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Abstract: - Reducing power consumption has become one of the major goals in designing electronic systems for mobile 
devices and embedded applications. One of the most promising approaches, called Dynamic Power Management (DPM), 
is to adapt at run-time power states of system components by means of changing the operating voltage of a processor as 
well as switching I/O devices to low-power sleeping states during periods of inactivity. This work is aimed to provide 
innovative strategies to enhance the capabilities of a potential Power Manager that acts at the operating system level. In 
particular, several low-power process scheduling policies, increasing the possibility to conveniently force devices into 
low power states, have been implemented in the Linux operating system to verify their feasibility and to analyze their 
benefits and drawbacks. 
 
Key-words: Power Optimization, System Modeling, Operating Systems, Scheduling, Device Optimization 
 

1 Introduction 
Power management is becoming a central issue for 
embedded systems. Power demand and the corresponding 
energy consumption, of the various components of an 
embedded system, directly influences battery lifetime, 
hence the systems performance/lifetime. As such systems 
are deployed in different operating conditions they should 
be able to self-adapt by controlling power vs. performance 
trade-off [1]. 
Electronic systems can be viewed as collections of 
components, each consuming a fraction of the power 
budget, which are not always required to be in the active 
state under a purely functional standpoint [2][4]. 
Techniques oriented to enable and disable components, as 
well as adapting their performance to the workload, are 
called Dynamic Power Management (DPM) techniques. 
These ones can make use of several features supported by 
modern hardware designs, including multiple power states 
in I/O devices and variable-voltage processors [3][13][14], 
and can be implemented at different abstraction levels. 
Recently, the targeting of DPM strategies towards the 
operating system (OS) level has gained importance due to 
its flexibility and ease of use [18]. In fact, because of the 
OS has an overall view of the system resources and 
workload trend, it is possible to take customized power-
management decisions and, as a consequence, achieving 
significant energy savings. 

In this context, a more general project [16][17] aims to 
develop innovative techniques at the OS level to allow 
Dynamic Power Management of Input/Output devices. 
Within the framework of such a project, this paper focuses 
on the implementation and experimental validation of 
innovative low-power scheduling policies for power 
management at the operating system level. In particular, 
the paper proposes different process-level scheduling 
policies, providing valid opportunities to a Power Manager 
for switching devices to low power states with higher 
probability to obtain a real advantage. The different 
scheduling policies have been implemented in the Linux 
operating system and tested on an x86 platform, analyzing 
the scheduling functionalities and the provided power 
saving opportunities. 
This paper is organized as follows: Section 2 analyzes the 
main DPM approaches reported in literature, Section 3 
illustrates the proposed innovative scheduling policies and 
Section 4 describes the test results for each of the 
implemented techniques. Finally, Section 5 draws some 
conclusions and depicts the future goals of the overall 
project. 
 
 

2 Related Work 
Low power design has been addressed in recent researches 
at various levels of abstraction ranging from system level 
to physical level. DPM techniques reported in literature 
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can be classified in three main levels: application-
operating system interface, operating system and operating 
system-hardware interface. 
At the application-operating system level, it is possible to 
apply power optimization by integrating the application 
layer into dynamic power management of devices. These 
techniques exploit I/O devices to save energy. For 
example, in [9] a new OS interface is introduced for 
cooperative I/O that can be exploited by energy-aware 
applications, while in [8] this is achieved by introducing 
new system calls which allow interactive applications to 
inform the OS about future device requests: this enable a 
proper schedule of the processes and, consequently, a 
power reduction 
At operating system level it is possible to search for tasks 
requiring services from hardware components, as sources 
of power consumptions. OS has detailed knowledge about 
running tasks, so that this information can be used for 
power management. A DPM scheme at OS level that 
adapts power state of hardware components depending on 
workload, can deal with problems that in other levels 
cannot be handled [5] and can identify time intervals where 
I/O devices are not being used and switch these devices to 
low power state [3][14]. 
A significant effort is spent toward techniques that act at 
the operating system-hardware level, namely, that try to 
apply, at the same time, OS techniques based on particular 
hardware architectures. In this wide class we can 
distinguish between the specialized hardware that can be 
typically a microprocessor or a memory. In literature there 
are several techniques, namely scheduling algorithms, for 
variable voltage selection microprocessors [6][10][11] or 
page replacement algorithms for Rambus off-chip memory 
[7]. 
The work presented in this paper focuses exclusively on 
the operating system level in order to overcome the 
obstacles of platform portability, application transparency 
and independence from hardware features. 
 
