Geodesic pancyclicity of crossed cubes

PAO-LIEN LAI¹, HONG-CHUN HSU², and CHANG-HSIUNG TSAI³ ¹Department of Computer Science and Information Engineering National Dong Hwa University

Shoufeng, Hualien, Taiwan 97401, R.O.C. ²Department of Medical Informatics Tzu Chi University Hualien, Taiwan 970, R.O.C. ³Department of Information Science National Hualien University of Education Hualien, Taiwan 970, R.O.C.

Abstract:- For a pair of vertices $u, v \in V(G)$, a cycle is called a *geodesic cycle* with u and v if a shortest path of G joining u and v lies on the cycle. A graph G is *pancyclic* [12] if it contains a cycle of every length from 3 to |V(G)| inclusive. Furthermore, a graph G is called *geodesic k-pancyclic* [3] if for each pair of vertices $u, v \in V(G)$, it contains a geodesic cycle of every integer length of l satisfying $2d_G(u, v) + k \leq l \leq |V(G)|$. Chang et al. [4] proved that CQ_n is pancyclic in the sense that a cycle of length l exists, $4 \leq l \leq |V(CQ_n)|$. In this paper, we study a new pancyclic property and show that Crossed cubes is geodesic 4-pancyclic.

Key-Words:- crossed cubes, panconnected, pancyclic, geodesic cycle, geodesic pancyclic.

1 Introduction

In this paper, a network is represented as a loopless undirected graph. For the graph definition and notation we follow [2]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(u, v) \mid (u, v) \text{ is an un-}$ ordered pair of V. We say that V is the vertex set and E is the *edge set*. Two vertices u and v are *adjacent* if $(u, v) \in E$. A path is a sequence of adjacent vertices, written as $\langle v(0), v(1), v(2), \ldots, v(m) \rangle$, in which all the vertices $v(0), v(1), \ldots, v(m)$ are distinct except possibly v(0) = v(m). We also write the path $\langle v(0), P, v(m) \rangle$, where $P = \langle v(0), v(1) \dots, v(m) \rangle$. The *length* of a path P, denoted by len(P), is the number of edges in P. For convenience, we also use $(v(0), v(m))_i$ to denote the path joining v(0) and v(m) of length *i*. Let *u* and *v* be two vertices of *G*. The *distance* between u and v, denoted by $d_G(u, v)$ is the length of the shortest path of G joining u and v. The diameter of G is the maximum distance between any pair of vertices on G.

Path embedding problems have attracted much research attention [9, 13]. A graph G is panconnected if each pair of distinct vertices u, v are joined by a path of length $l, d_G(u, v) \le l \le |V(G)| - 1$. A cycle

is a path with at least three vertices such that the first vertex is the same as the last one. A l-cycle is a cycle of length l. A ring structure is often used as an interconnection architecture for local area network and as a control and data flow structure in distributed networks due to its beneficial properties. The ring embedding problem, which deals with all the possible lengths of the cycles, is investigated in a lot of interconnection networks [3, 5, 12, 13]. In general, a graph is *pancyclic* if it contains a cycle of every length from 3 to |V(G)| inclusive.

An *n*-dimensional crossed cube, CQ_n [6, 7], is a variation of hypercube Q_n and preserves many of its desirable properties. CQ_n has 2^n vertices and $n2^{n-1}$ links, same as hypercube Q_n . However, it has a small diameter $\lceil \frac{n+1}{2} \rceil$, about half that of Q_n .

In this paper, we consider the geodesic cycle embedding problem in CQ_n . The geodesic pancyclic property was proposed recently by Chan et. al. [3]. Herein, we will prove that CQ_n is geodesic 4pancyclic for $n \ge 3$. The rest of this paper is organized as follows. In the next section we study necessary definitions and discuss some useful properties of the Crossed cubes. Section 3 then shows that CQ_n is geodesic 4-pancyclic. Finally, we present our conclusions and implications.

2 **Preliminaries**

In this section, we will give the relevant definitions in graph theory and for the Crossed cubes. To define the Crossed cubes, as proposed by Efe [6], the notion of so called "pair related" relation is introduced.

Definition 1 [6] Let $R = \{(00, 00), (10, 10), (01, 11), (11, 01)\}$. Two twodigit binary strings $u = u_1 u_0$ and $v = v_1 v_0$ are pair related, denoted as $u \sim v$, if and only if $(u, v) \in R$.

The following is the recursive definition of the *n*-dimensional Crossed cube CQ_n .

