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Abstract:Queues are not merely an object to study. Queues are real world problems faced by customers at a busi-
ness station that kill their valuable time. This results in decreased customer interest and the progress trends towards
a loss. This is particularly frightful with smaller investments, where a single loss may permanently eliminate the
business. It is not enough to know how queue behaves, but we are also required to know how to eliminate queues
or at least how to reduce them to a manageable size. It is possible to reduce the queuing delay by changing the
service mechanism. This involves increasing the rate at which customers are being served. Queues grow when
customers happen to arrive at a faster rate than they are being served. This type of service dependent queues may
be eliminated or at least reduced by developing a demand responsive service strategy that reduces the service time
variation. Practical business transactions are too complex to be studied analytically. Besides, analysis using the
collective practical data is hugely expensive and prohibitively time consuming that may affect the investment in-
centives. In this paper, a queuing model to simulate a small commercial establishment has been proposed, and a
C++ program, which is founded on the model, is implemented. Simulation data plots are presented and the data
tables are analyzed to make predictive forecasting over the significant transaction factors. Mathematical analysis
fundamental to the proposed model is also incorporated, so that the model may be extended to a multitude of other
similar applications in future.

Key–Words:M/G/1 queue, Simulation and model analysis, Simulation program, Performance analysis, Queuing
theory, Queue prediction.

1 Introduction
Queuing Theory is often used to analyze the per-
formance of practical queues based upon prediction.
Queuing applications are common to data-processing
tasks for customer transactions, jobs, order process-
ing, etc. Queue data structures are used insimulation
applications, programs that model real-world events,
and track their behavior over time. These models are
often prone to high validity since they can track the
true system behavior. Commercial real-world transac-
tions are too complex to be studied analytically. Be-
sides, analysis using practical data is hugely expen-
sive and prohibitively time consuming that may affect
the organization’s profit goals. These realistic models
are studied by simulation for economy and dynamism.
In this paper, a single-serverM/G/1 queuing model
has been used for predictive analysis of a small com-
mercial establishment. We are particularly interested
in service time and service rate predictions as well as
in estimating the queuing delays. A complete set of
Visual C++.NET programs are developed and imple-
mented for this simulation.

In section2, terminology and notations used with

the simulation model are discussed. Section3 intro-
duces objective behind the simulation and describes
the model used for the simulation. Algorithms used
for the simulation are also explored. Mathematical
formulations depicted in section4 is fundamental to
the proposed model. Section5 analyzes simulation
data for predictive waiting and service time forecast-
ing. Section6 is predictive curve analysis in estimat-
ing significant transaction factors.

2 Terminology And Notation

Following notations are adopted all throughout this
paper. Some of these notations appear in [3].
Arrival Rate: The rate at which customers arrive at
the queue. This is denoted byλ.
Service Time:The average time required to complete
a customer transaction. The time required to serve the
jth customer is denoted bysj . Average time needed
to serve a single customer is denoted byWs.
Mean Turnaround Time:Average time that a cus-
tomer spends in the system. This is denoted byWr.
tj : Time of arrival of thejth customer, which is an
integer.
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aj = tj - tj−1 = Inter-arrival time between the (j−1)st
and thejth arrival of customers.
dj : Delay of the jth customer inside the waiting
queue.
Wq: Average customer waiting time.
Lq: Average length of the waiting queue.
cj = tj + dj + sj : Time at whichjth customer is
served completely and leaves the store.
wj = dj + sj : Time that thejth customer spends in
the queuing system.
Lr: Average number of customers in the system.
q(tj): Number of waiting customers in the queue at
time tj .
qmax: Maximum number of customers inside the
waiting queue over a period of time.
l(tj) = q(tj) + 1: Number of customers in the queue-
ing system at timetj .
n: Total number of customers served over a period of
time.
T : Total time in minutes in a working day, during
which, the customers are being served.
B(tj): Busy function. It is 1 if the server is busy at
time tj , and0 if the server is idle.
ρ: Utilization factor of the server in serving cus-
tomers.
µ: Service rate of the server.

