
Minimization of Multiway Decision Graphs for
RTL Verification by Stochastic Optimization

YI FENG and XIAOYU SONG1

Department of Computer Science
Algoma University, Ontario, Canada P6A 2G4

1Department of ECE, Portland State University, Portland, OR 97207, USA
feng@algomau.ca

Abstract: - The complexity of digital hardware designs has increased substantially with new advancements in
electronic designs. It is becoming increasingly difficult to verify their correctness. MDGs have been proved to
be a very effective tool in automatic hardware verification of RTL designs. In this paper, a method of variable
reordering for Multiway Decision Graphs (MDG) is discussed. We present an automatic dynamic variable
ordering algorithm for MDGs to reduce the effects of the state explosion problem. By contrast to ROBDDs, in
MDGs difficulties are created by the presence of first order terms. The method we present here merges the
benefits of stochastic evolution and sifting. It will be utilized to minimize the MDG size throughout the
verification procedure. The effectiveness of our method is demonstrated by the empirical results provided.

Key-Words: - Formal Verification, Multiway Decision Graphs, Variable Ordering, Stochastic Evolution

1 Introduction
Electronic designs are becoming increasingly
ubiquitous and pervasive in nature, and as they do,
they begin to find their way in to more critical and
important applications such as medical diagnostic
equipment, life support systems, hazardous
industrial process control, and other such
applications where bugs can create catastrophes or
may even threaten human lives. As a result, it
becomes important to develop systems which ensure
bug-free designs we produce and use. The task of
validating a new design is conventionally performed
by the use of simulation tools.

Formal verification is playing an increasing role
in contrast to traditional simulation. Formal
verification methods intend to determine whether or
not a particular implementation satisfies a
specification by the use of mathematical reasoning
[4]. Multiway Decision Graphs (MDGs) offer a
suitable representation of Extended Finite State
Machines. As such, they provide a useful tool for the
automated formal hardware verification of Register
Transfer Level (RTL) designs.

MDGs efficiently represent a class of formulas
of a many-sorted first-order logic with a distinction
of abstract and concrete sorts [1]. In an MDG, a data
signal is represented by a single variable of abstract
sort rather than by a vector of Boolean variables,
and a data operation is represented by an

uninterpreted function symbol. MDGs compactly
encode sets of (abstract) states and transition/output
relations for abstract description of state machines.
The implicit enumeration technique is lifted from
the Boolean level to the abstract level and referred to
as implicit abstract enumeration. MDGs are thus
much more compact than ROBDDs for circuits
having complex and large datapaths. This increases
the range of circuits that can be verified.

MDG-based verification still suffers from the
problem of state explosion when handling realistic
circuits. Of approaches designed to reduce the
effects of state explosion, the most significant
approach seeks to select variable order that
minimizes the problem. As with ROBDD, an MDGs
size is closely tied to the order of its variables. This
paper discusses a dynamic ordering algorithm for
MDGs. Algorithms for variable ordering from
ROBDDs can not be used directly on MDGs since
first-order terms may be present in an MDG.

Our method determines a new order during the
verification process to reduce the size of MDGs by
permuting the variables of a given MDG starting
with an initial static order. The method is based on
the sifting algorithm [9] by swapping two adjacent
variables. The optimal position for each variable is
determined by the sifting process. Although the
method is very effective in reducing the MDG size,
it is computationally intensive. In our discussion, we
use sifting in a stochastic evolutionary approach.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 327

2 Multiway Decision Graphs
The formal logic underlying MDGs is a many-sorted
first-order logic, augmented with the distinction
between abstract sorts and concrete sorts [1]. This
distinction is motivated by the natural division of
datapath and control circuitry in RTL designs.

Concrete sorts have enumerations that are sets of
individual constants, while abstract sorts do not.
Variables of concrete sorts are used for representing
control signals, and variables of abstract sorts are
used for representing datapath signals. Data
operations are represented by uninterpreted function
symbols. An n-ary function symbol has a type α1 ×
…× αn → αn+1, where α1 … αn+1 are sorts.

The distinction between abstract and concrete
sorts leads to a distinction between three kinds of
function symbols. Let f be a function symbol of type
α1 × …× αn → αn+1. If αn+1 is an abstract sort then f
is an abstract function symbol. If all the α1…αn+1 are
concrete, f is a concrete function symbol. If αn+1 is
concrete while at least one of α1 … αn is abstract,
then we refer to f as a cross-operator. While abstract
function symbols are used to denote data operations,
cross-operators are useful for modeling feedback
signals from the datapath to the control circuitry.
Both abstract function symbols and cross-operators
are uninterpreted, i.e., their intended interpretation is
not specified.

