

DPM at OS level: low-power scheduling policies

C.BRANDOLESE, W.FORNACIARI, F.SALICE L.POMANTE R.ZAFALON
Dipartimento di Elettronica e Informazione

Politecnico di Milano
P.zza L.Da Vinci, 32 – 20133 Milano, ITALY

Univ. degli Studi de
L’Aquila-DEWS,

67040 Poggio di Roio
(AQ), ITALY

STMicroeletronics
AST - Research &

Innovation
Via C. Olivetti, 2

20041 Agrate Brianza,
Milano, ITALY

Abstract: - Reducing power consumption has become one of the major goals in designing electronic systems for mobile
devices and embedded applications. One of the most promising approaches, called Dynamic Power Management (DPM),
is to adapt at run-time power states of system components by means of changing the operating voltage of a processor as
well as switching I/O devices to low-power sleeping states during periods of inactivity. This work is aimed to provide
innovative strategies to enhance the capabilities of a potential Power Manager that acts at the operating system level. In
particular, several low-power process scheduling policies, increasing the possibility to conveniently force devices into
low power states, have been implemented in the Linux operating system to verify their feasibility and to analyze their
benefits and drawbacks.

Key-words: Power Optimization, System Modeling, Operating Systems, Scheduling, Device Optimization

1 Introduction
Power management is becoming a central issue for
embedded systems. Power demand and the corresponding
energy consumption, of the various components of an
embedded system, directly influences battery lifetime,
hence the systems performance/lifetime. As such systems
are deployed in different operating conditions they should
be able to self-adapt by controlling power vs. performance
trade-off [1].
Electronic systems can be viewed as collections of
components, each consuming a fraction of the power
budget, which are not always required to be in the active
state under a purely functional standpoint [2][4].
Techniques oriented to enable and disable components, as
well as adapting their performance to the workload, are
called Dynamic Power Management (DPM) techniques.
These ones can make use of several features supported by
modern hardware designs, including multiple power states
in I/O devices and variable-voltage processors [3][13][14],
and can be implemented at different abstraction levels.
Recently, the targeting of DPM strategies towards the
operating system (OS) level has gained importance due to
its flexibility and ease of use [18]. In fact, because of the
OS has an overall view of the system resources and
workload trend, it is possible to take customized power-
management decisions and, as a consequence, achieving
significant energy savings.

In this context, a more general project [16][17] aims to
develop innovative techniques at the OS level to allow
Dynamic Power Management of Input/Output devices.
Within the framework of such a project, this paper focuses
on the implementation and experimental validation of
innovative low-power scheduling policies for power
management at the operating system level. In particular,
the paper proposes different process-level scheduling
policies, providing valid opportunities to a Power Manager
for switching devices to low power states with higher
probability to obtain a real advantage. The different
scheduling policies have been implemented in the Linux
operating system and tested on an x86 platform, analyzing
the scheduling functionalities and the provided power
saving opportunities.
This paper is organized as follows: Section 2 analyzes the
main DPM approaches reported in literature, Section 3
illustrates the proposed innovative scheduling policies and
Section 4 describes the test results for each of the
implemented techniques. Finally, Section 5 draws some
conclusions and depicts the future goals of the overall
project.

2 Related Work
Low power design has been addressed in recent researches
at various levels of abstraction ranging from system level
to physical level. DPM techniques reported in literature

