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Abstract:-For a pair of vertices,,v € V(G), a cycle is called @eodesic cyclavith v andv if a shortest path
of G joining u andwv lies on the cycle. A grapli is pancyclic[12] if it contains a cycle of every length from
3 to |V(G)| inclusive. Furthermore, a grapgh is calledgeodesick-pancyclic[3] if for each pair of vertices
u,v € V(G), it contains a geodesic cycle of every integer length sétisfying2dg(u,v) + k < I < |V(G)].
Chang et al. [4] proved th&t'Q,, is pancyclic in the sense that a cycle of leng#xists,4 < | < |[V(CQy,)|. In
this paper, we study a new pancyclic property and show that Crossed cubes is geodesic 4-pancyclic.

Key—Words:crossed cubes, panconnected, pancyclic, geodesic cycle, geodesic pancyclic.

1 Introduction is a path with at least three vertices such that the first

In this paper, a network is represented as a loopless Vertex is the same as the last onel-éycle is a cycle
undirected graph. For the graph definition and nota- Of lengthl. A ring structure is often used as an inter-

tion we follow [2]. G = (V, E) is a graph ifV is a connection architecture forloce_ll area _network andasa
finite set and® is a subset of (u, v) | (u, v) is an un- control _and data_fl_ow structure in dlstnt_)uted networ_ks
ordered pair o }. We say thal’ is thevertex seand due to its beneficial properties. The ring embedding
E is theedge set. Two verticesandv areadjacentif problem, which deals with all the possible lengths of
(u,v) € E. A path is a sequence of adjacent vertices, the cycles, is investigated in a lot of interconnection
written as(v(0), v(1),v(2),...,v(m)), in which all networks [3, 5, 12, 13]. In general, a graphpan-

the verticesv(0),v(1),...,v(m) are distinct except  Cyclicif it contains a cycle of every length fromto
possibly v(0) = v(m). We also write the path |V (G)|inclusive.

(v(0), P,u(m)), whereP = (v(0),v(1)...,v(m)). An n-dimensional crossed cub€(),, [6, 7], is a

The length of a path P, denoted bylen(P), is the variation of hypercubé),, and preserves many of its
number of edges ifP. For convenience, we also  desirable propertie<’Q,, has2" vertices anch2" !

use(v(0),v(m)); to denote the path joining(0) and links, same as hyperculég,. However, it has a small
v(m) of lengthi. Letw andv be two vertices of7. diameter] "7, about half that of),.
Thedistancebetweern. andv, denoted byl (u, v) is In this paper, we consider the geodesic cycle
the length of the shortest path 6fjoining v andv. embedding problem iCQ,. The geodesic pan-
The diameter of is the maximum distance between cyclic property was proposed recently by Chan et. al.
any pair of vertices olr. [3]. Herein, we will prove thatC(Q,, is geodesic 4-

Path embedding problems have attracted much pancyclic forn > 3. The rest of this paper is orga-
research attention [9, 13]. A grahis panconnected nized as follows. In the next section we study neces-
if each pair of distinct vertices, v are joined by a sary definitions and discuss some useful properties of
path of lengthl, dg(u,v) <1 < |V(G)| — 1. Acycle the Crossed cubes. Section 3 then showsdh@y, is
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geodesic 4-pancyclic. Finally, we present our conclu-
sions and implications.

2 Preliminaries
In this section, we will give the relevant definitions in

graph theory and for the Crossed cubes. To define the

Crossed cubes, as proposed by Efe [6], the notion of
so called "pair related” relation is introduced.

Definition 1 [6] Let R =
{(00,00), (10,10),(01,11),(11,01)}. Two two-
digit binary stringsu = ujug andv = vyvg are pair
related, denoted ag ~ v, if and only if(u,v) € R.

The following is the recursive definition of the
dimensional Crossed culi&r),,.

