 

In our design we allocated 9% of the FPGA for the PR 

Module which is sufficient to accommodate any 

behavior. Using partial reconfigurable FPGAs, all the 

three behavior modules can be accommodated within 

65% of the FPGA space. The bitstream of all the 

behavior modules are stored in an external  
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memory and the appropriate behavior is 

accommodated into the PR Module as of when 

required. So as the number of the behavior modules 

increases, the slice count of the FPGA doesn’t vary 

much. This gives the flexibility of using a singlrobot 

for performing various tasks without increasing the 

slice count on the FPGA.  

     The average resulting bit-stream for each of the 

configurations is 1175 kBytes resulting in a 

reconfiguration time of 23.4 milli-seconds and a 

worst net delay of about 9.686 nano-seconds. From 

these results, it can be seen that the reconfiguration 

can be achieved within the duration of a standard 

control cycle. While these results demonstrate the 

implementation for two simple behaviors in the 

robots, the FPGA utilization and efficiency becomes 

significant as the number of required behaviors in a 

robot increase.   

 

6. Conclusions 
In this paper, the run-time reconfiguration of FPGA 

based robot controllers was presented. For the first 

time, the dynamic reconfiguration of FPGAs was 

harnessed to extend the capability of a robot. Fault  

accommodation and behavior reassignment of robots 

was addressed using the concept of hardware and 

software reconfiguration. In our future work, the 

reconfiguration will be extended to embed 

intelligence and control algorithms into the robot 

architecture.  
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