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Abstract: - The complexity of digital hardware designs has increased substantially with new advancements in 
electronic designs. It is becoming increasingly difficult to verify their correctness. MDGs have been proved to 
be a very effective tool in automatic hardware verification of RTL designs. In this paper, a method of variable 
reordering for Multiway Decision Graphs (MDG) is discussed. We present an automatic dynamic variable 
ordering algorithm for MDGs to reduce the effects of the state explosion problem. By contrast to ROBDDs, in 
MDGs difficulties are created by the presence of first order terms. The method we present here merges the 
benefits of stochastic evolution and sifting. It will be utilized to minimize the MDG size throughout the 
verification procedure. The effectiveness of our method is demonstrated by the empirical results provided. 
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1   Introduction 
Electronic designs are becoming increasingly 
ubiquitous and pervasive in nature, and as they do, 
they begin to find their way in to more critical and 
important applications such as medical diagnostic 
equipment, life support systems, hazardous 
industrial process control, and other such 
applications where bugs can create catastrophes or 
may even threaten human lives. As a result, it 
becomes important to develop systems which ensure 
bug-free designs we produce and use.  The task of 
validating a new design is conventionally performed 
by the use of simulation tools.  

Formal verification is playing an increasing role 
in contrast to traditional simulation. Formal 
verification methods intend to determine whether or 
not a particular implementation satisfies a 
specification by the use of mathematical reasoning 
[4]. Multiway Decision Graphs (MDGs) offer a 
suitable representation of Extended Finite State 
Machines. As such, they provide a useful tool for the 
automated formal hardware verification of Register 
Transfer Level (RTL) designs.  

MDGs efficiently represent a class of formulas 
of a many-sorted first-order logic with a distinction 
of abstract and concrete sorts [1]. In an MDG, a data 
signal is represented by a single variable of abstract 
sort rather than by a vector of Boolean variables, 
and a data operation is represented by an 

uninterpreted function symbol. MDGs compactly 
encode sets of (abstract) states and transition/output  
relations for abstract description of state machines. 
The implicit enumeration technique is lifted from 
the Boolean level to the abstract level and referred to 
as implicit abstract enumeration. MDGs are thus 
much more compact than ROBDDs for circuits 
having complex and large datapaths. This increases 
the range of circuits that can be verified. 

MDG-based verification still suffers from the 
problem of state explosion when handling realistic 
circuits. Of approaches designed to reduce the 
effects of state explosion, the most significant 
approach seeks to select variable order that 
minimizes the problem. As with ROBDD, an MDGs 
size is closely tied to the order of its variables. This 
paper discusses a dynamic ordering algorithm for 
MDGs. Algorithms for variable ordering from 
ROBDDs can not be used directly on MDGs since 
first-order terms may be present in an MDG. 

Our method determines a new order during the 
verification process to reduce the size of MDGs by 
permuting the variables of a given MDG starting 
with an initial static order. The method is based on 
the sifting algorithm [9] by swapping two adjacent 
variables. The optimal position for each variable is 
determined by the sifting process. Although the 
method is very effective in reducing the MDG size, 
it is computationally intensive. In our discussion, we 
use sifting in a stochastic evolutionary approach. 
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2 Multiway Decision Graphs 
The formal logic underlying MDGs is a many-sorted 
first-order logic, augmented with the distinction 
between abstract sorts and concrete sorts [1]. This 
distinction is motivated by the natural division of 
datapath and control circuitry in RTL designs. 

Concrete sorts have enumerations that are sets of 
individual constants, while abstract sorts do not. 
Variables of concrete sorts are used for representing 
control signals, and variables of abstract sorts are 
used for representing datapath signals. Data 
operations are represented by uninterpreted function 
symbols. An n-ary function symbol has a type α1 × 
…× αn → αn+1, where  α1 … αn+1 are sorts.  

The distinction between abstract and concrete 
sorts leads to a distinction between three kinds of 
function symbols. Let f be a function symbol of type 
α1 × …× αn → αn+1. If αn+1 is an abstract sort then f 
is an abstract function symbol. If all the α1…αn+1 are 
concrete, f is a concrete function symbol. If αn+1 is 
concrete while at least one of α1 … αn is abstract, 
then we refer to f as a cross-operator. While abstract 
function symbols are used to denote data operations, 
cross-operators are useful for modeling feedback 
signals from the datapath to the control circuitry. 
Both abstract function symbols and cross-operators 
are uninterpreted, i.e., their intended interpretation is 
not specified.  