A multiway decision graph (MDG) is a finite
directed acyclic graph G where the leaf nodes are
labeled by formulas, the internal nodes are labeled
by terms, and the edges issuing from an internal
node N are labeled by terms of the same sort as the
label of N. Such a graph represents a formula
defined inductively as follows: (i) if G consists of a
single leaf node labeled by a formula P, then G
represents P; (ii) if G has a root node labeled A with
edges labeled B1…Bn leading to subgraphs
G1’…Gn’, and if each Gi’ represents a formula Pi,
then G represents the formula \/1≤ i ≤n((A = Bi) /\ Pi).

We refer to an occurrence of a variable in a term
that labels an edge or in a cross-term that labels a
node as a secondary occurrence, while an occurrence
of a variable as the label of a node is a primary
occurrence. The primary variables (resp. secondary
variables) of a graph G are those that have primary
(resp. secondary) occurrences in G.

Just as Bryant’s ROBDD must be reduced and
ordered, MDG must also be reduced and ordered.
The concept of ordering in MDG concerns two
orders: the standard term order and the custom
symbol order. The standard term order is a
lexicographical order of all the terms of the logic.
The custom symbol order is a total order of a set of

symbols that includes the concrete variables, abstract
variables, and some but not necessarily all of the
operators. It is selected specifically for each model,
like in ROBDD. The custom symbol order is
independent of the standard term order. In this
paper, we only discuss custom symbol ordering.

MDG must obey a set of conditions to keep it
well-formed [1]. Three constraints on ordering are
introduced by these conditions:

1. If an abstract variable a appears as a secondary
variable in an edge label of node b, then a < b.

2. If a variable a appears as a secondary variable
in a cross-term having cross-operator f, then a < f.

3. The present and next state variables must be in
a corresponding order.

3 Variable swapping in Multiway
Decision Graphs
[12] presents a method for automatically generating
a static variable order based on some heuristic rules.
We will describe how to reduce the size of MDGs by
reordering variables.

Dynamic reordering improves the variable order
by a series of swaps of adjacent variables. The basic
operation in reordering is thus that of variable
swapping. We begin with an introduction of the
implementation of the swap operation in MDG, then
continue with a discussion of the effects of the swap
operation on the variable order and the constraints
imposed on variable swapping.

3.1 Implementation of a variable swapping
Operation
Variable swapping involves moving all MDG nodes
at level i to level i+1 and nodes at level i+1 to level
i. Level 0 is the root node of an MDG. All nodes at a
level are labeled by the same variable. The level
itself is also labeled by the same variable. The
variables that label the levels must appear in a
custom order. The level that a variable labels does
not reflect its exact position in the order since
secondary variables do not label the levels in the
particular graph, but may in other MDGs that
describe the design. All of them follow the same
global order

Because an MDG node can be labeled by an
abstract variable, a concrete variable or a cross-term,
a variable swapping operation is of 3 kinds: a swap
between two abstract variables, a swap between two
concrete variables (or cross-terms) and a swap
between a concrete variable (or cross-term) and an
abstract variable.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 328

We first present swap between two abstract
variables. Suppose we wish to swap abstract
variables xi and xi+1 in an MDG shown in Figure 1.
The depicted MDG represents the following Direct
Formulas (DFs) f1 and f2:

 f1 = ((xi = a1) ∧ (((xi+1 = b1) ∧ G1) ∨ ((xi+1 = b2) ∧ G2))) ∨
 ((xi = a2) ∧ ((xi+1 = b3) ∧ G3)) ∨
 ((xi = a3) ∧ ((xi+1 = b4) ∧ G4))
 f2 = ((xi+1 = b1) ∧ G1) ∨ ((xi+1 = b2) ∧ G2)) (1)

Figure 1.(b) shows the MDG after swapping
variables xi and xi+1. This MDG represents formula
(3.2), which is equivalent to (1). DF f2 remains
undisturbed.

Figure 1. Variable swap between two

abstract variables
In first order logic, for any two formulas P and

Q, there are the following axioms:
 P ∧ Q Q ∧ P,
 P ∧ (Q ∧ R) (P ∧ Q) ∧ R,
and P ∧ (Q ∨ R) (P ∧ Q) ∨ (P ∧ Q).