 

3 Low Power Scheduling 
I/O-centric DPM techniques at the operating system level 
take advantage from the information regarding running 
tasks. In particular, depending on process device 
utilization, the Power Manager can decide which devices 
has to move in the low power states available at run-time. 
Obviously, varying the device power states imply 
considering possible energy overhead, mainly related to 
break-even time (i.e., the min length of idle time to achieve 

power saving [8][17]). It is crucial to find out a trade-off 
between the energy saved maintaining the devices in the 
low power states and the energy spent during state 
transition. For this reason, a valuable aid can be provided 
by the interaction with the process scheduler, which could 
handle tasks execution in such a way to enlarge idle 
periods for existing I/O devices. 
Based on such a background, this section aims at 
describing the proposed innovative low-power scheduling 
policies able to increase power saving opportunities for a 
Power Manager. We partitioned the algorithms in two 
different classes: device-oriented scheduler and device-
exclusion scheduler. This choice has been suggested by the 
differences in the principles on which the two approaches 
are based on. 
 

3.1 Device-Oriented Scheduler 
The device-oriented scheduler aims to select processes 
depending on their devices utilization. In particular, the 
policy tries to organize the execution of processes to obtain 
a certain clustering in the device utilization [8]. 
Let us assume that three processes are in the ready state on 
a certain system. These three processes, pc1, pc2, pc3, use 
devices from a set composed of d1 and d2. A classic 
priority-based scheduling algorithm could organize process 
execution as depicted in Figure 1. 
In such a case, the time intervals in which a device is idle 
appears to be short and with a very fragmented distribution 
over the time. In such a way, there will be few 
opportunities to save power by mean of forcing the devices 
in low power states. 

 
Figure 1 - Priority-based scheduling 

On the contrary, if the scheduler selects the next process to 
be executed considering the devices required, the device 
utilization diagram could present longer idle time intervals, 
hence resulting in more opportunities to save power, as 
shown in Figure 2. 

 
Figure 2 – Device-oriented scheduling 
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As already recalled, the device-oriented scheduler 
considers the processes in the ready queue and selects the 
next to be executed depending on the device utilization. 
Clearly, different policies could influence the scheduling 
behavior in such a way that each one provides different 
results for the device utilization. To this purpose, different 
device-oriented policies are detailed in the following. 
 
3.1.1 Maximum Common Devices 
The Maximum Common Devices (MCD) policy suggests to 
select the next process to be executed on the basis of the 
number of devices required which are in common with the 
current process. Consequently, long time intervals, during 
which processes using a particular set of devices are 
executed, correspond to long time intervals in which other 
devices are idle. This idea is summarized in the algorithm 
reported in Figure 3. 
Error! Objects cannot be created from editing 

field codes. 
Figure 3 – MCD algorithm 

This algorithm has been implemented in the Linux kernel. 
The device set used by each process is retrieved by looking 
at a particular data structure, the process descriptor, which 
is used by the kernel for managing processes. 
Consequently, the scheduler looks at this data structure to 
determine which kind of devices each process use. 
It is worth noting that several checks have been added to 
the basic algorithm in order to avoid deadlock and 
starvation. 
 