Definition 2 [6] The Crossed cube CQ_1 is a complete graph with two nodes labelled by 0 and 1, respectively. For $n \ge 2$, an n-dimensional Crossed cube CQ_n consists of two (n-1)-dimensional sub-Crossed cubes, CQ_{n-1}^0 and CQ_{n-1}^1 , and a perfect matching between the nodes of CQ_{n-1}^0 and CQ_{n-1}^1 according to the following rule:

Let $V(CQ_{n-1}^0) = \{0u_{n-2}u_{n-3}...u_0 : u_i = 0 \ or \ 1\}$ and $V(CQ_{n-1}^1) = \{1v_{n-2}v_{n-3}...v_0 : v_i = 0 \ or \ 1\}$. The node $u = 0u_{n-2}u_{n-3}...u_0 \in V(CQ_{n-1}^0)$ and the node $v = 1v_{n-2}v_{n-3}...v_0 \in V(CQ_{n-1}^1)$ are adjacent in CQ_n if and only if

- (1) $u_{n-2} = v_{n-2}$ if *n* is even, and
- (2) $(u_{2i+1}u_{2i}, v_{2i+1}v_{2i}) \in R$, for $0 \le i < \lfloor \frac{n-1}{2} \rfloor$.

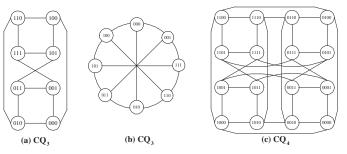


Figure 1: Illustrations of CQ_3 and CQ_4 .

A vertex v is the k-dimensional neighbor (abbreviate as k-neighbor) of u, denoted by $v = u^k$, if the left-first different bit of them is k. For a binary bit $u_i, u_i \in \{0, 1\}$, the complement of u_i is denoted by $\overline{u_i} = 1 - u_i$. For convenience, let $u_{(i,j)} = u_i u_{i-1} \dots u_{j+1} u_j$, $i > j \ge 0$, and let symbol b_i always belong $\{0, 1\}$ throughout this paper.

Let x be an *l*-bit binary string with $l \leq n$. We use CQ_{n-l}^x to denote the subgraph of CQ_n induced by the set of vertices with the prefix x. It is shown in [10] that CQ_{n-l}^x is isomorphic to CQ_{n-l} . Moreover, for two *l*-bit binary strings x and y, let $CQ_{n-l}^{\{x,y\}}$ denote the subgraph of CQ_n induced by $CQ_{n-l}^x \cup CQ_{n-l}^y$. It is proven in [7] that $CQ_{n-l}^{\{x,y\}}$ is isomorphic to CQ_{n-l+1} if CQ_{n-l}^x and CQ_{n-l}^y are adjacent subgraphs of CQ_n .

Next, Lemmas $1 \sim 3$ are useful for verifying the following other results in this paper.

Lemma 1 [13] Let u and v be two vertices of $CQ_{n-1}^{b_1}$, where $n \geq 3$. Then $d_{CQ_n}(u,v) = d_{CQ_n^{b_1}}(u,v)$.

Lemma 2 [6] The diameter of Crossed cube, CQ_n , is $\lceil \frac{n+1}{2} \rceil$.

Lemma 3 [13] Let u and v be two vertices of CQ_n , $n \ge 3$. Then for every integer i, $d_{CQ_n}(u, v) + 2 \le i \le 2^n - 1$, the path $(u, v)_i$ exists.

In [4], two reducing strategies of CQ_n were proposed depending on whether n is odd or even. For n = 2k, we can can contract those vertices in CQ_{2k} having the same prefix of length two into a vertex and obtain a graph with four vertices. And, this fourvertex graph is isomorphic to CQ_2 , as shown in Fig. 2.(a). Similarly, for n = 2k + 1, we can contract those vertices in CQ_{2k+1} with the same prefix of length three into a vertex and obtain a graph is isomorphic to CQ_3 , as shown in Fig. Again, this eight-vertex graph is isomorphic to CQ_3 , as shown in Fig. 2.(b). Moreover, for any two vertices u, v in CQ_n , there are some observations on their relative position as the following lemma.

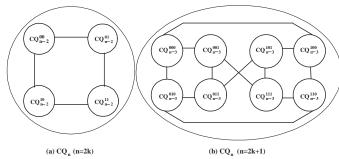


Figure 2: Subgraphs of CQ_{2k} and CQ_{2k+1} .

Lemma 4 [4] For all $n \ge 2$, u and v are two vertices of CQ_n , then they satisfy either one of the following three conditions:

- (1) u and v belong to a subgraph CQ_{n-1} of CQ_n , or
- (2) u and v belong to two different CQ_{n-2} subgraphs of CQ_n , where $u \in V(CQ_{n-2}^{b_2b_1})$ and $v \in V(CQ_{n-2}^{\overline{b_2b_1}})$, if n is even, or
- (3) u and v belong to two different CQ_{n-3} subgraphs of CQ_n , where $u \in V(CQ_{n-3}^{b_3b_2b_1})$ and either $v \in V(CQ_{n-3}^{\overline{b_3b_2b_1}})$ or $v \in V(CQ_{n-3}^{\overline{b_3b_2b_1}})$, if n is odd.