Thus, we can deduce the following formulas from
(1):

 f1 (((xi = a1) ∧ ((xi+1 = b1) ∧ G1)) ∨
 ((xi = a1) ∧ ((xi+1 = b2) ∧ G2))) ∨
 ((xi+1 = b3) ∧ ((xi = a2) ∧ G3)) ∨
 ((xi+1 = b4) ∧ ((xi = a3) ∧ G4)) ((x
 ((xi+1 = b1) ∧ ((xi = a1) ∧ G1)) ∨
 ((xi+1 = b2) ∧ ((xi = a1) ∧ G2)) ∨

 ((xi+1 = b3) ∧ ((xi = a2) ∧ G3)) ∨
 ((xi+1 = b4) ∧ ((xi = a3) ∧ G4))

 (2)

Note that in Figure 1, each edge issuing from

nodes in level i must reach a node labeled by xi+1
before swapping and must reach a node labeled by xi
after swapping. The MDG well-formed conditions
require that the set of abstract variables having
primary occurrences along a path be the same for all
paths in a given graph [1]. Thus, no edge issuing
from nodes in level i reaches subgraphs in level i+2
directly. However, when swapping an abstract
variable and a concrete variable (or cross-term) or
two concrete variables (or cross-terms), there may
exist an edge or edges issuing from the nodes in
level i to the subgraphs in level i+2 directly.

 Figure 2 shows variable swapping between an
abstract variable and a concrete variable. xi is of an
abstract sort. xi+1 is of a concrete sort of enumeration
{c1, c2, c3, c4}. Edge a3 is issued from u (a node in
level i) to subgraph G4 directly without passing
through level i+1. The MDG in Figure 2(a)
represents the formula:

f1 ((xi = a1) ∧ (((xi+1 = c1) ∧ G1) ∨ ((xi+1 = c2) ∧
G2))) ∨ ((xi = a2) ∧ ((xi+1 = c3) ∧ G3)) ∨ ((xi = a3)
∧ G4) (3)

Because ((xi+1 = c1) ∨ (xi+1 = c2) ∨ (xi+1 = c3) ∨

(xi+1 = c4)) ≡ T, we can deduce the following
equivalent formulas from formula (3) :

 f1 ((xi = a1) ∧ (((xi+1 = c1) ∧ G1) ∨
 ((xi+1 = c2) ∧ G2))) ∨
 ((xi = a2) ∧ ((xi+1 = c3) ∧ G3)) ∨
 ((xi = a3) ∧ (((xi+1 = c1) ∧ G4) ∨
 ((xi+1 = c2) ∧ G4) ∨
 ((xi+1 = c3) ∧ G4) ∨
 ((xi+1 = c4) ∧ G4))) (4)
 ((xi+1 = c1) ∧ ((xi = a1) ∧ G1)) ∨
 ((xi+1 = c2) ∧ ((xi = a1) ∧ G2)) ∨
 ((xi+1 = c3) ∧ ((xi = a2) ∧ G3)) ∨
 ((xi+1 = c1) ∧ ((xi = a3) ∧ G4)) ∨
 ((xi+1 = c1) ∧ ((xi = a3) ∧ G4)) ∨
 ((xi+1 = c1) ∧ ((xi = a3) ∧ G4)) ∨
 ((xi+1 = c1) ∧ ((xi = a3) ∧ G4))
 ((xi+1 = c1) ∧ (((xi = a1) ∧ G1) ∨
 ((xi = a3) ∧ G4))) ∨

i+1 = c2) ∧ (((xi = a1) ∧ G2) ∨
 ((xi = a3) ∧ G4))) ∨
 ((xi+1 = c3) ∧ (((xi = a2) ∧ G1) ∨

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 329

 ((xi = a3) ∧ G4))) ∨
 ((xi+1 = c4) ∧ (((xi = a3) ∧ G1) ∨
 ((xi = a3) ∧ G4)))

 (5)

Figure 2 Variable swapping between an
abstract variable and a concrete variable

A pseudo node w is added in Figure 2(b), which
represents (4). Formula (4) can be further reduced to
(5) where variables xi and xi+1 are swapped. The
MDG for (5) is shown in Figure 2(c).