Definition 2 [6] The Crossed cub&’@); is a com-
plete graph with two nodes labelled by 0 and 1, re-
spectively. Forn > 2, ann-dimensional Crossed cube
CQ,, consists of twdn — 1)-dimensional sub-Crossed
cubes,CQY ; and CQ} _,, and a perfect matching
between the nodes 6fQ%_, and CQ._, according
to the following rule:

Let V(Cngl) = {0un_2un_3...u0 tu; = 0
or 1} and V(CQ}L—l) = {lvn_g’l)n_;g...vo v =0
or 1}. The nodeu = Ouy—2up—3...up € V(CQY_,)
and the node = 1v,_ov,_3...v9 € V(CQL_,) are
adjacent inC'Q,, if and only if

(1) up—9 = vy—o if nis even, and

(2) (ugit1un;, vait1v2;) € R, for0 <i < |27,

9 L]

e S
T 70T
@—) )

(@) CQ, (c) CQ,

Figure 1: lllustrations o©Q3; andC'Qy.

A vertex v is the k-dimensional neighbor (ab-
breviate ask-neighbor) ofu, denoted byy = u*,
if the left-first different bit of them isk. For a bi-
nary bitu;, u; € {0,1}, the complement of;; is de-
noted byuw; = 1 — u;. For convenience, lei; ;) =
Uli—1 - - - Ujr1uj, © > j > 0, and let symbob; al-
ways belond{0, 1} throughout this paper.
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Let 2 be anl-bit binary string withl < n. We use
C'Q7 _, to denote the subgraph 61Q,, induced by the
set of vertices with the prefix. Itis shown in [10] that
Q7 _, is isomorphic toCQ,_;. Moreover, for two
I-bit binary stringsz andy, let C’Q;{ff} denote the
subgraph ofCQ@,, induced byCQ* _,|lJCQY _,. ltis
proven in [7] thalCQ,{ﬁ’} is isomorphic taCQ,, ;41
if CQE_, andCQ? _, are adjacent subgraphs@t),,.

Next, Lemmas X 3 are useful for verifying the
following other results in this paper.

Lemmal [13] Let w and v be two vertices of

cQ" |, wheren > 3. Thendcg, (u,v) =
dCQfLﬂl(u’ v).

Lemma 2 [6] The diameter of Crossed cub&;@,,
s [

Lemma 3 [13] Let v and v be two vertices of ' Q,,,
n > 3. Then for every integet, dcg,, (u,v) + 2 <
i < 2™ — 1, the path(u, v); exists.

In [4], two reducing strategies @f'Q,, were pro-
posed depending on whetheris odd or even. For
n = 2k, we can can contract those verticegi®)y;,
having the same prefix of length two into a vertex
and obtain a graph with four vertices. And, this four-
vertex graph is isomorphic t6'Q2, as shown in Fig.
2.(a). Similarly, forn = 2k + 1, we can contract those
vertices inCQyx1 With the same prefix of length
three into a vertex and obtain a graph eight vertices.
Again, this eight-vertex graph is isomorphicdt)s,
as shown in Fig. 2.(b). Moreover, for any two vertices
u, v in CQ,, there are some observations on their rel-
ative position as the following lemma.

(a) CQ, (n=2k)

(b) CQ, (n=2k+1)

Figure 2: Subgraphs @fQsr andC Qo 1.

Lemma 4 [4] For all n > 2, w andv are two vertices
of CQ,, then they satisfy either one of the following
three conditions:
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(1) w and v belong to a subgrapl®'@,,—; of CQ,,
or

(2) v and v belong to two differenCQ,,—2 sub-
graphs of CQ,, whereu € V(CQ"") and
v e V(CQ™), if nis even, or

(3) v and v belong to two differenC'@,,_3 sub-
graphs of CQ,,, whereu € V(CQ""") and

eitherv € V(CQP%) orv € V(CQMR), if
n is odd.

If the relative position ofu and v accords with
condition 2 of Lemma 4, by the routing algorithm in
[6], two shortest paths are described as Lemma 5.

Lemma 5 Letn be evenu € V(CQ"™%) andv e

(CQbel) There exist two shortest pathg; =
(u,u™ 1, - v)and Py = (v,v" L, .-+ u) joining u
andv such that all vertices oF (respectivelyPy’) in
CQL_, (respectivelyC'Q" _,) exceptu (respectively,
v).

Whenw andv conform to condition 3 of Lemma
4, by the symmetry o3, we only describe a phe-
nomenon for the shortest path withe vV (CQ%%)
andv € V(CQL;) as Lemma 6.

