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Abstract: - We have witnessed a significant advancement in the field of mobile robot applications in the past two decades. 
From performing mission critical tasks such as in planetary exploration to simply doing household chores, this type of 
robots requires availability, reliability and safety of its operations.  Consequently, there is a growing demand for fault 
tolerant control system (FTCS) for mobile robots where one of it major component is the fault detection and isolation 
(FDI) module. In our FDI study, one of the challenges in designing the robot model is to create an accurate and robust 
dynamics model. In this paper, the environment structure, which is the dynamic change in the surface characteristics, will 
be included. We will utilize Local Neural Model (LNM) in our robot modeling process. Wheel slippage is an event 
happened when the robot wheels lose their full grasp of the surface. This may cause the robot to deviate from its desired 
trajectory. On the other hand, the fault on the robot actuator may also lead to similar behavior but need different solution. 
In this paper we will expand the functionality of FDI module to infer a real actuator fault and wheel slippage in which, the 
solutions for both events can be combined in a single, common controller. 
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1  Introduction 
We have witnessed a significant advancement in the field 
of mobile robot applications in the past two decades. 
There are numerous practical situations where WMR is 
proven to be useful [4,6,10] that range from performing 
mission critical tasks such as in planetary exploration to 
simply doing household chores. However, the complexity 
of the robots has also increased in order to accommodate 
the demands of sophisticated tasks. Most modern robots 
include multiple actuators, numerous sensors and other 
components. As a result of this increased complexity, the 
possibility of developing system faults is also increased. If 
this problem is not solved properly, it may lead to 
catastrophic consequence especially for autonomous 
systems. Hence, there is a growing need for the system to 
have a mechanism to handle the faults. This requires the 
system to detect and isolate faults, and reconfigure itself 
automatically as soon as the fault occurs. Fault tolerant 
control system addresses the above-mentioned issues to 
ensure the availability, reliability and safety of the system 
operations.  
One of the major components in FTCS is fault detection 
and isolation module. In the literature, the approaches to 
solve the FDI problem are broadly classified into two 

classes: model-based and model-free approaches. Model-
based fault detection approach utilizes the mathematical 
model of the plant to generate residuals. Residuals are the 
measure of discrepancy between the expected and the 
measured system behaviors. The problem of model-based 
FDI method is that it requires an accurate mathematical 
model to reduce the generation of inaccurate residuals. 
This is required to avoid false alarms in detecting the 
faults. This problem becomes more critical when the robot 
is subjected to unknown environmental changes or 
external disturbance (e.g., changes in road conditions 
and/or surface characteristics). Model-free methods are 
likely to be more successful in avoiding this issue because 
instead of depending on the model, they seek to learn the 
system behaviors. Neural network (NN) is a model free 
technique that has been widely used to replicate the 
dynamics of robotic systems [5,8,10,19]. Its learning 
capability can capture modeling uncertainty inherent to the 
robot dynamics. In this research, we use Local Neural 
Model to learn not only the system dynamics that is 
inherent to the nominal robot operation but also the effect 
of environmental changes on its behavior. LNM has the 
ability to be trained and can adapt to the change of its 
parameters faster due to its linear optimizing scheme.  
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In this work, we consider wheel slippage as an effect to 
the change in surface characteristics, which consequently 
affects the nominal robot behavior. It is an event that 
happened when the robot wheel loses its full grasp of the 
surface. Traction controller is commonly employed to 
correct this problem to avoid the robot from deviating 
from its desired trajectories. However, if an actuator fault 
occurs, that too will affect the nominal behavior of the 
robot. While the changes in nominal behaviors due to 
these two different events might be similar, each situation 
calls for a different solution. In this paper we develop an 
FDI module that can differentiate between an actuator 
fault and wheel slippage. We first present the framework 
in Section 2. We then describe the experimental set-up in 
Section 3. The results are finally discussed in Section 4.  
 