A multiway decision graph (MDG) is a finite 
directed acyclic graph G where the leaf nodes are 
labeled by formulas, the internal nodes are labeled 
by terms, and the edges issuing from an internal 
node N are labeled by terms of the same sort as the 
label of N. Such a graph represents a formula 
defined inductively as follows: (i) if G consists of a 
single leaf node labeled by a formula P, then G 
represents P; (ii) if G has a root node labeled A with 
edges labeled B1…Bn leading to subgraphs 
G1’…Gn’, and if each Gi’ represents a formula Pi, 
then G represents the formula \/1≤ i ≤n(( A = Bi) /\ Pi).  

We refer to an occurrence of a variable in a term 
that labels an edge or in a cross-term that labels a 
node as a secondary occurrence, while an occurrence 
of a variable as the label of a node is a primary 
occurrence. The primary variables (resp. secondary 
variables) of a graph G are those that have primary 
(resp. secondary) occurrences in G. 

Just as Bryant’s ROBDD must be reduced and 
ordered, MDG must also be reduced and ordered. 
The concept of ordering in MDG concerns two 
orders: the standard term order and the custom 
symbol order. The standard term order is a 
lexicographical order of all the terms of the logic. 
The custom symbol order is a total order of a set of 

symbols that includes the concrete variables, abstract 
variables, and some but not necessarily all of the 
operators. It is selected specifically for each model, 
like in ROBDD. The custom symbol order is 
independent of the standard term order. In this 
paper, we only discuss custom symbol ordering. 

MDG must obey a set of conditions to keep it 
well-formed [1]. Three constraints on ordering are 
introduced by these conditions:  

1. If an abstract variable a appears as a secondary 
variable in an edge label of node b, then a < b.  

2. If a variable a appears as a secondary variable 
in a cross-term having cross-operator f, then a < f. 

3. The present and next state variables must be in 
a corresponding order.  

 
 
3 Variable swapping in Multiway 
Decision Graphs 
[12] presents a method for automatically generating 
a static variable order based on some heuristic rules. 
We will describe how to reduce the size of MDGs by 
reordering variables. 

Dynamic reordering improves the variable order 
by a series of swaps of adjacent variables. The basic 
operation in reordering is thus that of variable 
swapping. We begin with an introduction of the 
implementation of the swap operation in MDG, then 
continue with a discussion of the effects of the swap 
operation on the variable order and the constraints 
imposed on variable swapping. 
 
 
3.1 Implementation of a variable swapping 
Operation 
Variable swapping involves moving all MDG nodes 
at level i to level i+1 and nodes at level i+1 to level 
i. Level 0 is the root node of an MDG. All nodes at a 
level are labeled by the same variable. The level 
itself is also labeled by the same variable. The 
variables that label the levels must appear in a 
custom order. The level that a variable labels does 
not reflect its exact position in the order since 
secondary variables do not label the levels in the 
particular graph, but may in other MDGs that 
describe the design. All of them follow the same 
global order 

Because an MDG node can be labeled by an 
abstract variable, a concrete variable or a cross-term, 
a variable swapping operation is of 3 kinds: a swap 
between two abstract variables, a swap between two 
concrete variables (or cross-terms) and a swap 
between a concrete variable (or cross-term) and an 
abstract variable.   
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We first present swap between two abstract 
variables. Suppose we wish to swap abstract 
variables xi and xi+1 in an MDG shown in Figure 1. 
The depicted MDG represents the following Direct 
Formulas (DFs)  f1 and  f2: 

 
  f1 = ( ( xi  = a1 ) ∧ ( (( xi+1  = b1 ) ∧ G1) ∨ ( ( xi+1  = b2 ) ∧ G2) ) ) ∨ 
                   ( ( xi  = a2 ) ∧ ( ( xi+1  = b3 ) ∧ G3 ) ) ∨ 
                   ( ( xi  = a3 ) ∧ ( ( xi+1  = b4 ) ∧ G4 ) )                                            
  f2  =  (( xi+1  = b1 ) ∧ G1) ∨ ( ( xi+1  = b2 ) ∧ G2) )   (1) 
 

Figure 1.(b) shows the MDG after swapping 
variables xi and xi+1. This MDG represents formula 
(3.2), which is equivalent to (1). DF f2 remains 
undisturbed.   