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 100

can be classified in three main levels: application-
operating system interface, operating system and operating
system-hardware interface.
At the application-operating system level, it is possible to
apply power optimization by integrating the application
layer into dynamic power management of devices. These
techniques exploit I/O devices to save energy. For
example, in [9] a new OS interface is introduced for
cooperative I/O that can be exploited by energy-aware
applications, while in [8] this is achieved by introducing
new system calls which allow interactive applications to
inform the OS about future device requests: this enable a
proper schedule of the processes and, consequently, a
power reduction
At operating system level it is possible to search for tasks
requiring services from hardware components, as sources
of power consumptions. OS has detailed knowledge about
running tasks, so that this information can be used for
power management. A DPM scheme at OS level that
adapts power state of hardware components depending on
workload, can deal with problems that in other levels
cannot be handled [5] and can identify time intervals where
I/O devices are not being used and switch these devices to
low power state [3][14].
A significant effort is spent toward techniques that act at
the operating system-hardware level, namely, that try to
apply, at the same time, OS techniques based on particular
hardware architectures. In this wide class we can
distinguish between the specialized hardware that can be
typically a microprocessor or a memory. In literature there
are several techniques, namely scheduling algorithms, for
variable voltage selection microprocessors [6][10][11] or
page replacement algorithms for Rambus off-chip memory
[7].
The work presented in this paper focuses exclusively on
the operating system level in order to overcome the
obstacles of platform portability, application transparency
and independence from hardware features.

3 Low Power Scheduling
I/O-centric DPM techniques at the operating system level
take advantage from the information regarding running
tasks. In particular, depending on process device
utilization, the Power Manager can decide which devices
has to move in the low power states available at run-time.
Obviously, varying the device power states imply
considering possible energy overhead, mainly related to
break-even time (i.e., the min length of idle time to achieve

power saving [8][17]). It is crucial to find out a trade-off
between the energy saved maintaining the devices in the
low power states and the energy spent during state
transition. For this reason, a valuable aid can be provided
by the interaction with the process scheduler, which could
handle tasks execution in such a way to enlarge idle
periods for existing I/O devices.
Based on such a background, this section aims at
describing the proposed innovative low-power scheduling
policies able to increase power saving opportunities for a
Power Manager. We partitioned the algorithms in two
different classes: device-oriented scheduler and device-
exclusion scheduler. This choice has been suggested by the
differences in the principles on which the two approaches
are based on.

3.1 Device-Oriented Scheduler
The device-oriented scheduler aims to select processes
depending on their devices utilization. In particular, the
policy tries to organize the execution of processes to obtain
a certain clustering in the device utilization [8].
Let us assume that three processes are in the ready state on
a certain system. These three processes, pc1, pc2, pc3, use
devices from a set composed of d1 and d2. A classic
priority-based scheduling algorithm could organize process
execution as depicted in Figure 1.
In such a case, the time intervals in which a device is idle
appears to be short and with a very fragmented distribution
over the time. In such a way, there will be few
opportunities to save power by mean of forcing the devices
in low power states.

Figure 1 - Priority-based scheduling

On the contrary, if the scheduler selects the next process to
be executed considering the devices required, the device
utilization diagram could present longer idle time intervals,
hence resulting in more opportunities to save power, as
shown in Figure 2.

Figure 2 – Device-oriented scheduling

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 101

As already recalled, the device-oriented scheduler
considers the processes in the ready queue and selects the
next to be executed depending on the device utilization.
Clearly, different policies could influence the scheduling
behavior in such a way that each one provides different
results for the device utilization. To this purpose, different
device-oriented policies are detailed in the following.

3.1.1 Maximum Common Devices
The Maximum Common Devices (MCD) policy suggests to
select the next process to be executed on the basis of the
number of devices required which are in common with the
current process. Consequently, long time intervals, during
which processes using a particular set of devices are
executed, correspond to long time intervals in which other
devices are idle. This idea is summarized in the algorithm
reported in Figure 3.
Error! Objects cannot be created from editing

field codes.
Figure 3 – MCD algorithm

This algorithm has been implemented in the Linux kernel.
The device set used by each process is retrieved by looking
at a particular data structure, the process descriptor, which
is used by the kernel for managing processes.
Consequently, the scheduler looks at this data structure to
determine which kind of devices each process use.
It is worth noting that several checks have been added to
the basic algorithm in order to avoid deadlock and
starvation.