 
2  Neural Modeling of the Mobile Robot 
The model of our mobile robot composed of two wheel 
systems. Hence, we try to describe the relationship 
between the speed of the wheels and their torque-
command voltages. Most commercial mobile robots allow 
a very limited access to their hardware and electronics. As 
a result, to measure the torque-command voltage in the 
motor is difficult without need to do some major hardware 
modification. On the other hand, we note that many robots 
have servo-controllers that are fixed and embedded in the 
systems’ control feedback loops. Thus the robot dynamics 
can generally be described as:  
 

! 

y t( ) = f u t( ), x t( ), " x t( ),..., xn#1
t( ), " y t( ), " " y t( ),..., yn#1

t( )( )  

! 

x t( ) = f e t( )( )  

! 

" x t( ) = f e t( ), " e t( )( )                                                              (1) 
 
where 

! 

y ,

! 

e  and 
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" e  are the wheel linear speed, error in 
linear speed and the derivative of the error. These are the 
parameters we used to describe the system relationship in 
the neural network model. In addition, the u and x are the 
input and the state of the system, respectively. n is the 
order of the system. The equation shows a nonlinear 
relationship that arises from the nonlinear motor torque 
characteristic as well as the motor static friction. However, 
the overall behavior of the mobile robot is not just the 
summation of individual wheel behaviors. A direct cross 
coupling relation between the robot’s two wheels also 
needs to be realized. For instance, if the commanded 
torque to one of the wheels is zero, the static friction of 
that wheel will directly affect the other wheel. The same 
effect applies, when the robot wheels are not moving at the 
same velocities. The faster or slower wheel will force the 
other wheel to move faster or slower. 

There have been a number of model-free methods reported 
in the literature that have been applied to learn the 
behaviors of various robotic systems. In [2], the author 
reports the use of fuzzy-neural network to approximate the 
potential based guiding model for mobile robots. In 
[3,6,7], the robot model is generated through system 
identification using Takagi-Sugeno (TS) fuzzy system. 
The idea of using local linear model tree (LOLIMOT) to 
model nonlinear system has also been reported. [4,5] 
report the use of LNM, which resembles the first order TS 
fuzzy model or general radial basis function (RBF) 
network for their nonlinear robot system. Meanwhile 
[8,9,10] report the employment of a single multilayer 
perceptron (MLP) network to model a variety of nonlinear 
robot systems. 
In this paper, a set of LMN is utilized in the system 
modeling. This method suggests the division of the 
operating region, where each LNM will approximate the 
dynamics of the respective region. This is described as:  
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where 

! 

M  is the number of local models, 

! 

f v( )  is a linear 
functions of the measurement vector 

! 

v , and 

! 

p w( )  is a 
Gaussian function in RBF network. In our case the input 
vector, w to the network consists of the difference between 
the desired velocity and the actual velocity, e and its 
previous value. The output, y is the wheel speed. Thus, 
each local model will estimate the speed of the wheel 
given the error and previous error values. Our ith local 
model then can be represented and simplified to the 
following discrete equation form, 
 

! 
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A switching mechanism is built to determine the 
appropriate local model to be employed during the 
operation based on the measurement of current wheel 
speed. The generation of local models is based on the 
division of the robot-operating region. In order to do that, 
we utilize a grid partitioning techniques in which the range 
of the wheel speed is divided into several equally spaced 
intervals. We also have two-set of main networks 
representing two-set of robot wheel systems. 
In our FDI study, the occurrence of actuator fault can be 
generalized based on the robot trajectories. In doing so, 
once the fault is identified, depending on the level of fault, 
the next robot path can be decided. Thus, our LNM are 
classified into three types of behaviors, namely moving 
straight, small turning and big turning as depicted in the 
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Fig. 1 and 2. These behaviors are chosen because they can 
be used to traverse most complex trajectories. 
In the next design stage, each of the two inputs and one 
output LNM is trained based on random training set or a 
priori knowledge captured during nominal robot 
operations. 