 
 
Figure 1. Variable swap between two 

abstract variables 
In first order logic, for any two formulas P and 

Q, there are the following axioms:  
                  P ∧ Q   Q ∧ P,  
                  P ∧ (Q ∧ R)  (P ∧ Q) ∧ R, 
and               P ∧ (Q ∨ R)  (P ∧ Q) ∨ (P ∧ Q).  

Thus, we can deduce the following formulas from 
(1): 
 

  f1  ( ( ( xi  = a1 ) ∧  ( ( xi+1  = b1 ) ∧ G1) ) ∨ 
       ( ( xi  = a1 ) ∧ (( xi+1  = b2 ) ∧ G2) ) ) ∨  
       ( ( xi+1  = b3 ) ∧ ( ( xi  = a2 ) ∧  G3  ) ) ∨  
       ( ( xi+1  = b4 ) ∧ ( ( xi  = a3 ) ∧  G4 ) )                                                              ( ( x
      ( ( xi+1  = b1 ) ∧ ( ( xi  = a1 ) ∧ G1) ) ∨ 
        ( ( xi+1  = b2 ) ∧  ( ( xi  = a1 ) ∧ G2) ) ∨ 

        ( ( xi+1  = b3 ) ∧ ( ( xi  = a2 ) ∧  G3  ) ) ∨ 
        ( ( xi+1  = b4 ) ∧ ( ( xi  = a3 ) ∧  G4 ) )   

        (2) 
                                           
Note that in Figure 1, each edge issuing from 

nodes in level i must reach a node labeled by xi+1 
before swapping and must reach a node labeled by xi 
after swapping. The MDG well-formed conditions 
require that the set of abstract variables having 
primary occurrences along a path be the same for all 
paths in a given graph [1]. Thus, no edge issuing 
from nodes in level i reaches subgraphs in level i+2 
directly. However, when swapping an abstract 
variable and a concrete variable (or cross-term) or 
two concrete variables (or cross-terms), there may 
exist an edge or edges issuing from the nodes in 
level i to the subgraphs in level i+2 directly.  

 Figure 2 shows variable swapping between an 
abstract variable and a concrete variable. xi  is of an 
abstract sort. xi+1  is of a concrete sort of enumeration 
{c1, c2, c3, c4}. Edge a3 is issued from u (a node in 
level i) to subgraph G4 directly without passing 
through level i+1. The MDG in Figure 2(a) 
represents the formula:  

 
f1  ( ( xi  = a1 ) ∧ ( ( ( xi+1  = c1 ) ∧ G1) ∨ ( ( xi+1  = c2 ) ∧ 
G2) ) ) ∨ ( ( xi  = a2 ) ∧ ( ( xi+1  = c3 ) ∧ G3 ) ) ∨ ( ( xi  = a3 ) 
∧  G4 )                                                                  (3)   

 
Because  ( ( xi+1  = c1 ) ∨ ( xi+1  = c2) ∨ ( xi+1  = c3 ) ∨ 

( xi+1  = c4 ) ) ≡ T, we can deduce the following 
equivalent formulas from formula (3) :  

 
       f1  ( ( xi  = a1 ) ∧ ( ( ( xi+1  = c1 ) ∧ G1) ∨  
           ( ( xi+1  = c2 ) ∧ G2) ) ) ∨  
           ( ( xi  = a2 ) ∧ ( ( xi+1  = c3 ) ∧ G3 ) ) ∨ 
           ( ( xi  = a3 ) ∧  ( ( ( xi+1  = c1 ) ∧ G4 ) ∨  
           ( ( xi+1  = c2 ) ∧ G4 ) ∨  
           ( ( xi+1  = c3 ) ∧ G4 ) ∨  
           ( ( xi+1  = c4 ) ∧ G4 ) ) )          (4) 
          ( (  xi+1  = c1 ) ∧ ( ( xi  = a1 ) ∧ G1   ) ) ∨ 
            ( ( xi+1  = c2 ) ∧ ( ( xi  = a1 ) ∧ G2   ) ) ∨ 
            ( ( xi+1  = c3 ) ∧ ( ( xi  = a2  ) ∧ G3  ) ) ∨ 
            ( ( xi+1  = c1 ) ∧ ( ( xi  = a3 ) ∧ G4 ) ) ∨ 
            ( ( xi+1  = c1 ) ∧  ( ( xi  = a3 ) ∧ G4  ) ) ∨ 
            ( ( xi+1  = c1 ) ∧  ( ( xi  = a3 ) ∧ G4 ) ) ∨ 
            ( ( xi+1  = c1 ) ∧  ( ( xi  = a3 ) ∧ G4 ) ) 
          ( ( xi+1   = c1 ) ∧ ( ( ( xi  = a1 ) ∧ G1 ) ∨  
              ( ( xi  = a3 ) ∧ G4 ) ) ) ∨ 