3.1.2 Minimum Not Common Devices
A dual policy, named Minimum Not Common Devices
(MNCD), has been used to implement a different device
oriented scheduler in the kernel. While MCD selects the
next process which uses the maximum number of devices
in common with the current process, MNCD scheduler
selects the next process to be executed on the basis of the
number of devices required, which are newer than the
required device set of the current process. Consequently,
the MNCD scheduler, because it looks for the next process
which uses the smallest set of devices not in common with
the current process, maximizes the time intervals during
which the devices remain idle. The related algorithm is
described in Figure 4 while the implementation issues are
analogous to the MCD ones.

 for every ready process do
 if task is not the current
 for all devices used
 if device is not used by the current process
 increase a counter;

select the process with the minimum counter value;
if it is possible schedule it;
else schedule normal;

Figure 4 – MNCD algorithm

3.1.3 MCD and MNCD Integration
Both MCD and MNCD policies try to maximize one
aspect: time intervals where devices are busy or time
intervals where devices are idle, respectively. A
meaningful improvement can be the integration these two
approaches. It is actually possible to think that the
scheduler looks for the next process using the minimum
new device set, and that when it identifies such processes,
it selects the one with the maximum number of devices
common with the current process. The resulting algorithm
is shown in Figure 5.

 for every ready process
 if task is not the current
 for all the device used
 if device is used by current process
 increase the common device counter;
 else if device is not used by current process
 increase the new device counter;

select if possible the process with min new devices
counter and the max common device counter;

Figure 5 – MNCD-MCD algorithm

3.2 Device-Exclusion Scheduler
With the device-oriented schedulers, the scheduler selects
next processes on the basis of their device requirements.
This approach has the aim to adapt the device utilization
dynamically, in order to create power saving opportunities.
An opposite approach is to determine a fixed pattern of
utilization for a particular device set. The pattern has to be
known by the scheduler that will select next processes
depending on which device can be used and which not, as
specified by the device utilization pattern. Therefore, the
device exclusion oriented approach knows a priori (i.e. the
Power Manager could communicate such a decision to the
scheduler) which devices to switch to the low power state
and for how long. In this way, the scheduler will select a
process to run on the basis of which devices are allowed to
be in the busy state.
Such an extreme approach arises for the consideration that
using a device-oriented scheduler, the device idle times are

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 102

not deterministically known and cannot be controlled.
Instead, with a device-exclusion scheduler, the idle
intervals for a device could be set to be greater than its
break-even time (i.e., the minimal length of idle time to
achieve power saving [8][17]) so avoiding wasting energy
because of transition energy overhead.
In fact, it is possible to think that the scheduling algorithm
takes a decision for the next process which does not use a
particular device given a device utilization sequence,
which is known by the algorithm. This approach has been
called device exclusion scheduler. It should be said that
this technique could be inefficient in heavily interactive
systems in which the workload is unknown until run time.
The device exclusion oriented algorithm is shown in
Figure 6.

 if timeout value has expired
 change device excluded

for every ready process
 if task is not the current
 for all the device used
 if device excluded is used
 does not schedule it;
 else schedule normal;

Figure 6 – Device-exclusion algorithm

For the sake of clearness, the algorithm implemented in
this work does consider only a fixed set of device and a
sequence with constant time intervals. In particular, the
time length during which a device is not used has been set
to 1 s. That is, the scheduler knows that each second a
particular device cannot be used and then select next
processes consequently. To achieve this goal, the algorithm
uses the jiffies variable, which has the value of the
absolute machine time since the last start.

4 Experimental Results
The policies and the algorithms discussed above, have
been implemented in the Linux OS (kernel 2.4.25) and
tested on a desktop computer with an Intel Pentium II
processor. Test suites have been created selecting
programs from a benchmark suite freely available, named
MiBench. We have chosen to use programs from the
Consumer Devices category, because they are focused
primarily on multimedia applications. In the following, the
obtained results are discussed both qualitatively and
quantitatively and compared to the unmodified classical
priority-based operating system scheduling strategy.