If the relative position of u and v accords with condition 2 of Lemma 4, by the routing algorithm in [6], two shortest paths are described as Lemma 5.

Lemma 5 Let n be even, $u \in V(CQ_{n-2}^{b_2b_1})$ and $v \in V(CQ_{n-2}^{\overline{b_2b_1}})$. There exist two shortest paths $P_0^s = \langle u, u^{n-1}, \dots, v \rangle$ and $P_1^s = \langle v, v^{n-1}, \dots, u \rangle$ joining u and v such that all vertices of P_0^s (respectively, P_1^s) in CQ_{n-1}^1 (respectively, CQ_{n-1}^0) except u (respectively, v).

When u and v conform to condition 3 of Lemma 4, by the symmetry of CQ_3 , we only describe a phenomenon for the shortest path with $u \in V(CQ_{n-3}^{000})$ and $v \in V(CQ_{n-3}^{111})$ as Lemma 6.

Lemma 6 Let n be odd $(n \ge 3)$, $u \in V(CQ_{n-3}^{000})$ and $v \in V(CQ_{n-3}^{111})$. There exists one shortest path $\langle u, P_0, v^{n-1}, v \rangle$ joining u and v such that all vertices of P_0 belong to $V(CQ_{n-3}^{\{000,001\}})$.

Expending the result of the shortest path in Lemma 6, we have another path joining u and v of length $d_{CQ_{CQ_n}(u,v)+2}$ as the following lemma.

Lemma 7 Let n be odd $(n \ge 3)$, $u \in V(CQ_{n-3}^{000})$ and $v \in V(CQ_{n-3}^{111})$. Then there exists the path $\langle u, u^{n-2}, P_1, (v^{n-2})^{n-1}, v^{n-2}, v \rangle$ joining u and v of length $d_{CQ_n}(u, v) + 2$, where all vertices of P_1 belong to $V(CQ_{n-3}^{\{010,011\}})$.

3 CQ_n is 4-geodesic pancyclic

This section is dedicated to illustrating the geodesic pancyclic property of crossed cubes. Next, the concepts of geodesic cycle and geodesic k-pancyclic are formally defined and discussed.

Definition 3 Let G be a graph. For two vertices $u, v \in V(G)$, a cycle is called a geodesic cycle with u and v if a shortest path of G joining u and v lies on the cycle. A geodesic l-cycle with u and v in G, denoted by $gC^{l}(u, v; G)$, is a geodesic cycle of length l.

Definition 4 Let G be a graph. For two vertices $u, v \in V(G)$, it is called geodesic k-pancyclic with u and v if for every integer l satisfying $2d_G(u, v) + k \le l \le |V(G)|$, the geodesic cycle $gC^l(u, v; G)$ exists.

Let $C = \langle u, P_s, v, P_c, u \rangle$ be a geodesic cycle with vertices u and v, where P_s is the shortest path joining u and v on C. We call P_s and P_c as *s*path and *c*-path of C, respectively. Let len(C) = $2d_G(u, v) + k$. Clearly, $len(P_s) = d_G(u, v)$ and $len(P_c) = d_G(u, v) + k$.

Definition 5 Let G be a graph. G is called geodesic k-pancyclic if any distinct two vertices on G are geodesic k-pancyclic with them. The geodesic-pancyclicity of G, denoted by gpc(G), is defined as the minimum integer k such that G is geodesic k-pancyclic.

We now propose that CQ_3 is 2-geodesic pancyclic.

Lemma 8 CQ_3 is geodesic 2-pancyclic.

Proof: Since CQ_3 is vertex-transitive, we assume that u = 000 and consider v as the four cases: (1) $v \in \{001, 100\}, (2) v = 010, (3) v \in \{011, 110\}, and (4) v \in \{101, 111\}$. By the symmetry of CQ_3 , there is only one vertex discussed for each case and related geodesic cycles are listed as Table 1.

For simplifying the proof of the geodesic pancyclic property of CQ_n , two auxiliary lemmas are present as follows.

Lemma 9 Let $u, v \in V(CQ_{n-1}^{b_1})$. There exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + k + 1 + \lceil \frac{n}{2} \rceil \le l \le 2^n$ if the following two conditions are satisfied.

