
Non-Linear Dynamic Behavior of Thin Rectangular Plates 
 Parametrically Excited Using the Asymptotic Method,  

Part 2: Computation of the Phase Angle 
 

MIHAI BUGARU*, OVIDIU VASILE* 
*Department of Mechanics 

University POLITEHNICA of  Bucharest 
Splaiul Independentei 313, post code 060042, Bucharest 

ROMANIA 
 
 

Abstract:  The paper reveals recent developments of the influence of the geometric imperfections on the phase angle of 
the non-linear vibrations of thin rectangular plates parametrically excited. In the region of principal parametric 
resonance, starting from the temporal non-linear differential equation that describes the oscillatory movement and 
using the second order approximation of the asymptotic method was computed the phase angle as function of system 
parameters and geometric imperfections. By varying the intensity of the geometric imperfections was obtained their 
influence upon the phase angle for the stationary non-linear dynamic response. 
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Nomenclature 
 
A1, A2, B1, B2 = unknown functions in asymptotic 
expansion;  
C = viscous damping coefficient;  
D = flexural rigidity of plate;  
E = Young’s modulus;  
M = coefficient of the non-linear term;  
Ny(t) = external in-plane loading per unit width;  
Ny0 = static in-plane loading per unit width;  
Nyt = amplitude of harmonic in-plane loading per unit 
width;  
Ncr = critical buckling load of the plate, defined as in 
[14] pp. 353; 
Wp = amplitude of the parametric vibration; 
a = length of plate in x-direction;  
b = length of plate in y-direction;  
f(x,y,t) = Airy’s stress function;  
h = plate thickness;  
t=time;  
w(x,y,t)=lateral mid-surface displacement in z-direction;  
w0(x,y) = initial geometric imperfection in z-direction;  
∆ = decrement of damping;  
Λ(t) = instantaneous frequency of the external in-plane 
excitation, Λ = dθ/dt;  
Ω = free vibration circular frequency of a rectangular 
plate loaded by a  constant component of in-plane force; 
Ω =free vibration circular frequency of a rectangular 
plate , with initial   geometric imperfections , loaded by a 
constant component of in-plane force;  
ε = small positive parameter in asymptotic expansion, 

0<ε<<1;  
θ (t) = total phase angle of harmonic excitation;  
µ = load parameter of the plate;  
ν = Poisson’s ratio;  
ρ = mass density per unit volume of plate;  
τ = slowing time in asymptotic analysis;  
ψp(t) = phase angle of the parametric vibration;  
∆∆ = double iterated Laplace operator in R2;  

)(
•

= differentiation with respect to time;  
( ),ξ = partial differentiation with respect to ξ. 
 
 
1   Introduction 
Extensive efforts and considerable amount of research 
has been concentrated on the prediction of the non-linear 
dynamic behavior of rectangular plates with small 
deviation from flatness called initial geometric 
imperfection. Excellent reviews on the subject can be 
found in articles written by Hui [2-8]. Studies of the 
effect of geometric imperfection on the small-amplitude 
vibration frequencies of simply supported rectangular 
plates have been done by Hui and Leissa [2], Ilanko and 
Dickinson [9] and Bugaru [1].   They found out that 
geometric imperfections of the order of the plate 
thickness may raised the vibration frequencies and may 
even cause the structures to exhibit soft-spring behavior 
[7]. The survey of the literature reveals that the work on 
the subject has been devoted to the investigation of 
various types of shapes, loadings, and boundary 
conditions [11-13]. 
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 The present work covers an existing gap in our 
understanding of the parametric resonance of continuous 
systems and presents a rational analysis of the influence 
of geometric imperfections upon the phase angle for the 
stationary non-linear dynamic response. 
 
 
2   Conceptual Model 
The model under investigation is an imperfect 
rectangular plate simply supported along its edges and 
acted by periodic in-plane forces uniformly distributed 
along two opposite edges as shown in figure 1. It is 
assumed that the plate is of uniform thickness, “stress 
free”, elastic, homogeneous and isotropic and also the 
plate thickness and the resulting displacements are small  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compared with the wavelength of lateral vibration in 
order to be able to use thin plate theory. Consequently, 
since thin plate theory is used in the analysis, the loading 
frequencies over which lateral vibrations occur are 
considerably below the natural frequencies of 
longitudinal vibrations and in-plane inertia forces can be 
neglected. 
 
 
3   Basic Equations 
The plate theory used in this analysis may be considered 
as the dynamic analogue of the von Karman large-
deflection theory and is derived in terms of Airy’s stress 
function, the lateral displacement and the initial 
geometric imperfection. The differential equations 
governing the non-linear flexural vibrations of the plate 

are: 
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where  
D = Eh3/12(1-ν 2). 
     The boundary stress conditions (in-plane movable 
edges) are expressed as: 
 

0, =yyf  and 0, =xyf  along x = 0,a                              (2) 
 

)(, tNf yxx −=   and   0, =xyf  along y = 0,b 
 
     The boundary supporting conditions are expressed as: 
 

0,, =+= yyxx www ν  along x = 0,a                               (3) 
0,, =+= xxyy www ν      along y = 0,b. 

 
     The problem consists in determining the functions f 
and w, for a given function w0, which satisfy the 
governing equations (1) together with the boundary 
conditions (2) and (3). 
 