4.1 Device-oriented scheduler
The first tests have been done by considering the MCD
scheduling algorithm. The devices investigated have been
the sound card and four partitions of the secondary hard
disk. It is worth noting that the four partitions behave as
they were distinct devices.
As is it possible to see from Figure 7 and Figure 8 the new
scheduler produces an increasing of both the maximum
and the mean idle time lengths.
Figure 9 and Figure 10 depicts the maximum and mean
idle time diagrams obtained with the MNCD scheduler.
It is clear that the idle time values enhancements obtained
are better than the values provided by the MCD scheduling
algorithm. Consequently, it is possible to state that the
MNCD scheduler has a better capability in creating power
saving opportunities. An explanation is the fact that
MNCD scheduler directly acts on the devices being idle
trying to extend time intervals during which devices
remain idle, whereas MCD algorithm has the aim to extend
time intervals during which devices are busy.

maximum idle time - MCD scheduler

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

devices

id
le

 ti
m

e

original scheduler
MCD scheduler

Figure 7 - Max idle time (ms) – MCD algorithm

mean idle time - MCD scheduler

0

2

4

6

8

10

12

14

16

1 2 3 4 5

devices

id
le

 ti
m

e

original scheduler
MCD scheduler

Figure 8 - Mean idle time (ms) – MCD algorithm

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 103

The last test campaign we have considered has been the
integration of the two above discussed scheduling
methods. The results have suggested considering a new
scheduling algorithm that first checks the number of not
common devices, and then the number of common devices
with the current process. The results found are shown in
Figure 11 and Figure 12. As we expected, the idle times
are longer, for both mean and minimum values.

maximum idle time - MNCD scheduler

0

50

100

150

200

250

1 2 3 4 5

devices

id
le

 ti
m

e

original scheduler
MNCD scheduler

Figure 9 - Max idle time (ms) – MNCD algorithm

mean idle time - MNCD scheduler

0

2

4

6

8

10

12

14

16

1 2 3 4 5

devices

id
le

 ti
m

e

original scheduler
MNCD scheduler

Figure 10 - Mean idle time (ms) – MNCD algorithm

maximum idle time - MNCD-MCD integrated scheduler

0

50

100

150

200

250

1 2 3 4 5

devices

id
le

 ti
m

e original scheduler

MNCD-MCD
scheduler

Figure 11 - Max idle time (ms) – MNCD+MCD

mean idle time - MNCD-MCD integrated scheduler

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

devices

id
le

 ti
m

e original scheduler

MNCD-MCD
 scheduler

Figure 12 - Mean idle time (ms) – MNCD+MCD

4.2 Device-exclusion scheduler
The device exclusion scheduling algorithm has also been
implemented in Linux and tested with the general purpose
platform. We have considered similar test and data analysis
procedures of what previously adopted for the device
oriented algorithms.
To test the correct functionality of the modified scheduling
algorithm, a shut-down time interval of 1 second has been
chosen. Such an exclusion rule has been applied to a
particular set of devices, constituted by physical devices
such as the Open Sound System Digital audio and the
PS/2-style mouse, and by logical devices such as the TTY
devices first virtual console and the Alternate TTY device
System Console.

#Major

ms

5

4

3

21

Figure 13 – Device utilization diagram

Figure 13 shows the distribution over the time of the
device utilization by scheduled processes. It is worth
noting how devices are not used periodically in
correspondence to the shut down time intervals (it must be
noted that the time axis is not linearly scaled): in the first
interval (1) the device with #Major=10 is not used by any
scheduled process, then (2) it is the time of the one with
#Major=14 and so on to start another cycle (5) excluding
again the device with #Major=10. Unfortunately, such an

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 104

approach, used stand-alone, could limit the reactivity of the
system that become difficult to use.