3.1.2 Minimum Not Common Devices 
A dual policy, named Minimum Not Common Devices 
(MNCD), has been used to implement a different device 
oriented scheduler in the kernel. While MCD selects the 
next process which uses the maximum number of devices 
in common with the current process, MNCD scheduler 
selects the next process to be executed on the basis of the 
number of devices required, which are newer than the 
required device set of the current process. Consequently, 
the MNCD scheduler, because it looks for the next process 
which uses the smallest set of devices not in common with 
the current process, maximizes the time intervals during 
which the devices remain idle. The related algorithm is 
described in Figure 4 while the implementation issues are 
analogous to the MCD ones. 

 for every ready process do 
  if task is not the current 
    for all devices used 
      if device is not used by the current process 
   increase a counter; 
 
select the process with the minimum counter value; 
if it is possible schedule it; 
else schedule normal; 

 
Figure 4 – MNCD algorithm 

 
3.1.3 MCD and MNCD Integration 
Both MCD and MNCD policies try to maximize one 
aspect: time intervals where devices are busy or time 
intervals where devices are idle, respectively. A 
meaningful improvement can be the integration these two 
approaches. It is actually possible to think that the 
scheduler looks for the next process using the minimum 
new device set, and that when it identifies such processes, 
it selects the one with the maximum number of devices 
common with the current process. The resulting algorithm 
is shown in Figure 5. 

 for every ready process 
  if task is not the current 
    for all the device used 
      if device is used by current process 
        increase the common device counter; 
      else if device is not used by current process
  increase the new device counter; 
 
select if possible the process with min new devices
counter and the max common device counter;  

 
Figure 5 – MNCD-MCD algorithm 

 

3.2 Device-Exclusion Scheduler 
With the device-oriented schedulers, the scheduler selects 
next processes on the basis of their device requirements. 
This approach has the aim to adapt the device utilization 
dynamically, in order to create power saving opportunities. 
An opposite approach is to determine a fixed pattern of 
utilization for a particular device set. The pattern has to be 
known by the scheduler that will select next processes 
depending on which device can be used and which not, as 
specified by the device utilization pattern. Therefore, the 
device exclusion oriented approach knows a priori (i.e. the 
Power Manager could communicate such a decision to the 
scheduler) which devices to switch to the low power state 
and for how long. In this way, the scheduler will select a 
process to run on the basis of which devices are allowed to 
be in the busy state. 
Such an extreme approach arises for the consideration that 
using a device-oriented scheduler, the device idle times are 
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not deterministically known and cannot be controlled. 
Instead, with a device-exclusion scheduler, the idle 
intervals for a device could be set to be greater than its 
break-even time (i.e., the minimal length of idle time to 
achieve power saving [8][17]) so avoiding wasting energy 
because of transition energy overhead. 
In fact, it is possible to think that the scheduling algorithm 
takes a decision for the next process which does not use a 
particular device given a device utilization sequence, 
which is known by the algorithm. This approach has been 
called device exclusion scheduler. It should be said that 
this technique could be inefficient in heavily interactive 
systems in which the workload is unknown until run time. 
The device exclusion oriented algorithm is shown in 
Figure 6. 

 if timeout value has expired 
  change device excluded 
 
for every ready process 
  if task is not the current 
    for all the device used 
      if device excluded is used  
        does not schedule it; 
      else schedule normal; 

 
Figure 6 – Device-exclusion algorithm 

For the sake of clearness, the algorithm implemented in 
this work does consider only a fixed set of device and a 
sequence with constant time intervals. In particular, the 
time length during which a device is not used has been set 
to 1 s. That is, the scheduler knows that each second a 
particular device cannot be used and then select next 
processes consequently. To achieve this goal, the algorithm 
uses the jiffies variable, which has the value of the 
absolute machine time since the last start. 
 
 

4 Experimental Results 
The policies and the algorithms discussed above, have 
been implemented in the Linux OS (kernel 2.4.25) and 
tested on a desktop computer with an Intel Pentium II 
processor. Test suites have been created selecting 
programs from a benchmark suite freely available, named 
MiBench. We have chosen to use programs from the 
Consumer Devices category, because they are focused 
primarily on multimedia applications. In the following, the 
obtained results are discussed both qualitatively and 
quantitatively and compared to the unmodified classical 
priority-based operating system scheduling strategy. 