- (a) $2d_{CQ_{n-1}^{b_1}}(u,v) + k + 2 \le 2^{n-1}$ and
- $\begin{array}{ll} (b) & \textit{there exist the geodesic cycles} \\ gC^{l_0}(u,v;CQ_{n-1}^{b_1}) \textit{ for all } 2d_{CQ_{n-1}^{b_1}}(u,v) + k \leq \\ l_0 \leq 2^{n-1}. \end{array}$

Proof: Without loss of generality, assume $u, v \in V(CQ_{n-1}^0)$. By condition (b), there exist the geodesic cycles $gC^{l_0}(u, v; CQ_{n-1}^0)$ for all $2d_{CQ_{n-1}^0}(u, v) + k \leq l_0 \leq 2^{n-1}$. Let $\langle u, P_s, v, x, P'_c, u \rangle$ be the geodesic cycle $gC^{l_0}(u, v; CQ_{n-1}^0)$ where P_s be the s-path and $\langle u, P'_c, x, v \rangle$ be the c-path of $gC^{l_0}(u, v; CQ_{n-1}^0)$. By Lemma 2, $d_{CQ_{n-1}^1}(v^{n-1}, x^{n-1}) \leq \lceil \frac{n}{2} \rceil$. By Lemma 3, there exist the paths $(v^{n-1}, x^{n-1})_i$ for all $\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil + 2 \leq 2^{n-1}$.

 $\begin{array}{ll} i &\leq \ 2^{n-1} - 1. \ \ {\rm Thus, \ we \ can \ construct \ a \ cycle} \\ C \ \ {\rm as} \ \ \langle u, P_s, v, v^{n-1}, (v^{n-1}, x^{n-1})_i, \ x^{n-1}, x, P_c', u\rangle. \\ {\rm By \ Lemma \ 1, \ } d_{CQ_n}(u,v) &= \ d_{CQ_{n-1}^0}(u,v). \ \ {\rm Then} \\ len(P_c') &= l_0 - d_{CQ_{n-1}^0}(u,v) - 1 = l_0 - d_{CQ_n}(u,v) - 1. \\ {\rm Hence, \ } len(C) &= \ d_{CQ_n}(u,v) + 1 + i + 1 + (l_0 - d_{CQ_n}(u,v) - 1) = 1 + i + l_0. \end{array}$

Note that $2d_{CQ_{n-1}^0}(u,v) + k \leq l_0 \leq 2^{n-1}$ and $\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil + 2 \leq i \leq 2^{n-1} - 1$. Suppose that $i = \lceil \frac{n}{2} \rceil$. Then $2d_{CQ_n}(u,v) + k + 1 + \lceil \frac{n}{2} \rceil \leq len(C) \leq 2^{n-1} + 1 + \lceil \frac{n}{2} \rceil$. On the other hand, $2d_{CQ_{n-1}^0}(u,v) + k + \lceil \frac{n}{2} \rceil + 3 \leq len(C) \leq 2^n$ if $\lceil \frac{n}{2} \rceil + 2 \leq i \leq 2^{n-1} - 1$. By condition (a), $2d_{CQ_{n-1}^0}(u,v) + k + \lceil \frac{n}{2} \rceil + 3 \leq 2^{n-1} + 1 + \lceil \frac{n}{2} \rceil$. Hence, we can get $2d_{CQ_n}(u,v) + k + 1 + \lceil \frac{n}{2} \rceil \leq len(C) \leq 2^n$ by adjusting the values of l_0 and *i*. As a result, the geodesic cycles $gC^l(u,v;CQ_n)$ for all $2d_{CQ_n}(u,v) + k + 1 + \lceil \frac{n}{2} \rceil \leq l \leq 2^n$ can be constructed by format *C*. The proof is complete.

Lemma 10 Let $u \in V(CQ_{n-1}^{b_1})$, $v \in V(CQ_{n-1}^{\overline{b_1}})$ and $u \neq v^{n-1}$. There exist the geodesic cycles $gC^l(u,v;CQ_n)$ for all $2d_{CQ_n}(u,v) + k - 1 + \lceil \frac{n}{2} \rceil \le l \le 2^n$ if the following three conditions are satisfied.

(a)
$$d_{CQ_n}(u, v) = d_{CQ_{n-1}^{b_1}}(u, v^{n-1}) + 1$$
,
(b) $2d_{CQ_{n-1}^{b_1}}(u, v^{n-1}) + k + 2 \le 2^{n-1}$, and

$$\begin{array}{ll} (c) & \textit{there exist the geodesic} & cy-\\ cles & gC^{l_0}(u,v^{n-1};CQ^{b_1}_{n-1}) & \textit{for} & all\\ 2d_{CQ^{b_1}_{n-1}}(u,v^{n-1})+k \leq l_0 \leq 2^{n-1}. \end{array}$$