5 Conclusions
This work proposed innovative strategies to provide
opportunities for dynamic power saving in embedded
systems. Several scheduling techniques, which provide
power saving opportunities for a potential Power Manager
has been proposed. In particular, two approaches have
been identified: device-oriented scheduling and device-
exclusion scheduling. Tests for all the policies considered
have shown that the most promising results for power
saving are provided by the algorithm which integrates the
MCD and the MNCD techniques. The device-exclusion
scheduling algorithm implemented revealed that such an
approach is not suitable, if used stand-alone, for reactive
systems. Current effort is focusing on the definition of a
Power Manager module able to take advantage of the
power saving opportunities provided by the implemented
scheduling algorithms really forcing the physical devices
in low-power states. Moreover, new scheduling algorithms
could be integrated in the framework, which allows full
integration with classic priority-based and with device-
exclusion oriented approaches.

References
[1] A. Bogliolo, L. Benini, E. Lattanzi, G. De Micheli,

Specification and Analysis of Power-Managed
Systems, Proceedings of the IEEE, Vol. 92, No. 8,
August, 2004.

[2] Flavius Gruian, Microprocessors: Low Power and
Low Energy Solutions, course paper for Advanced
Issues in Computer Architecture, Spring, 1999.

[3] L.Benini, A. Bogliolo, G. De Micheli, A Survey of
Design techniques for System-Level Dynamic Power
Management, IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, Vol. 8, No. 3, June, 2000

[4] K. Masselos, F. Catthoor, C. E. Goutis, H. DeMan,
Low Power Mapping of Video Processing Applications
on VLIW Multimedia Processors, IEEE Alessandro
Volta Memorial Int. Workshop. on Low Power Design
(VOLTA), Como, Italy, pp.52-60, March, 1999.

[5] Y.H. Lu, L. Benini, G. De Micheli, Operating System
Directed Power Reduction, in Proc. Int. Symp. Low
Power Electronics Design, Rapallo, Italy, July, 2000.

[6] IBM and MontaVista Software, Dynamic Power
Management for Embedded Systems, November,
2002

[7] R. Lebeck, Xiabo Fan, Heng Zen, C. Ellis, Power
Aware Page Allocation, In Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems, 2000.

[8] Y.H. Lu, L. Benini, G. De Micheli, Power-Aware
Operating Systems for Interactive Systems, IEEE
Transaction on Very Large Scale Integration (VLSI)
Systems, Vol. 10, No. 2, April, 2002.

[9] A. Weissel, B. Beutel, F. Bellosa, Cooperative I/O – A
novel I/O semantics for Energy-Aware Applications,
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, December,
2002.

[10] Yumin Zhang, Danny Z. Chen, Task scheduling and
voltage selection for energy minimization, annual
ACM IEEE Design Automation Conference Proceedings
of the 39th conference on Design automation, 2002.

[11] G. Quan and X. Hu, Energy efficiency fixed priority
scheduling for real-time systems on variable voltage
processors, ACM/IEEE Design Automation
Conference, June, 2001.

[12] L.C. Weng, X. Wang, B. Liu, A survey of Dynamic
Power Optimization Techniques, Proceedings of The
3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications, 2003.

[13] Y.-H. Lu, and G. D. Micheli, Comparing System-Level
Power Management Policies, IEEE Design & Test of
Computers, 2001.

[14] R.Golding, P.Bosh, and J.Wilkes, Idleness is not
sloth, In Proc. USENIX Winter Conf., New Orleans,
1995.

[15] Daniel P. Bovet and Marco Cesati, Understanding
the Linux Kernel, O’Reilly, First edition, October
2000.

[16] R. Merlani, Run Time Power Management based on
Real Time Operating System, Final Report, XVI
Master IT, CEFRIEL, Italy, 2004.

[17] V. Di Maria, Run Time Power Management at
Operating System Level, Final Report, XVII Master
IT, CEFRIEL, Italy, 2005.

[18] R. Zafalon, Paolo Bacchetta, RT-OS Run Time Power
Management for Mobile Terminals, Embedded
Systems Conference, March 2005, San Francisco,
USA.

Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 105