i+1   = c2 ) ∧ ( ( ( xi  = a1 ) ∧ G2 ) ∨  
            ( ( xi  = a3 ) ∧ G4 ) ) ) ∨ 
            ( ( xi+1   = c3 ) ∧ ( ( ( xi  = a2 ) ∧ G1 ) ∨  
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            ( ( xi  = a3 ) ∧ G4 ) ) ) ∨ 
            ( ( xi+1   = c4 ) ∧ ( ( ( xi  = a3 ) ∧ G1 ) ∨  
            ( ( xi  = a3 ) ∧ G4 ) ) ) 

    (5) 
                  

 

Figure 2 Variable swapping between an 
abstract variable and a concrete variable 

A pseudo node  w  is added in Figure 2(b), which  
represents (4). Formula (4) can be further reduced to 
(5) where variables xi  and xi+1  are swapped. The 
MDG for (5) is shown in Figure 2(c).  

Variable swaps between concrete variables 
(cross-terms) or a concrete variable (cross-term) and 
an abstract variable can be implemented in a similar 
way.  

The variable swapping operation provides the 
basis for the reordering algorithm. It is easily seen 
that the swapping operation is completely local since 
only the nodes at level i and level i+1 need to be 
traversed. 

 
 

3.2 The effects of the swapping operation on 
variable order 
In an MDG, swapping two adjacent variables does 
not imply that they just exchange the positions in the 
ordering list. For example, suppose we apply two 
swap operations to the abstract variable x3 in the 
MDG shown in Figure 5.4. The MDG is under the 
order x1< a < b < x2< x3. x1 is a Boolean variable and  
x2,  x3  are abstract variables. a and b are secondary 
variables. There are four constraints in the MDG:  a 
< x2, a < x3, b < x2, and b < x3. 

 

 

Figure 3 Effects of swap operation on the order 

 
 First, swapping x2 and x3  results in a new order 

x1< a < b < x3< x2. Second, after swapping x3 and x1, 
we can not just swap their positions because of the 
constraints imposed between a, b and x3. A new 
order a < b < x3 < x1 < x2 is obtained by moving a, b 
with x3 before x1.   

 
 

4 A Dynamic reordering algorithm in 
a stochastic evolution approach 
The sifting algorithm presented in [10] has been 
proved to be successful at reordering BDDs and 
MDGs. During a sifting process, each primary 
variable in an MDG is examined in turn and is 
moved up and down in the order so as to take all 
positions successively. The variable is then returned 
to the position where the minimum size of the MDG 
was obtained. The process then continues with 
another variable. However, these operations tend to 
be time consuming.  

We implemented sifting in a stochastic evolution 
approach to reduce unnecessary swaps. Stochastic 
evolution (SE), a technique dedicated to 
combinatorial optimization, was proposed by Saad 
and Rao in [13].  

The basic idea of SE is to seek a global minimum 
of a cost function defined over a discrete domain D, 
called state space. Each state S is a mapping of a set 
of movable elements M into a set of locations L. A 
new state S' is generated by moving some elements 
in S. A move m can be simple or composed and must 
generate a unique new state S'. The gain of a move m 
is: gain(m) = cost(S) - cost(S'). Each move is 
accepted if the gain > random(-p), where p is the 
parameter that allows negative gains in order to 
perform hill climbing.  