4.1 Device-oriented scheduler 
The first tests have been done by considering the MCD 
scheduling algorithm. The devices investigated have been 
the sound card and four partitions of the secondary hard 
disk. It is worth noting that the four partitions behave as 
they were distinct devices. 
As is it possible to see from Figure 7 and Figure 8 the new 
scheduler produces an increasing of both the maximum 
and the mean idle time lengths. 
Figure 9 and Figure 10 depicts the maximum and mean 
idle time diagrams obtained with the MNCD scheduler. 
It is clear that the idle time values enhancements obtained 
are better than the values provided by the MCD scheduling 
algorithm. Consequently, it is possible to state that the 
MNCD scheduler has a better capability in creating power 
saving opportunities. An explanation is the fact that 
MNCD scheduler directly acts on the devices being idle 
trying to extend time intervals during which devices 
remain idle, whereas MCD algorithm has the aim to extend 
time intervals during which devices are busy. 
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Figure 7 - Max idle time (ms) – MCD algorithm 
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Figure 8 - Mean idle time (ms) – MCD algorithm 
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The last test campaign we have considered has been the 
integration of the two above discussed scheduling 
methods. The results have suggested considering a new 
scheduling algorithm that first checks the number of not 
common devices, and then the number of common devices 
with the current process. The results found are shown in 
Figure 11 and Figure 12. As we expected, the idle times 
are longer, for both mean and minimum values. 
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Figure 9 - Max idle time (ms) – MNCD algorithm 
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Figure 10 - Mean idle time (ms) – MNCD algorithm 
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Figure 11 - Max idle time (ms) – MNCD+MCD 
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Figure 12 - Mean idle time (ms) – MNCD+MCD 

4.2 Device-exclusion scheduler 
The device exclusion scheduling algorithm has also been 
implemented in Linux and tested with the general purpose 
platform. We have considered similar test and data analysis 
procedures of what previously adopted for the device 
oriented algorithms. 
To test the correct functionality of the modified scheduling 
algorithm, a shut-down time interval of 1 second has been 
chosen. Such an exclusion rule has been applied to a 
particular set of devices, constituted by physical devices 
such as the Open Sound System Digital audio and the 
PS/2-style mouse, and by logical devices such as the TTY 
devices first virtual console and the Alternate TTY device 
System Console. 

#Major

ms

5
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3 

21

 
Figure 13 – Device utilization diagram 

 
Figure 13 shows the distribution over the time of the 
device utilization by scheduled processes. It is worth 
noting how devices are not used periodically in 
correspondence to the shut down time intervals (it must be 
noted that the time axis is not linearly scaled): in the first 
interval (1) the device with #Major=10 is not used by any 
scheduled process, then (2) it is the time of the one with 
#Major=14 and so on to start another cycle (5) excluding 
again the device with #Major=10. Unfortunately, such an 
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approach, used stand-alone, could limit the reactivity of the 
system that become difficult to use. 
 
 

5 Conclusions 
This work proposed innovative strategies to provide 
opportunities for dynamic power saving in embedded 
systems. Several scheduling techniques, which provide 
power saving opportunities for a potential Power Manager 
has been proposed. In particular, two approaches have 
been identified: device-oriented scheduling and device-
exclusion scheduling. Tests for all the policies considered 
have shown that the most promising results for power 
saving are provided by the algorithm which integrates the 
MCD and the MNCD techniques. The device-exclusion 
scheduling algorithm implemented revealed that such an 
approach is not suitable, if used stand-alone, for reactive 
systems. Current effort is focusing on the definition of a 
Power Manager module able to take advantage of the 
power saving opportunities provided by the implemented 
scheduling algorithms really forcing the physical devices 
in low-power states. Moreover, new scheduling algorithms 
could be integrated in the framework, which allows full 
integration with classic priority-based and with device-
exclusion oriented approaches. 
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