Without loss of generality, assume **Proof:** $u, v^{n-1} \in V(CQ^0_{n-1})$. By condition (c), there exist the geodesic cycles $gC^{l_0}(u, v^{n-1}; CQ^0_{n-1})$ for all $2d_{CQ^0_{n-1}}(u, v^{n-1}) + k \leq l_0 \leq 2^{n-1}$. Let $\langle u, P_s, v^{n-1} \rangle$ and $\langle u, P_c', x, v^{n-1} \rangle$ be the s-path and the c-path of $gC^{l_0}(u, v^{n-1}; CQ^0_{n-1})$, respectively. By Lemma 2, $d_{CQ_{n-1}^1}(v, x^{n-1}) \leq \lceil \frac{n}{2} \rceil$. By Lemma 3, there exist the paths $(v, x^{n-1})_i$ for all $\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil + 2 \leq i \leq 2^{n-1} - 1$. Thus, we can construct a cycle C as $\langle u, P_s, v^{n-1}, v, (v, x^{n-1})_i, v, (v, x^{n-1})_i \rangle$ x^{n-1}, x, P'_c, u . By condition (a), $d_{CQ_n}(u, v) =$ $d_{CQ_{n-1}^0}(u, v^{n-1}) + 1 = len(P_s) + 1$ and $len(P'_c) = 0$ $l_0 - d_{CQ_{n-1}^0}(u, v^{n-1}) - 1 = l_0 - d_{CQ_n}(u, v)$. Hence, $len(C) = d_{CQ_{n-1}^{0}}(u, v^{n-1}) + 1 + i + 1 + len(P'_{c}) =$ $(d_{CQ_n}(u,v) - 1) + 1 + i + 1 + (l_0 - d_{CQ_n}(u,v)) =$ $i + l_0 + 1.$

Note that $2d_{CQ_{n-1}^0}(u, v^{n-1}) + k \le l_0 \le 2^{n-1}$ and $\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil + 2 \le i \le 2^{n-1} - 1$. Suppose that
$$\begin{split} &i = \left\lceil \frac{n}{2} \right\rceil. \text{ Then } 2d_{CQ_{n-1}^0}(u, v^{n-1}) + k + 1 + \left\lceil \frac{n}{2} \right\rceil \leq \\ &len(C) \leq 2^{n-1} + 1 + \left\lceil \frac{n}{2} \right\rceil. \text{ On the other hand,} \\ &2d_{CQ_{n-1}^0}(u, v^{n-1}) + k + \left\lceil \frac{n}{2} \right\rceil + 3 \leq len(C) \leq 2^n \\ &\text{if } \left\lceil \frac{n}{2} \right\rceil + 2 \leq i \leq 2^{n-1} - 1. \text{ By condition (b),} \\ &2d_{CQ_{n-1}^0}(u, v^{n-1}) + k + \left\lceil \frac{n}{2} \right\rceil + 3 \leq 2^{n-1} + 1 + \left\lceil \frac{n}{2} \right\rceil. \\ &\text{That is, we can get } 2d_{CQ_{n-1}^0}(u, v^{n-1}) + k + 1 + \left\lceil \frac{n}{2} \right\rceil \leq \\ &len(C) \leq 2^n \text{ by adjusting the values of } l_0 \text{ and } i. \\ &\text{Note that } d_{CQ_{n-1}^0}(u, v^{n-1}) = d_{CQ_n}(u, v) - 1. \text{ So the geodesic cycles } gC^l(u, v; CQ_n) \text{ for all } 2d_{CQ_n}(u, v) + \\ &k - 1 + \left\lceil \frac{n}{2} \right\rceil \leq l \leq 2^n \text{ can be constructed with format } \\ &C. \text{ The proof is complete.} \qquad \diamondsuit$$

Then, CQ_4 is demonstrated to be 2-geodesic pancyclic.

Lemma 11 CQ_4 is geodesic 2-pancyclic.

Proof: To prove this case is very tedious. With long and detail discussion, we have completed theoretical proof for CQ_4 . Nevertheless, we do not present it in this paper for reducing complexity. However, we can also verify this small case directly using computer. \diamondsuit

We are now ready to show the geodesic pancyclicity of crossed cubes for $n \ge 3$ as follows.

Theorem 1 CQ_n is 4-geodesic pancyclic for $n \ge 3$.