Fig. 1: LNM classification based on the behavior of robot 
trajectories 

Fig. 2: LNM for straight trajectory 
 
2.1  Health and safety of mobile robot 
Actuator fault can comes in a variety of forms. For mobile 
robot, the actuator fault (motor fault) is happened to be the 
most common fault. Motor faults are generally due to 
several causes such as wrong brush contact, bearing faults, 
performance deficiency, electrical faults and stator iron 
core faults [17]. As we are looking on the actuator faults 
or motor faults on the wheels, monitoring for the right 
parameter is crucial. Wheel speed seems to be an 
appropriate parameter to be monitored to detect actuator 
fault.  
Wheel slippage on the other hand, can affect the position 
estimation error and consequently loss of traction. By 
minimizing slippage, the odometric errors will be 
minimized and this will reduce the overall energy 
consumption and increase robot traction performance [11]. 
A number of current methods that aim at detecting 
slippage have been reported. [12] uses a system based on 
fusing visual odometry and inertial measurements through 
a Kalman filter pose estimator implemented on mars rover.  
[15, 18] report that by classifying the visual traction, the 
slip factor can be associated to the predefined values of 
various terrains.  In [13], the author reports the use of sun 
sensor to improve the robot state estimates while in [14], 
the authors describe the use of combination visual 
odometry and sun sensor. By comparing the encoder 
measurement, gyro and electric motor current, [16] reports 
a technique to measure slippage for mobile robot 

successfully. For a robot to have the ability to provide 
substantial safety countermeasures, a number of possible 
health and safety indicators need to be implemented as 
reported in [15].   Among others are component failure, 
available power, chassis altitude, wheel slippage and 
sinkage, and mechanics compliance. Many of these issues 
have been thoroughly researched and tackled, but 
apparently we find that each solution for a particular issue 
seems to be isolated from each other. This generally can 
contribute to the waste of resource on the robot system. In 
this paper, we will exploit the resemblance in robot 
behaviors when the two events namely wheel slippage and 
actuator fault occurs. For that matter, we want to expand 
the functionality of our FDI module so as to combine the 
solution for these healthy and safety issues. The goal is to 
simplify the solution by governing and optimizing the 
resource on the robot without sacrificing the system 
performance. 
 
 
3  Experiments  
3.1  General description 
As described before, in detecting motor fault, the neural 
model of the two-set of wheels will be used as a reference 
healthy model. The actual velocity that may differ from 
the nominal velocity due to actuator fault is obtained from 
motor encoders. This velocity will be used to compare 
with the healthy (nominal) velocity obtained from the 
neural model. The computation is done in real-time. The 
errors between these two velocities are then fed into the 
decision-making block to identify the size, existence, 
source and cause of the fault. We are not going to touch on 
this issue in this paper.  
The analysis of slip, on the other hand, is done based on 
the following equation, 
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where 
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V
w

 and 
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V
r
 are the velocities of the wheel and robot, 

respectively. 

! 

"  is the wheel slip ratio which is defined 
dimensionlessly as a percentage of robot forward velocity. 
When this value is nonzero, wheel slippage occurs. In the 
study of traction control, this value is regulated to 
optimize the robot traction performance. Apparently, the 
slip factor can be easily obtained if the two velocity 
parameters are observable.  
For this research, the wheel velocity is available from the 
shaft encoder. However, it is always a challenge to 
measure the actual robot velocity due to the dynamic 
interaction between the wheel and the surface.  

Desired 
velocity 

Predicted 
velocity 

1st LNM 

2nd LNM 

ith LNM 

Straight trajectories 

Small-turning trajectories 

Big-turning trajectories 

Desired  
velocity 

 Predicted 
 velocity 
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3.2  Hardware setup and experiment tasks 
Since we are focusing on the robot running in the indoor 
environment, we use accelerometer to measure velocity. In 
order to obtain reliable robot velocity especially during 
wheel slippage, the accelerometer is mounted on top of the 
robot as close as possible to the wheel. This is shown in 
the Fig. 3. We use a 3-axis accelerometer, which features 
reconfigurable bandwidth up to 500 Hz and a measurable 
range up to +/- 2g. 
The experiment is divided into two parts. The first part is 
to capture the robot model using LNM technique. For that, 
we define the operating region for each of the robot 
wheels to be from 0 to 1400mm/s (maximum possible 
velocity). We then equally divide this operating region 
into twenty-eight sections. This results in 28x28 possible 
input sections where each possible combination has 
distinct robot trajectories. By using all possible input 
combinations, we run the robot on the normal tiled office 
floor and capture data from the wheel encoder to train the 
LNM. The goal is to learn the healthy model of the robot. 
The final set of LNM is then grouped into three classes, 
which are: moving straight, small turning (turn radius is 
less then 1m) and big turning (turn radius is equal or 
bigger than 1m). In the second part we want to see the 
response and performance of the fault and slippage 
detection mechanisms, hence, we run a set of experiments 
following the strategy below:   
 
i. First, run the robot on normal floor and capture the 
predicted, encoder-measured and accelerometer-measured 
velocity values. This will demonstrate whether those 
measure velocity values conform one another. 
 