The MDG ordering problem can be modeled as a 
permutation problem which can be solved using SE. 
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We choose M={x0, .., xn-1}, the set of primary 
variables, and L = {1,..., n}. The state space is the set 
of all permutations of M. A state is a permutation of 
the primary variables. A move in the state space is 
generated by swapping two consecutive variables. 
The algorithm is described in Figure 4. The cost 
function cost(S) is the size of the MDG. S0 is the 
static order generated by the algorithm proposed in 
[12]. p0 was determined experimentally. The 
generation and acceptation of new states are done by 
the function perturb_SE. The update function 
modifies the control parameter p. 

When sifting up/down a primary variable, we call 
function perturb-SE. In this function, we sift 
up/down a variable. After each swap, we check the 
new size of MDGs. If the size is smaller than the 
original MDG (positive gain), we will continue 
swapping this variable with the variable at the next 
position. If the size is greater than the original size 
(negative gain) and the negative gain is between 0 
and –p, we will continue. Otherwise, sifting this 
variable will stop. 

It is possible that the function perturb_SE always 
generates states that oscillate around a local 
minimum. To circumvent this problem we update p 
after each function call of perturb_SE. We will 
increase p by 5% if the cost turns small. We also set 
a possible best gain (threshold) that might be 
reached by our algorithm. Once that threshold has 
been reached, the whole reordering method will 
stop. The value of threshold will be decided by the 
number of primary variables and components of the 
circuit to be verified.  

 
 
Algorithm  ORDERING_SE :  
 

 
   S = S0       // S contains initial order 
   SBest = S0       // save initial order 
   p = p0         // initial control parameter 
 
   for each variable xi in an MDG 
      Cpre = cost(S);    
      S = perturb _SE(S, p); 
      Ccur = cost (S); 
      update (p, Cpre, Ccur); 
 
      if (cost(S) < cost (Sbest)) then 
          Sbest = S; 
    
   return (Sbest); 
end; 
 
Figure 4. ORDERING_SE algorithm. 
 

 

5  Experimental results 
We implemented the above algorithm in Prolog and 
integrated it into the MDG package [1]. We present 
experimental results on a number of IFIP benchmark 
circuits [5], an ATM switch fabric [2]. The 
experiments were carried out on a Sun Ultra 10 
workstation with 333MHz and 1GB of memory. 
Both the experimental results in Table 1 and Table 2 
demonstrate that the reordering algorithm using SE 
generated better results than the static ones and 
sifting in most cases. By comparing the results, we 
have seen that the basic sifting and our reordering 
algorithm can reduce the size of MDGs for most of 
benchmarks we experimented with. Compared to the 
basic sifting algorithm, our reordering algorithm 
results in about 52% time improvement and costs 
less than 1% in size increase on the average. 
Although reordering increases the computing time as 
compared with static ordering only, it can greatly 
reduce the size of MDGs. 
 
6 Conclusions 
In this paper, we discussed a new MDG 
minimization method using a genetic algorithm: 
stochastic evolution. We combined stochastic 
evolution with a powerful reordering method sifting. 
The experiments on IPIP benchmarks and an ATM 
switch fabric demonstrated the efficiency of the 
algorithms in reducing the size of MDG.  

 
 
Table 1. Experimental results for IFIP 

benchmark circuits 
 

     static    sifting 
    SE     

  reordering 

 

Circuit 

nodes  time(s) nodes time(s) nodes times(s)

minmax 166      0.2 164    1.2 164    0.5 

tlc 245      1.2 245   11.0 248    5.6 

gcd 375      0.3 369    4.3 369    3.1 

tama 2211    1.4 2136  17.3 2152   6.8 

filter 2957    4.1 2483  30.4 2485   14.2 

queue 6551    3.6 6432  24.8 6433   12.8 

buffer 2307    2.21 2307  33.2 2335   10.4 
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Table 2. Experimental results for property 
checking on an ATM switch fabric 

 

     static     sifting 
    SE        
  reordering

 
Property 

nodes  time 
(k)    (s) 

nodes  time 
(k)    (s) 

nodes    time
(k)      (s) 

P1 19.5    42.4 12.1   640.1 12.4   300.1

P2 19.6    40.7 11.6   646.9 12.1   321.4

P3 22.2    52.1 9.6      833.4 10.3   446.9

P4 19.6    38.1 11.8   583.8   12.2   267.8
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