3 Simulation Model and Algorithms
In this paper, queue simulation has been used for pre-
dicting significant business operation factors. The ma-
jor focus is average service time, average customer
wait time and the average service rate rendered by the
clerk.
3.1 Problem Description
Following depicts theM/G/1 model studied for the
simulation.
1. The model store operates7 days a week. It opens
at 8 : 00 a.m. in the morning and closes at10 : 00
p.m. in the evening. The store effectively operates for
13 hours in a typical business day. Customer arrival
times satisfy Poisson distribution [2]. It has been as-
sumed that on average, a customer arrives at every ten
minutes. An algorithm is used to generate a random
number that lies in between0 and1. If the number is
greater thane−0.10 (as 1

10 = 0.10), it has been assumed
that a new customer has arrived at that minute.
2. In each business day, the store operates in three dif-
ferent cycles. The morning shift operates from8 : 00
a.m. until noon. Then there is an hour long lunch
break. The second shift starts at1 : 00 and runs
until 5 : 00 in the afternoon. At5 : 00, there is a
change of service clerk. The operation briefly pauses
for about15 to 20 minutes, and all customers inside
the waiting queue are dispersed. Once accounting

with the current clerk is over, a new service clerk takes
over. The business initiates its normal operation with
an empty queue and runs for another5 hours (until
around10 : 20 p.m. at night). For convenience, the
last shift is assumed to start at5, which runs until10
at night.
3. Customer transactions start and stop in1 minute
interval with a precision of1 minute that uses a Simu-
lation Clock. Customers are assumed to arrive on the
minute, and if necessary, wait an integral number of
minutes inside the waiting queue, and require an inte-
gral number of minutes for being served. The service
timessj , j = 1, 2, . . . of the successive customers are
independent of the inter-arrival times. If an incom-
ing customer finds that the clerk is busy, he joins the
waiting queue. Once the transaction with the current
customer is over, the server picks up a customer from
the waiting queue (if there is one) on a first-come first-
served (FIFO) basis.
4. For each minute of operation, the program checks
the following events:
a. Whether a new customer has arrived or not.
b. Whether a new customer transaction has started or
not.
c. Whether an on-going customer transaction has
completed or not.
5. For preciseness, longer simulation times are con-
sidered as follows.
a. Data is collected and the average parameter values
are computed by running the code for7 and30 con-
secutive business days.
b. In applying regeneration to the simulation model
for precise, accurate and realistic results, each day’s
operation has been subdivided into three different cy-
cles, and the simulation is conducted over seven con-
secutive business days with three cycles on each day.
Finally, the average parameter values over these seven
business days are computed.
c. The daily average waiting time is denoted by
tavgi

, where i = 1, 2, 3, . . . , 7 for seven, andi =
1, 2, 3, . . . , 30 for thirty consecutive business days.
We compute the average waiting time using the fol-
lowing equation:

tavg =
(
∑k

i=1 tavgi
)

k
, k = 7 or 30 (1)

Transactions are made in two different occasions.
(1) The queue is empty and the server is free. In
this event, customer is served immediately. This cus-
tomer’s waiting time is zero.
(2) A customer has just arrived, and either the queue
is nonempty or the server is busy. This customer waits
in the queue for the server to become free. This type
of customers have nonzero waiting time.
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3.2 Algorithms

Four different algorithms are used for the complete
simulation program.

Algorithm runSimulation
Purpose:This algorithm simulates the business.
Begin
createQueue (BuyerQueue)
clock =1
endTime =780
customerNumber =0
moreCustomer = false
while clock≤ endTime or moreCustomerdo

newCustomer (BuyerQueue, clock, customer-
Number)
clerkFree (BuyerQueue, clock, customerStatus,
moreCustomer)
serviceComplete (BuyerQueue, clock, customer-
Status, simulationStatistics, moreCustomer)
if (not emptyQueue(queue))then

moreCustomer = true
end if
++clock

end while
ReportStats (simulationStatistics)
return
End
Algorithm newCustomer
Purpose:This algorithm determines whether a new
customer has arrived or not.
Begin
arrivaltime = (rand() /((double)(RANDMAX +
1))) // RAND MAX = 2147483647
if (arrivaltime> exp(−0.1)) then

++customerNumber
customerData.number = customerNumber
customerData.arrivalTime = clock
enqueue (BuyerQueue, customerData)

end if
return
End
Algorithm clerkFree
Purpose: This algorithm determines whether the
server is idle and if so, starts serving the next cus-
tomer inside the waiting queue.
Begin
if (clock>status.startTime+status.serviceTime-1)
then

if (not emptyQueue(queue))then
dequeue (BuyerQueue, customerData)
status.customerNumber=customerData.number
status.arrivalTime=customerData.arrivalTime
status.startTime=clock
status.serviceTime=random service time
moreCustomer=true

end if
end if
return
End
Algorithm serviceComplete
Purpose: This algorithm determines whether the
current customer’s processing has completed or not.
Begin
if (clock==status.startTime+status.svcTime-1)
then

waitTime= status.startTime-status.arrivalTime
++status.numCust
stats.totsvcTime=stats.totsvcTime+status.svcTime
status.totWaitTime=status.totWaitTime+WaitTime
queueSize=queueCount(BuyerQueue)
if (statistics.maxQueueSize<queueSize)then

statistics.maxQueueSize = queueSize
end if
Report (status.customerNumber,status.arrivalTime,
status.startTime,status.serviceTime,waitTime,
queueCount)
moreCustomer = false

end if
return
End

The first algorithm may be modified to simulate7 and
30 business days. The algorithms may be tailored to
apply the regenerative technique with three different
cycles in each business day.