Variable swaps between concrete variables
(cross-terms) or a concrete variable (cross-term) and
an abstract variable can be implemented in a similar
way.

The variable swapping operation provides the
basis for the reordering algorithm. It is easily seen
that the swapping operation is completely local since
only the nodes at level i and level i+1 need to be
traversed.

3.2 The effects of the swapping operation on
variable order
In an MDG, swapping two adjacent variables does
not imply that they just exchange the positions in the
ordering list. For example, suppose we apply two
swap operations to the abstract variable x3 in the
MDG shown in Figure 5.4. The MDG is under the
order x1< a < b < x2< x3. x1 is a Boolean variable and
x2, x3 are abstract variables. a and b are secondary
variables. There are four constraints in the MDG: a
< x2, a < x3, b < x2, and b < x3.

Figure 3 Effects of swap operation on the order

 First, swapping x2 and x3 results in a new order

x1< a < b < x3< x2. Second, after swapping x3 and x1,
we can not just swap their positions because of the
constraints imposed between a, b and x3. A new
order a < b < x3 < x1 < x2 is obtained by moving a, b
with x3 before x1.

4 A Dynamic reordering algorithm in
a stochastic evolution approach
The sifting algorithm presented in [10] has been
proved to be successful at reordering BDDs and
MDGs. During a sifting process, each primary
variable in an MDG is examined in turn and is
moved up and down in the order so as to take all
positions successively. The variable is then returned
to the position where the minimum size of the MDG
was obtained. The process then continues with
another variable. However, these operations tend to
be time consuming.

We implemented sifting in a stochastic evolution
approach to reduce unnecessary swaps. Stochastic
evolution (SE), a technique dedicated to
combinatorial optimization, was proposed by Saad
and Rao in [13].

The basic idea of SE is to seek a global minimum
of a cost function defined over a discrete domain D,
called state space. Each state S is a mapping of a set
of movable elements M into a set of locations L. A
new state S' is generated by moving some elements
in S. A move m can be simple or composed and must
generate a unique new state S'. The gain of a move m
is: gain(m) = cost(S) - cost(S'). Each move is
accepted if the gain > random(-p), where p is the
parameter that allows negative gains in order to
perform hill climbing.

The MDG ordering problem can be modeled as a
permutation problem which can be solved using SE.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 330

We choose M={x0, .., xn-1}, the set of primary
variables, and L = {1,..., n}. The state space is the set
of all permutations of M. A state is a permutation of
the primary variables. A move in the state space is
generated by swapping two consecutive variables.
The algorithm is described in Figure 4. The cost
function cost(S) is the size of the MDG. S0 is the
static order generated by the algorithm proposed in
[12]. p0 was determined experimentally. The
generation and acceptation of new states are done by
the function perturb_SE. The update function
modifies the control parameter p.

When sifting up/down a primary variable, we call
function perturb-SE. In this function, we sift
up/down a variable. After each swap, we check the
new size of MDGs. If the size is smaller than the
original MDG (positive gain), we will continue
swapping this variable with the variable at the next
position. If the size is greater than the original size
(negative gain) and the negative gain is between 0
and –p, we will continue. Otherwise, sifting this
variable will stop.

It is possible that the function perturb_SE always
generates states that oscillate around a local
minimum. To circumvent this problem we update p
after each function call of perturb_SE. We will
increase p by 5% if the cost turns small. We also set
a possible best gain (threshold) that might be
reached by our algorithm. Once that threshold has
been reached, the whole reordering method will
stop. The value of threshold will be decided by the
number of primary variables and components of the
circuit to be verified.

Algorithm ORDERING_SE :

 S = S0 // S contains initial order
 SBest = S0 // save initial order
 p = p0 // initial control parameter

 for each variable xi in an MDG
 Cpre = cost(S);
 S = perturb _SE(S, p);
 Ccur = cost (S);
 update (p, Cpre, Ccur);

 if (cost(S) < cost (Sbest)) then
 Sbest = S;

 return (Sbest);
end;

Figure 4. ORDERING_SE algorithm.