Proof: We show this theorem by induction on *n*. By Lemmas 8 and 11, the theorem holds for n = 3, 4. Assume that the theorem is true for every integer $5 \le m < n$. Let *u* and *v* be two vertices in CQ_n . According to their relative position with Lemma 4, we can divide this proof into three cases: (1)both *u* and *v* belong to the same subgraph CQ_{n-1} of CQ_n , $(2)u \in V(CQ_{n-2}^{b_2b_1})$ and $v \in V(CQ_{n-2}^{\overline{b_2b_1}})$ if *n* is even, and $(3)u \in V(CQ_{n-3}^{b_3b_2b_1})$ and either $v \in V(CQ_{n-3}^{\overline{b_3b_2b_1}})$ or $v \in V(CQ_{n-3}^{\overline{b_3b_2b_1}})$ if *n* is odd. In addition, let k = 4throughout the proof.

Case 1: Both u and v belong to the same subgraph CQ_{n-1} of CQ_n .

Without loss of generality, assume $u, v \in CQ_{n-1}^0$. By Lemma 2, $2d_{CQ_{n-1}^0}(u, v) + (k = 4) + 2 \leq 2\lceil \frac{n}{2} \rceil + 6 \leq 2^{n-1}$ for $n \geq 5$. By induction hypothesis, there exist the geodesic cycles $gC^{l_0}(u, v; CQ_{n-1}^0)$ for all $2d_{CQ_{n-1}^0}(u, v) + (k = 4) \leq l_0 \leq 2^{n-1}$. Since conditions (a) and (b) of Lemma 9 both hold, there exist the geodesic cycles $gC^{l_1}(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + (k = 4) + 1 + \lceil \frac{n}{2} \rceil \leq l_1 \leq 2^n$. By Lemma 1, $d_{CQ_{n-1}^0}(u, v) = d_{CQ_n}(u, v)$. By

Lemma 2, $2d_{CQ_{n-1}^0}(u,v) + (k = 4) + 1 + \lceil \frac{n}{2} \rceil \leq 3\lceil \frac{n}{2} \rceil + 5 \leq 2^{n-1}$ for $n \geq 5$. With the geodesic cycles $gC^{l_0}(u,v;CQ_{n-1}^0)$ and $gC^{l_1}(u,v;CQ_n)$, there exist the geodesic cycles $gC^l(u,v;CQ_n)$ for all $2d_{CQ_n}(u,v) + 4 \leq l \leq 2^n$.

Case 2: $u \in V(CQ_{n-2}^{b_2b_1})$ and $v \in V(CQ_{n-2}^{\overline{b_2b_1}})$ if n is even.

Without loss of generality, assume that $u \in CQ_{n-2}^{00}$ and $v \in CQ_{n-2}^{11}$. Herein, we prove that there exist the geodesic cycles $gC^{l}(u, v; CQ_{n})$ for all $2d_{CQ_{n}}(u, v) + 2 \leq l \leq 2^{n}$ and divide the proof into two subcases: (2.1) $2d_{CQ_{n}}(u, v) + 2 \leq l \leq 2^{n-1} + d_{CQ_{n}}(u, v)$ and (2.2) $2d_{CQ_{n}}(u, v) + 3 + \lceil \frac{n}{2} \rceil \leq l \leq 2^{n}$.

Subcase 2.1: $2d_{CQ_n}(u,v) + 2 \leq l \leq 2^{n-1} + d_{CQ_n}(u,v).$

By Lemma 5, there exist two shortest paths $P_0^s = \langle v, v^{n-1}, \cdots, u \rangle$ and $P_1^s = \langle u, u^{n-1}, \cdots, v \rangle$ joining u and v. All vertices on P_0^s (respectively, P_1^s) belong to $V(CQ_{n-1}^0)$ (respectively, $V(CQ_{n-1}^1)$) except v (respectively, u). By Lemma 3, there exist the paths $(u, v^{n-1})_i$ for all $d_{CQ_{n-1}^0}(u, v^{n-1}) + 2 \leq i \leq 2^{n-1} - 1$ in CQ_{n-1}^0 . Note that $d_{CQ_{n-1}^0}(u, v^{n-1}) = d_{CQ_n}(u, v) - 1$. Then $d_{CQ_n}(u, v) + 1 \leq i \leq 2^{n-1} - 1$. Let $C = \langle u, P_1^s, v, v^{n-1}, (v^{n-1}, u)_i, u \rangle$. Then $len(C) = d_{CQ_n}(u, v) + 1 + i$. Thus, there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + 2 \leq l \leq 2^{n-1} + d_{CQ_n}(u, v)$ with format C.

Subcase 2.2: $2d_{CQ_n}(u, v) + 3 + \lceil \frac{n}{2} \rceil \le l \le 2^n$.