 
Fig. 3: Pioneer P3DX with mounted accelerometer 

 
ii. Second, run the robot and introduce actuator fault at 
3.5-second of robot trajectory. The idea here is to 
investigate whether the actuator fault can be detected by 

comparing the predicted and the encoder-measured 
velocities values. The fault is introduced in the form of a 
step signal, which represents power loss of the servo 
system.  The following equation is the simple closed-loop 
servo system of the robot. 
 

! 

T s( ) =
y s( )
x s( )

=
Kc s( )Kp s( )

1+H s( )Kc s( )Kp s( )
                                       (5) 

  
We model the fault by amplifying the desired input, 

! 

x s( )  
by 1.1%. The form of the system response approximates 
the form of response in which the actuator fault such that 
as much as 10% of power loss in servo system occurs. 
Since the sensor and actuator are serially connected, the 
effect of the actuator fault is reflected in the sensor term, 

! 

H s( ) . 
 iii. Third, run the robot on a slippery surface (lubricated 
vinyl floor) to induce wheel slippage and investigate 
whether it can be detected by the accelerometer.  
For every experiment, we apply the same desired robot 
velocity, which is set to be 400mm/s.  
 

 
4  Results And Discussions 
In the first experiment, we run the robot without 
introducing either an actuator fault or slip. Fig.4a shows 
that no significant deviation between the neural model 
predicted trajectory and the encoder measurement based 
trajectory. Thus, this result validates that the trained model 
sufficiently captures the robot behavior. In Fig. 4b, we 
present results that show that the trajectories generated 
from the encoder data and from the accelerometer data 
match reasonably well when there is no fault or 
appreciable slip. In this case, however, note that from 
Fig.4c, that the slip is within 20% and its derivative is 
bounded within +/-5, which we considered to be a safe 
range of operation. We defined the above bounds of the 
slip derivative as our threshold of detecting unacceptable 
slip.  
For the second experiment, we introduced an actuator fault 
after the robot achieved its desired velocity. As shown in 
Fig.5a, the fault happened at 3.5-second. This actuator 
fault was to signify 10% loss of motor power of the right 
wheel.  As expected, the difference between the healthy 
and the real robot trajectories grew from this point 
onwards. We can see that the accelerometer signal still 
tracks the robot trajectory excellently as shown in Fig.5b. 
Fig.5c shows that the derivative of slip ratio still falls 
within the safe bound during the period of constant robot 
velocity. 
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In the third experiment, the robot is commanded to move 
on a lubricated floor to reduce the friction between the 
wheel and the surface. As the encoder shows no sign of 
slip reflected in Fig.6a, the accelerometer is able to detect 
slip. The plot in Fig.6b shows the decrease of robot 
velocity as the slippage occurs. Fig.6c confirms the slip as 
the signal clearly goes out of bound. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 (a),(b),(c): Experiment without motor fault and 
wheel slippage 

 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 5 (a),(b),(c): Experiment without motor fault but 
wheel slippage 

 
From these experiments, we can see that the fault can be 
reliably deduced from the difference between the output of 
neural model and the encoder reading. We also see that by  
using accelerometer, the velocity of the robot can be 
tracked, hence the wheel slippage can be detected. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 (a),(b),(c): Experiment without motor fault but 
wheel slippage 
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5  Conclusions And Future Works 
This paper introduces a new way to optimize resource on 
mobile robot where a substantial safety countermeasure is 
implemented. Among major concerns on robot healthy and 
safety are actuator fault and wheel slippage. The result 
from this paper demonstrates that the use of LNM 
technique to model the mobile robot is quite successful. It 
also show that the manipulation of neural predicted, 
encoder-measured and accelerometer-measured velocity 
values could be used to deduce actuator fault and wheel 
slippage. In the next stage of this research, this 
information will be used to help the design of common 
controller for the FDI system. The classification of the 
actuator fault based on the trajectory behaviors may also 
add another parameter to the process of designing the 
controller. 
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