5 Experimental results
We implemented the above algorithm in Prolog and
integrated it into the MDG package [1]. We present
experimental results on a number of IFIP benchmark
circuits [5], an ATM switch fabric [2]. The
experiments were carried out on a Sun Ultra 10
workstation with 333MHz and 1GB of memory.
Both the experimental results in Table 1 and Table 2
demonstrate that the reordering algorithm using SE
generated better results than the static ones and
sifting in most cases. By comparing the results, we
have seen that the basic sifting and our reordering
algorithm can reduce the size of MDGs for most of
benchmarks we experimented with. Compared to the
basic sifting algorithm, our reordering algorithm
results in about 52% time improvement and costs
less than 1% in size increase on the average.
Although reordering increases the computing time as
compared with static ordering only, it can greatly
reduce the size of MDGs.

6 Conclusions
In this paper, we discussed a new MDG
minimization method using a genetic algorithm:
stochastic evolution. We combined stochastic
evolution with a powerful reordering method sifting.
The experiments on IPIP benchmarks and an ATM
switch fabric demonstrated the efficiency of the
algorithms in reducing the size of MDG.

Table 1. Experimental results for IFIP

benchmark circuits

 static sifting
 SE

 reordering

Circuit

nodes time(s) nodes time(s) nodes times(s)

minmax 166 0.2 164 1.2 164 0.5

tlc 245 1.2 245 11.0 248 5.6

gcd 375 0.3 369 4.3 369 3.1

tama 2211 1.4 2136 17.3 2152 6.8

filter 2957 4.1 2483 30.4 2485 14.2

queue 6551 3.6 6432 24.8 6433 12.8

buffer 2307 2.21 2307 33.2 2335 10.4

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 331

Table 2. Experimental results for property
checking on an ATM switch fabric

 static sifting
 SE
 reordering

Property

nodes time
(k) (s)

nodes time
(k) (s)

nodes time
(k) (s)

P1 19.5 42.4 12.1 640.1 12.4 300.1

P2 19.6 40.7 11.6 646.9 12.1 321.4

P3 22.2 52.1 9.6 833.4 10.3 446.9

P4 19.6 38.1 11.8 583.8 12.2 267.8

References
[1] E. Cerny et al., “Automated Verification with
Abstract State Machines Using Multiway Decision
Graphs,” Formal Hardware Verification: Methods
and Systems in Comparison, pp. 79-113, Springer-
Verlag Publishers, 1997.
[2] K. Fisler and S. Johnson, “Integrating Design
and Verification Environments through Logic
Supporting Hardware Diagrams,” In Proc. of IFIP
Conf. on Hardware Description Languages and
their Applications, Japan, pp. 669-674, 1995.
 [3] M. Fujita, Y. Matsunaga and T. Kakuda, “On
variable ordering of Binary Decision Diagrams for
the Applications of Multi-level Logic Synthesis,” In
Proc. of the European Conf. on Design Automation,
USA, pp. 2-5, 1991.

[4] A. Gupta, “Formal Hardware Verification
Methods: A Survey,” Formal Methods in System
Design, vol. 1, pp. 151-238, 1992.
[5] T. Kropf, “Benchmark-Circuits for Hardware
Verification,” In TPCD 94, Sringer-Verlag, pp. 1-
12, 1994.
[6] S. Malik et al., “Logic verification using Binary
Decision Diagrams in a Logic Synthesis
Environment,” In ICCAD, USA, pp. 6-9, 1988.
[7] C. Meinel and A. Slobodova, “Speeding up
Variable Reordering of OBDDs,” In ICCD, USA,
pp. 338-343, 1997.
[8] S. Minato, Binary Decision Diagrams and
Applications for VLSI CAD, Kluwer Academic
Publishers, 1997.
[9] S. Panda, F. Somenzi, “Who are the variables in
your neighborhood?,” In ICCAD, USA, pp. 74-77,
1995.
[10] R. Rudell, “Dynamic variable ordering for
Ordered Binary Decision Diagrams,” In ICCAD,
USA, pp. 42-47, 1993.
[11] C. Scholl, D. Moller, P, “Molitor and R.
Drechsler. BDD Minimization using Symmetries,”
IEEE Transactions on CAD, pp. 81-100, 1999.
[12] Y. Feng and E. Cerny, “Variable Ordering on
Multiway Decision Graphs,” ISCAS, Phoenix, 2002.
[13] Y. Saab & B. Rao, “Combinational
Optimization by Stochastic Evolution”. IEEE Trans.
on CAD, Vol. 10, No 4, April 1991.
[14] C. Scholl, D. Moller, P. Molitor and R.
Drechsler, “BDD Minimization using Symmetries,”
IEEE Transactions on CAD, pp. 81-100, 1999.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 332