Note that $d_{CQ_{n-1}^0}(u, v^{n-1}) = d_{CQ_n}(u, v) - 1$. By Lemma 2, $2d_{CQ_{n-1}^0}(u, v^{n-1}) + (k = 4) + 2 \le 2\lceil \frac{n}{2} \rceil + 6 \le 2^{n-1}$ for $n \ge 5$. By induction hypothesis, there exist the geodesic cycles $gC^{l_0}(u, v^{n-1}; CQ_{n-1}^0)$ for all $2d_{CQ_{n-1}^0}(u, v^{n-1}) + (k = 4) \le l_0 \le 2^{n-1}$. Since all conditions of Lemma 10 are true, there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + (k = 4) - 1 + \lceil \frac{n}{2} \rceil \le l \le 2^n$.

Moreover, $2d_{CQ_n}(u, v) + (k = 4) - 1 + \lceil \frac{n}{2} \rceil \le 2^{n-1} + d_{CQ_n}(u, v)$ for $n \ge 4$. Then there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + 2 \le l \le 2^n$ in this case.

With the symmetric property of CQ_3 , suppose that $u \in CQ_{n-3}^{000}$ and $v \in CQ_{n-3}^{111}$. Herein, we prove that there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + 4 \leq l \leq 2^n$ and divide the proof into two subcases: (3.1) $2d_{CQ_n}(u, v) + 4 \leq l \leq 2^{n-1} + 2d_{CQ_n}(u, v)$ and (3.2) $2d_{CQ_n}(u, v) + 3 + \lfloor \frac{n}{2} \rfloor \leq l \leq 2^n$.

Subcase 3.1: $2d_{CQ_n}(u,v) + 4 \leq l \leq 2^{n-1} + 2d_{CQ_n}(u,v).$

By Lemma 6, there exists a shortest path $P_s = \langle u, P_0, v^{n-1}, v \rangle$ joining u and v such that all vertices of $\langle u, P_0, v^{n-1} \rangle$ belong to $V(CQ_{n-3}^{\{000,001\}})$. By Lemma 7, there exists the path $\langle u, u(1) = u^{n-2}, P_1, v(2) = (v^{n-2})^{n-1}, v(1) = v^{n-2}, v \rangle$ joining u and v of length $d_{CQ_n}(u, v) + 2$. Herein, $v(1) \in V(CQ_{n-3}^{\{010,011\}})$ and all vertices of path $\langle u(1), P_1, v(2) \rangle$ belong to $V(CQ_{n-3}^{\{010,011\}})$.

By Lemma 3, there exist such paths $(v, v(1))_i$ for all $3 \leq i \leq 2^{n-1} - 1$ in CQ_{n-1}^1 . Let $C = \langle u, P_s, v, (v, v(1))_i, v(1), v(2), P_1, u(1), u \rangle$. Note that $len(P_s) = d_{CQ_n}(u, v)$ and $len(P_1) = d_{CQ_n}(u, v) - 1$. Then $len(C) = d_{CQ_n}(u, v) + i + 1 + d_{CQ_n}(u, v) - 1 + 1 = 2d_{CQ_n}(u, v) + 1 + i$. So we can build the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + 4 \leq l \leq 2^{n-1} + 2d_{CQ_n}(u, v)$ with format C.

Subcase 3.2: $2d_{CQ_n}(u, v) + 3 + \lceil \frac{n}{2} \rceil \le l \le 2^n$.

Note that $d_{CQ_{n-1}^0}(u, v^{n-1}) = d_{CQ_n}(u, v) - 1$. By Lemma 2, $2d_{CQ_{n-1}^0}(u, v^{n-1}) + (k = 4) + 2 \leq 2\lceil \frac{n}{2} \rceil + 6 \leq 2^{n-1}$ for $n \geq 5$. By induction hypothesis, there exist the geodesic cycles $gC^{l_0}(u, v^{n-1}; CQ_{n-1}^0)$ for all $2d_{CQ_{n-1}^0}(u, v^{n-1}) + 4 \leq l_0 \leq 2^{n-1}$. Since the three conditions of Lemma 10 are all true, there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + (k = 4) - 1 + \lceil \frac{n}{2} \rceil \leq l \leq 2^n$.

Moreover, $2d_{CQ_n}(u, v) + (k = 4) - 1 + \lfloor \frac{n}{2} \rfloor \leq 2^{n-1} + 2d_{CQ_n}(u, v)$ for $n \geq 4$. Therefore, there exist the geodesic cycles $gC^l(u, v; CQ_n)$ for all $2d_{CQ_n}(u, v) + 4 \leq l \leq 2^n$ in this case.

This completes the proof. \diamond

Furthermore, the geodesic-pancyclicity of Crossed cube CQ_n is stated as follows:

Corollary 1 $2 \leq gpc(CQ_n) \leq 4$ for $n \geq 3$.

4 Conclusions

In this paper, we study the existence of cycles with some requirements in CQ_n . For the given two vertices u and v, the cycle is called a geodesic cycle if it contains the shortest path between u and v. Clearly, a geodesic cycle can minimize the transmission delay from u to v. Herein, we prove that CQ_n is geodesic 4-pancyclic.