4 Mathematical Foundation
Following equations hold true for the proposed
M/G/1 model. Next equation computes theaverage
delayWq.

Wq =
∑n

j=1 dj

n
(2)

Average time that a customer spends in the system is
given by:

Wr =
∑n

j=1 wj

n
(3)

Average number of customers waiting and the average
number of customers in the system are, respectively:

Lq = λWq (4)

Lr = λWr (5)

Here,λ =customer arrival rate. The equations involv-
ing Lq andLr are known as the Little’s Formula. Ser-
vice clerk’s efficiency is computed as:

ρ =
Total service time

Total business time
=

Tservice

T
=

∑n
j=1 sj

T
(6)
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Average service timeWs is:

Ws =
∑n

j=1 sj

n
(7)

ParameterWs may be fractional as well. Number of
customers served per unit time is given by:

µ =
1

Ws
=

n∑n
j=1 sj

(8)

With the single-server queue, forsystem stability:

Arrival rate λ < Service Rate µ (9)

Therefore:

λ <
1

Ws
⇒ λ <

n∑n
j=1 sj

(10)

The server efficiencyρ is given by:

ρ =
λ

µ
=

λ×∑n
j=1 sj

n
=

∑T
j=0 B(j))

T
(11)

For astable single-server queue model:

λ < µ ⇒ λ

µ
< 1 (12)

The factorρ is less than1, and the following relation-
ship is being satisfied:

λ×
n∑

j=1

sj < n (13)

However, if:

λ > µ =
n∑n

j=1 sj
, (14)

then the server goes further and further behind. Even-
tually, after certain time, the server will always be
busy and the waiting line will increase at an average
rate of (λ− µ) customers per unit time.

5 Result Analysis

No. of Custs Total Svc. Time Ws Wr qmax

66 551 8 6 4

Table 1: Results over one business day (time values
are in minutes)

Day Tot cust Svc. time Ws Wq qmax

1 76 626 8 12 5
2 67 554 8 14 5
3 67 554 8 14 5
4 60 462 7 6 4
5 60 462 7 6 4
6 62 546 8 9 5
7 62 546 8 9 5

Avg. 65 536 7.8 10 5

Table 2: Simulation results for seven consecutive
business days (time values are in minutes).

Initially, the model is simulated for a complete work-
ing day without regeneration (see Table1). From Ta-
ble 1, average service time is8 minutes. For better
accuracy, simulation was conducted over7 consecu-
tive business days. Table2 shows the results.

From the accumulated statistics in Table2, the av-
erage service time is7.8 minutes. This deviates only
by 2.5% from that in Table1.

From the regenerative data in Table3, average
service time is8.4 minutes from8 to 12 p.m. This de-
viates by5% from that in Table1. In between1 to 5,
this average is7.7 minutes, differing only by3.75%.
From5 to 10 p.m., this factor remains identical to that
in the previous cycle.

From Table4, there is only7.7% chance of aver-
age service time being6 minutes in each hour. This is
only 2.2% for the weekly average. The highest84.6%
probability is for the hourly service time of7 minutes.
There is only7.7% chance of service time being8
minutes. Average service time follows a bell-curve
pattern within this6 to 8 minutes range. Beyond this
range, the probability is0.

Table5 is the frequency of waiting-time distrib-
ution estimated over a week. Out of494 total cus-
tomers served during this time,140 didn’t have to
wait at all. This number is28.34% of the total. How-
ever,202 customers waited for more than12 minutes.
This is40.89% of the total number served. Remain-
ing (100−28.24−40.89)% = 30.87% customers have
waited in between1 to 12 minutes.