Lemma 6 Letn be odd ¢ > 3), u € V(CQY%)
andv € V(CQ111 ). There exists one shortest path
(u, Py, v" ™", v) joining v and v such that all vertices
of Py belong toV(C’Q{000 O01]’)

Expending the result of the shortest path in
Lemma 6, we have another path joiningand v of
IengtthQCQ (uv)+2 @S the following lemma.

Lemma7 Letn be odd ¢ > 3), u € V(CQWYY%,)
andv € V(CQLY). Then there exists the path
(u,u™=2, Py, (v 2)"=1 v"=2 v) joining v and v of
lengthdcq, (u,v) + 2, where all vertices of?; be-

long toV(CQ,{LO_lg’OH}).

3 (CQ, is 4-geodesic pancyclic

This section is dedicated to illustrating the geodesic
pancyclic property of crossed cubes. Next, the con-
cepts of geodesic cycle and geodésipancyclic are
formally defined and discussed.

Definition 3 Let G be a graph. For two vertices
u,v € V(G), a cycle is called a geodesic cycle with
u and v if a shortest path ot joining v and v lies
on the cycle. A geodesiecycle withu andwv in G,
denoted by C!(u, v; G), is a geodesic cycle of length
l.
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Definition 4 Let G be a graph. For two vertices
u,v € V(G), itis called geodesi&-pancyclic withu
andv if for every integel satisfying2dg(u,v) + k <

1 < |V(G)|, the geodesic cyclgC! (u, v; G) exists.

Let C = (u,Ps,v, P.,,u) be a geodesic cycle
with verticesu andv, where P; is the shortest path
joining v andv on C. We call P; and P. as s-
path and c-path of C, respectively. Leten(C) =
2dg(u,v) + k. Clearly, len(Ps) = dg(u,v) and
len(P,) = dg(u,v) + k.

Definition 5 Let G be a graph.G is called geodesic
k-pancyclic if any distinct two vertices o&r are
geodesic k-pancyclic with them. The geodesic-
pancyclicity ofGG, denoted byypc(G), is defined as
the minimum integek such thatG is geodesick-
pancyclic.

We now propose thaf’@Qs is 2-geodesic pan-
cyclic.

Lemma 8 C'Qs is geodesic 2-pancyclic.

Proof: SinceCQs is vertex-transitive, we assume
thatuw = 000 and considew as the four cases: (1)

v € {001,100}, (2)v = 010, (3)v € {011,110}, and
(4)v € {101,111}. By the symmetry of”'Q3, there

is only one vertex discussed for each case and related
geodesic cycles are listed as Table 1. &

For simplifying the proof of the geodesic pan-
cyclic property of CQ@,,, two auxiliary lemmas are
present as follows.

Lemma9 Letu,v € V(CQY |). There exist the
geodesic cyclegC! (u, v; CQ,,) for all 2dcq, (u, v)+
k+1+[5] <1< 2"ifthe following two conditions
are satisfied.

(a) 2d

(b)

b (u,v)+k—i—2§ 2"~1 and

there exist the
gCo (u,v; CQ" ) for all 2d

lp < on—1L

geodesic  cycles

CQ’:S,l (U, U) + k S

Proof: Without loss of generality, assumev €
V(CQY_,). By condition (b), there exist the geodesic
cycles gC% (u, v; CQY,_y) for all 2dcgo (u,v) +

E o< g < 2l Let (u,Ps,v,z, P, u)
be the geodesic cyclggC(u,v;CQ% ;) where
P, be the s-path and(u, P/,z,v) be the c-
path of gC%(u,v;CQY_,). By Lemma 2,
degr (0"~ 2"1) < [§]. By Lemma 3, there ex-

ist the paths(v™ 1,27~ 1), for all [2],[2] +2 <
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i < 271 — 1. Thus, we can construct a cycle
C as (u, Ps,v,o" Y (v 2n ), 2l PLow).
By Lemma 1,dcq,(u,v) = dggo_ (u,v). Then
len(F,) = lo—dpgo_ (u,v)—=1=lo—dcq, (u,v)—