The question of embedding geodesic cycles in other important networks, like the star graphs, Twisted cubes and Möbius cubes still remains open.

Table 1: Summary of the geodesic cycles with u = 000 and v in CQ_3 .

v	$\langle geodesic \ cycle angle$
001	$\langle 000, \underline{001}, 011, 010, 000 \rangle$
001	$\langle 000, \underline{001}, 111, 110, 010, 000 \rangle$
001	$\langle 000, \underline{001}, 011, 010, 110, 100, 000 \rangle$
001	$\langle 000, \underline{001}, 011, 101, 111, 110, 010, 000 \rangle$
001	$\langle 000, \underline{001}, 111, 110, 010, 011, 101, 100, 000 \rangle$
010	$\langle 000, \underline{010}, 011, 001, 000 \rangle$
010	$\langle 000, \underline{010}, 110, 111, 001, 000 \rangle$
010	$\langle 000, \underline{010}, 110, 111, 101, 100, 000 \rangle$
010	$\langle 000, \underline{010}, 011, 101, 111, 110, 100, 000 \rangle$
010	$\langle 000, \underline{010}, 011, 101, 100, 110, 111, 001, 000 \rangle$
110	$\langle 000, 010, \underline{110}, 100, 000 \rangle$
110	$\langle 000, 010, \underline{110}, 111, 001, 000 \rangle$
110	$\langle 000, 010, \underline{110}, 111, 101, 100, 000 \rangle$
110	$\langle 000, 010, \underline{110}, 111, 101, 011, 001, 000 \rangle$
110	$\langle 000, 010, \underline{110}, 111, 001, 011, 101, 100, 000 \rangle$
111	$\langle 000, 001, \underline{111}, 110, 010, 000 \rangle$
111	$\langle 000, 001, \underline{111}, 101, 011, 010, 000 \rangle$
111	$\langle 000, 001, \underline{111}, 101, 100, 110, 010, 000 \rangle$
111	$\langle 000, 001, \underline{111}, 110, 100, 101, 011, 010, 000 \rangle$

Acknowledgements: This work was supported in part by the National Science Council of the Republic of China under Contract NSC 94-2213-E-259-026.

References:

- [1] S.-G. Akl, *Parallel Computation: Models and Methods*, Prentice –Hall, NJ 1997.
- [2] J.-A. Bondy, and U.-S.-R. Murty, Graph Theory with Applications, North–Holland, New York 1980.

- [3] H.-C. Chan, J.-M. Chang, Y.-L. Wang, and S.-J. Horng Geodesic-Pancyclic Graphs, Proceedings of the 23rd Workshop on Combinatorial Mathematics and Computation Theory, 2006, pp. 181–187.
- [4] C.–P. Chang, T.–Y. Sung, and L.–H. Hsu, Edge Congestion and opological Properties of Crossed Cubes, *IEEE Trans. Parallel and Distributed Systems*, 11(1), 2000, pp. 64–80.
- [5] K. Day, and A. Tripathi, Embedding of cycles in arrangement graphs, *IEEE Trans. Comput.*, 42(8), 1993, pp. 1002–1006.
- [6] K. Efe, A Variation on the Hypercube with Lower Diameter, *IEEE Trans. on Computers*, 40(11), 1991, pp. 1,312–1,316.
- [7] K. Efe, The Crossed Cube Architechre for Parallel Computing, *IEEE Trans. Parallel and Distributed Systems*, 3(5), 1992, pp. 513–524.
- [8] A. Germa, M.–C. Heydemann, and D. Sotteau, Cycles in the cube-connected cycles graph, *Descrete Appl. Math.*, 83, 1998, pp. 135-155.
- [9] H.-C. Hsu, T.-K. Li, J.-J.-M. Tan, and L.-H. Hsu, Fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs, *IEEE Trans. on Computers*, 53(1), 2004, pp. 39– 53.
- [10] P. Kiilasinghr and S. Bettayeb, Embedding Binary Trees into Crossed Cubes, *IEEE Trans. on Computers*, 44(7), 1995, pp. 923–929.
- [11] F.-T. Leighton, *Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes,* Morgan–Kaufmann, San Mateo, 1992.
- [12] J. Mitchem and E. Schmeichel, Pancyclic and bipancyclic graphs-a survey, *Graphs and applications*, 1982, pp. 271–278.
- [13] X. Yang and G. Megson, On the pathconnectivity, vertex-pancyclicity, and edgepancyclicity of crossed cubes, *Neural, Parallel* & *Scientific Computations*, 13, 2005, pp. 107– 118.