6 Curve Prediction
For accuracy in predictive forecasting, data graphs are
plotted usinggnuplot version4 .0 software.

Figure1 shows simultaneous plotting of the aver-
age queue size and the maximum waiting queue size
versus days curves for30 business days. Queue pop-
ulation was maximum for both the plots in between
20th to 25th business days with parallel bell-curves
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Day Slot Tot cust Svc. time Ws Wq qmax

1 8-12 17 150 8 3 2
1 1-5 16 163 10 5 2
1 5-10 28 249 8 56 16
2 8-12 20 181 9 4 4
2 1-5 19 184 9 13 5
2 5-10 28 237 8 17 12
3 8-12 27 236 8 16 6
3 1-5 30 203 6 18 7
3 5-10 34 296 8 17 16
4 8-12 26 171 6 22 9
4 1-5 21 155 7 25 8
4 5-10 28 203 7 14 17
5 8-12 26 237 9 13 6
5 1-5 22 191 8 5 3
5 5-10 28 249 8 11 15
6 8-12 23 172 7 5 4
6 1-5 24 182 7 10 5
6 5-10 30 237 7 17 14
7 8-12 22 161 7 12 9
7 1-5 29 211 7 8 7
7 5-10 35 289 8 18 15

Avg. 8-12 23 187 8.4 10.7 6
Avg. 1-5 23 184 7.7 12 5
Avg. 5-10 30 251 7.7 21.6 15

Table 3: Simulation with regeneration over7 days.

within this range. Therefore, hiring an additional ser-
vice clerk may meet the increased service demand
over this period.

With M/G/1 queues, longer waiting lines may
be reduced by decreasing the server utilization,ρ. Fig-
ure2 is the dual plotting of the average queue length
and the expected queue length versus server efficiency
curves. The curve with a lower slope, which didn’t in-
tersect the x-axis is for the average queue length. The
curve with a higher slope intersecting the x-axis atρ =
0.68 is the one for the expected queue length. The two
curves intersect atρ = 0.81, which represents the op-
timal server efficiency. Atρ = 0.81, the expected and
the average queue lengths become equal, which is2.4.
With a realistic assumption of8 minutes to serve a
customer and an optimal server efficiency of0.81, the
number of total customers served during each busi-
ness hour is,b60×0.81

8 )c = 6. In a typical business day
with 13 hours of operation, the expected number of
customers to be served is,6× 13 = 78.

From Figure3, the number of minimum cus-

Service time Hourly prob./day Hourly prob./week
6 0.077 0.022
7 0.846 0.396
8 0.077 0.461
9 0 0.121

Table 4: Hourly service time distributions.

Waiting time No. of customers waited Probability
0 140 0.2834
1 15 0.0304
2 15 0.0304
3 18 0.0364
4 4 0.0081
5 13 0.0263
6 13 0.0263
7 16 0.0324
8 13 0.0263
9 13 0.0263
10 8 0.0162
11 9 0.0182
12 15 0.0304

>12 202 0.4089

Table 5: Individual waiting time distributions.

tomers served in an hour is3, which is 50% below
the expected number. The number of maximum cus-
tomers served is7, which is (7−6)×100%

6 = 16.67%
above the expected number. Table6 lists the hourly
customer counts over four business days.

Average number of customers served over4 busi-
ness days is:

L = b(
∑4

i=1

∑13
j=1 nij

4× 13
)c (15)

Here, nij = number of customers served at thejth
hour on theith business day. Using equation (15),
L = b285

52 c = b5.481c = 5. This is (6−5)×100%
6 =

16.67% less than the expected number.

7 Conclusion
In this paper, a predictive approach in estimating busi-
ness transaction factors is considered. The model sim-
ulated with computer programs steps through the be-
havior of the system and reports experience. The be-
havior is tracked incomputer variablesandprogram
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Figure 1: Average queue size (lower curve) and the
maximum queue size (upper curve) in person plots.
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Figure 2: The expected queue length and the average
queue length versus the server efficiency curves.

logic rather than as a physical system. For the proto-
typeM/G/1 commercial system, the computer model
presented can retain descriptive accuracy. This sim-
ulation only provides statistical estimates rather than
exact results.

There are two good reasons for simulating the
business model.
1) It is too expensive to conduct such a real-world
study over a considerable period of time in a small
service organization.
2) Computer simulation is efficient, and generates sat-
isfactory results within reasonable amount of time.
Small service stations are dynamic and fast growing.
Therefore, conducting a real-world simulation would
be too time consuming for such a small establishment.

As the time intervals are only1 minute, therefore,
the probability of two or more arrivals or two or more
service completions during an interval is negligible,

Hour No. Day1 Day2 Day3 Day4
1 5 4 6 6
2 7 5 7 5
3 5 5 8 5
4 5 4 5 4
5 11 2 6 7
6 6 5 7 2
7 4 9 4 6
8 7 7 4 5
9 8 6 4 5
10 5 4 5 7
11 4 6 2 6
12 3 6 5 8
13 3 8 3 7

Table 6: Customer counts per hour over4 days.
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Figure 3: Number of hourly customers vs. corre-
sponding business hour plot over4 business days.

and we have discarded such possibilities. Future re-
search plan incorporates error estimation in the pre-
dictive forecasting and techniques to reduce such er-
rors to a minimum possible level.
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