 
4   Method of Solution 
Applying the Kantorovich’s method to the governing 
equations (3) as in [1], introducing linear damping and 
taking one term in the expansion for the lateral 
displacement, the system is reduced to the following 
differential equation of motion: 
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where d is the amplitude of the static deformation of the 
plate [1] and 
 
µ = Nyt / [2(Ncr – Ny0)].            (5) 
 
     This is a second-order non-linear differential equation 
with periodic coefficients, which may be considered as 
an extension of the standard Mathieu-Hill’s  equation. 
 
 

Fig. 1 

N y ( t )  =  N y o +N y t  cosθ ( t )
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5   Solution of the Temporal Equation of 
Motion 
Mathematical techniques for solving such problems are 
limited and approximate methods are generally used. 
The method of asymptotic expansion in powers of a 
small parameter ε, elaborated by Krylov and Bogoliubov 
and developed by Mitropolskii [10], is a most effective 
tool for studying non-linear vibrating systems with 
slowly varying parameters. The solution is developed in 
the region of principal parametric resonance that is 
defined by 
 

,2Ω≅Λ                                                                        (6) 
 
where 

.θθ &==Λ
dt
d                                                                   (7) 

 
     Assuming that the viscous damping and the non-
linearity are small and the instantaneous frequency of 
excitation and the load parameter vary slow with the 
time i.e.  
 

.,, MMCC εεεµµ ===                                        (8) 
 
     The equation (4) can be written, by denoting Θ =θ, in 
the following asymptotic form: 
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where τ = εt is the “slowing” time. For the second order 
of approximation in ε, we seek a solution for the 
equation (9) in the following form: 
 
w = Wp(τ) cos[((1/2)Θ+ψp)]+ 
+ε u(τ,Wp, Θ,(1/2)Θ+ψp),                                 (10) 
 
where Wp, ψp are functions of time defined by the system 
of differential equations: 
dWp/dt = ε A1(τ , Wp , ψp) + ε2 A2(τ , Wp , ψp) 
                                                                                     (11) 
dψp/dt = Ω - (1/2)Λ + ε B1(τ , Wp , ψp) +  
+ ε2 B2 (τ , Wp , ψp) 
 
and   dΘ(t)/dt = Λ(τ). Functions u, A1, A2, B1, B2 are 
selected in such a way that the w, given by (10), will 
represent a solution of the equation (9), after replacing 
Wp  and ψp by the functions defined in the system (11). 
     Following the general scheme of constructing 
asymptotic solutions and performing numerous 
transformations and manipulations, we can finally arrive 

at a system of equations describing the non-stationary 
response of the discretized system. By integrating this 
system of equations, amplitude Wp and phase angle ψp 
can be obtained as functions of time from the following 
system 
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where, 
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     The solution w of the equation (9) is 
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     Analyzing relation (14), the paper reveals, for the first 
time, new terms not yet mentioned by the researchers in 
the field. 
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Fig. 2. wo / h = 0.1
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6   Stationary Response 
The stationary response given by the amplitude Wp and 
the phase angle ψp, associated with the assumed spatial 
forms of vibration of our system, may be computed as a 
special case of the non-stationary motion in the resonant 
regime described by the system of equations (12) and 
equation (14). As mentioned by Ostiguy and Nguyen 
[12, 13] the solution for simply-supported plates 
indicates the presence of principal parametric resonance, 
the possibility of internal resonance and the occurrence 
of simultaneous resonance but precludes the possibility 
of combination resonance. As can be seen in relation 
(14), the authors founded for the first time, with 
analytical tools, the influence of the geometric 
imperfections in the regions of forced, sub-harmonic and 
supra-harmonic parametric resonance. In this way was 
found theoretical the presence of internal resonance and 
the occurrence of simultaneous resonance already 
mentioned experimentally by Ostiguy and Nguyen. As 
mentioned by Ostiguy and Evan-Iwanowski [11] the 
base width of the stationary parametric response is the 
only region in which vibrations may normally initiate. 
The phase angle of the stationary parametric response 
can be obtained from the system (12) setting dWp/dt = 0, 
dψp/dt = 0 and eliminating the amplitude Wp.  By this 
way was obtained the stationary phase angle in the 
region of principal parametric resonance from the 
following equation: 
     Equation (15) makes possible to compute the phase 
angle of stationary response of the plate at the principal 
parametric resonance by taking into account the 
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geometrical imperfections of the plate. 
 
 
7   Results and Discussions 
For the computer programs developed to obtain the 
numerical results the authors used the soft packages 
MATLAB. In order to get more insight into various 
aspects of the problem and to highlight the influence of 
the initial geometric imperfections on the non-linear 
dynamic response of rectangular plates, numerical 
evaluation of the solution were performed for a wide 
variety of cases. The results shown in figures 2 and 3 are 
typical of those obtained. For ∆=0.12 were founded the 
phase angle of the vibrations for the plate subjected to 
parametric excitation having moderate imperfections 
(wo/h=0.1) and large ones (wo/h=0.6). By regarding the 
above-mentioned figures we can conclude that by 
increasing the imperfections  appears  the  phenomena of 
simultaneous resonance mentioned by Nguyen [13]. This 
phenomena manifests itself by multiple salts and the 
effect of “soft spring” in the area of [65,85] Hz. This was 
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determined for the first time theoretical while Nguyen 
discovered it experimentally. Also from figure 3 we see 
that in the area of simultaneous resonance the phase 
angle is constant and in the mean time all over the area is 
negative therefore the non-linear dynamic response of 
the plate is in advance with regard to the excitation. 
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Fig. 3. wo / h = 0.6 
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