1. Hencelen(C) = dcq, (u,v) + 1+ i+ 1+ (lp —
d(;Qn(u,v) —1)=1+1i+l.

Note thatZdCQoil(u,v) +k <lp <2 !and
[27,[51+2<i<2"!—1. Suppose that= [%].
Then2dcq, (u,v)+k+1+[%] <len(C) < 2" 14
1+ [5]. On the other handdcqo  (u,v) + k +
[2]+3<len(C) <2"if [Z]+2<i<2m -1,
By condition (a),2dCQ0_1(u,’U) +E+[5]+3 <
2"~1+1+[2]. Hence, we can g&dcq, (u,v)+k+
1+ [5] < len(C) < 2™ by adjusting the values &§
andi. As a result, the geodesic cyclgs’ (u, v; CQ,,)
for all 2dcq, (u,v) + k + 14 [5] <1 < 2" can be
constructed by format’. The proof is complete.

Lemma 10 Letu € V(CQM ), v € V(CQ"™ )
and u # v"~!. There exist the geodesic cycles
gC(u,v; CQ,,) for all 2dcq, (u,v) +k—-1+[5] <

[ < 2™ if the following three conditions are satisfied.

(a) dcg, (u,v) = dCQf}_l(u’vn_l) +1,

(b) 2d o (u, v +k+2< 271 and

n—1

(c) there exist  the
cles  gC(u,v" 1 CQY )
2d b (u, 0" N 4+ k< lp <277l

Canl

geodesic
for all

cy-

Proof: Without loss of generality, assume
u, vt € V(CQY_,). By condition (c), there
exist the geodesic cyclego! (u,v"~1;CQY ;) for
all 2dCQ071(U,'Un_1) + k S l() S 2TL—1. Let
{u, Ps,v"~ 1) and (u, P!, x,o"" ') be the s-path and
the c-path of gC% (u,v"~1;CQ%_,), respectively.
By Lemma 2, dpgr (v,2"') < [3]. By
Lemma 3, there exist the paths,z""!); for all
[27,[314+2 < ¢ < 2»7' — 1. Thus, we can
construct a cycleC' as (u, Ps,v" 1 v, (v, 2" 1);,
2" Yz, Pl,u). By condition (a),dcq, (u,v) =
dogo_ (u, v 1) + 1 = len(Ps) + 1 andlen(P.) =
n—1 _ o
lo— dCQE’L,l(uW )—1=1ly—dcg,(u,v). Hence,
len(C) = dogo_ (u, V") 4140+ 1+ len(P) =
(deg, (u,v) = 1)+ 14+i+ 14 (lo — dcg, (u,v)) =
14 1lo+ 1.

Note that2dcgo  (u,v" ') +k < lp < 277!
and [2],[2] +2 < 4 < 2"°! — 1. Suppose that
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i = [5]. Then2dcgo  (u, 0" ') +k+1+[5] <
len(C) < 271 + 1+ [2]. On the other hand,
2dCQ071(U77)n_1) +Ek+[5]+3 < len(C) < 27
if [3]+2 < i < 2"!—1. By condition (b),
2dcgo (w,v" ) +k+[F]1+3 <27 1[5
Thatis, we can geldcgo  (u, 0" ™) +k+1+[4] <
len(C) < 2" by adjusting the values df, and .
Note thatdcqgo  (u, v" 1) =deg, (u,v) — 1. So the
geodesic cyclegC!(u, v; CQ,,) for all 2dcq, (u, v)+
k—1+[%] <1< 2"can be constructed with format
C. The proof is complete. O

Then,CQ4 is demonstrated to be 2-geodesic pan-
cyclic.

Lemma 11 C'Q)4 is geodesic 2-pancyclic.

Proof: To prove this case is very tedious. With long
and detail discussion, we have completed theoretical
proof for CQ4. Nevertheless, we do not present it in
this paper for reducing complexity. However, we can
also verify this small case directly using computér.

We are now ready to show the geodesic pan-
cyclicity of crossed cubes fot > 3 as follows.

Theorem 1 CQ,, is 4-geodesic pancyclic for > 3.

Proof: We show this theorem by induction en By
Lemmas 8 and 11, the theorem holds for= 3, 4.
Assume that the theorem is true for every integer
5 < m < n. Letu andv be two vertices inCQ,,.
According to their relative position with Lemma 4,
we can divide this proof into three cases: (1)bath
andv belong to the same subgraph,, 1 of CQ,,,

) € V(CQP) andv € V(CQ"%) if n is even,
and (3 € V(CQP*3™) and eithew € V(CQ™"M)

orv € V(CQEY%M) if nis odd. In addition, lek = 4
throughout the proof.

Case 1: Both v andv belong to the same subgraph
CQn—l of CQn

Without loss of generality, assume,v €
CQp_1. ByLemma22dego  (u,v)+(k =4)+2 <
2[2] +6 < 2" ! for n > 5. By induction hypothe-
sis, there exist the geodesic cyclgs’ (u, v; CQ°_;)
for all 2dcge (u,v) + (b = 4) < lp < 2"
Since conditions (a) and (b) of Lemma 9 both hold,
there exist the geodesic cyclg€ (u,v; CQ,,) for
all 2dcq, (u,v) + (k = 4) +1+[5] < 1 <
2". By Lemma 1,dCQ271(u,v) = dcg, (u,v). By
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Lemma 2,2ch3_1(u, v)+ (k=4)+1+[%] <
3[%] +5 < 2" for n > 5. With the geodesic cy-
cles gC (u,v; CQ% ;) and gC" (u,v; CQy,), there
exist the geodesic cyclegC!(u,v;CQ,,) for all
2dcq, (u,v) +4 <1 <2™

Case 2:u € V(CQPY) andv € V(CQP%) if nis
even.

Without loss of generality, assume that €
CcQY , andv € CQL,. Herein, we prove that
there exist the geodesic cycle€’ (u, v; CQ,,) for all
2dcg, (u,v) +2 < I < 2™ and divide the proof into
two subcases: (2.Bdcq, (u,v) +2 <1 <2771 4
dCQ" (u, U) and (2-2)2dCQn (u,v)—l—S—i—[%] <[ <2m,

Subcase 2.1: 2dcq, (u,v) +2 < | < 2771 4
doq, (u, v).

By Lemma 5, there exist two shortest paffys=
(v, 0"t - u)y and Pf = (u,u™"1,--- v) joining
u andv. All vertices onFj (respectively,P;) be-
long to V(CQY_,) (respectively) (CQL _,)) except
v (respectively,u). By Lemma 3, there exist the
paths(u, v"~1); for all dogo  (u,v" ) +2 < i <
271 —1in CQ;_,. Note thatdogo =y =
dcg, (u,v) — 1. Thendeg, (u,v) +1 <i <271 —
1. LetC = (u,P,v, 0" L (v 1 u);,u). Then
len(C) = dcq, (u,v) + 1 + i. Thus, there exist the
geodesic cyclegC!(u, v; CQ,,) for all 2dcq,, (u, v)+
2 << 2" +deg, (u,v) with formatC.

1(u,v

Subcase 2.22d¢cq, (u,v) +3+ [5] <1 <27

Note thatdqo Y =deg, (u,v)—1. By
Lemma22dcgo  (u,v" ')+ (k =4)+2 < 2[5]+
6 < 2"~! for n > 5. By induction hypothesis, there
exist the geodesic cyclegC’ (u,v"~1;CQ%_,) for
all 2dcgo (u, 0" ") + (k = 4) <lp < 2"'. Since
all conditions of Lemma 10 are true, there exist the
geodesic cyclegC!(u, v; CQ,,) for all 2dcq, (u, v)+
(k=4)—14+[5] <1< 2™

X (u, 0"~

Moreover,2dcq, (u,v) + (k =4) =1+ [§] <
21 4 deg, (u,v) for n > 4. Then there exist the
geodesic cyclegC!(u, v; CQ,,) for all 2dcq, (u, v)+
2 <1 < 2"inthis case.

Case 3: u € V(CQ"72") and eitherv ¢
V(CQE%M) orv € V(CQMYM) if nis odd.
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With the symmetric property ofQ3, suppose
thatu € CQYY; andv € CQL;. Herein, we prove
that there eX|st the geodesic cyclgs’ (u,v; CQ,)
for all 2dcg, (u,v) +4 < I < 2" and divide the
proof into two subcases: (3.Rcq, (u,v) +4 <
1 <21+ 2deg, (u,v) and (3.2Rdcq,, (u,v) + 3+
[Bl<i<on,

Subcase 3.1: 2dcq, (u,v) +4 < | < 2771 4
2dcq, (u,v).

By Lemma 6, there exists a shortest p&th =

{u, Py,v" 1 v) joining v and v such that all ver-
tices of (u, Py,v""1) belong to V(CQ%"M),
By Lemma 7, there exists the path,u(l) =
u" 2, Pu(2) = (v )" L o(l) = v 2 v) join-
ing v andv of lengthdcg,, (u, v) + 2. Herein,u(1) €
V(CQYL) and all vertices of pathfu(1), Py, v(2))

belong toV (C Q{Om 011})

By Lemma 3, there exist such patks, v(1));
forall 3 < i < 2! —1in CQL_,. Let
Cc = <uv Pg, v, (’Uav(l))i7v(1)7v(2)vP17u(1)7u>-
Note thatlen(Ps) = dcq,(u,v) andlen(P;) =
dcq, (u,v) — 1. Thenlen(C) = dcq, (u,v) + i +
1+dcg, (u,v) —1+1=2dcg,(u,v) +1+1i. So
we can build the geodesic cyclg€’ (u, v; CQ,,) for
all 2dCQn (u, ’U) +4 <1< on—1 4 2dCQn (u, ’U) with
formatC.

Subcase 3.22dcq, (u,v) +3 + [5] <1 <27

Note thatdCQ%_l(u,v”_l) = dcg, (u,v) — 1.
By Lemma 2,2dcqo  (u,v" ') + (k = 4) +2 <
2[2]+6 < 2" !forn > 5. By induction hypothesis,
there exist the geodesic cyclgs® (u, v"~1; CQ°%_,)
for all 2dcgo  (u,v 44 < Iy < 20!
Since the three conditions of Lemma 10 are all true,

there exist the geodesic cyclg€’ (u, v; CQ,,) for all
2dcq, (u,v) + (k=4) -1+ [5] <l <2

Moreover, 2dcq, (u,v) + (K = 4) — 1 +

[2] < 2771 + 2deg, (u,v) for n > 4. Therefore,
there exist the geodesic cyclg€’ (u, v; CQ,,) for all

2dcg, (u,v) +4 <1 < 2"in this case.
This completes the proof. &

Furthermore, the geodesic-pancyclicity of
Crossed cub€'Q),, is stated as follows:

Corollary 1 2 < gpc(CQ,,) < 4forn > 3.
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4 Conclusions

In this paper, we study the existence of cycles with
some requirements i6'Q,,. For the given two ver-
ticesu andw, the cycle is called a geodesic cycle if it
contains the shortest path betwaerandwv. Clearly,

a geodesic cycle can minimize the transmission delay
from u to v. Herein, we prove that'Q,, is geodesic

4-pancyclic.

The question of embedding geodesic cycles in
other important networks, like the star graphs, Twisted

cubes and Mbius cubes still remains open.

Table 1: Summary of the geodesic cycles with=
000 andv in CQs.

v (geodesic cycle)
001 (000,001,011,010,000)
001 (000,001,111,110, 010, 000)
001 (000, 001,011,010, 110, 100, 000)

001 (000, 001,011,101, 111,110,010, 000)

001 | (000,001, 111,110, 010, 011, 101, 100, 000)

010 {000,010, 011, 001, 000)
010 (000, 010, 110, 111, 001, 000)
010 {000, 010, 110, 111, 101, 100, 000)

010 (000, 010,011,101, 111,110, 100, 000)

010 | (000, 010,011,101, 100,110, 111,001, 000)

110 (000, 010, 110, 100, 000)
110 {000,010, 110, 111, 001, 000)
110 {000,010, 110, 111, 101, 100, 000)

110 | (000,010,110, 111,101, 011, 001, 000)

110 | (000,010,110, 111,001, 011, 101, 100, 000)

111 (000, 001, 111, 110, 010, 000)

111 {000,001, 111, 101, 011, 010, 000)

111 (000, 001,111,101, 100, 110, 010, 000)

111 | (000,001,111,110,100, 101,011,010, 000)
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