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Abstract:-For a pair of verticesu, v ∈ V (G), a cycle is called ageodesic cyclewith u andv if a shortest path
of G joining u andv lies on the cycle. A graphG is pancyclic[12] if it contains a cycle of every length from
3 to |V (G)| inclusive. Furthermore, a graphG is calledgeodesick-pancyclic [3] if for each pair of vertices
u, v ∈ V (G), it contains a geodesic cycle of every integer length ofl satisfying2dG(u, v) + k ≤ l ≤ |V (G)|.
Chang et al. [4] proved thatCQn is pancyclic in the sense that a cycle of lengthl exists,4 ≤ l ≤ |V (CQn)|. In
this paper, we study a new pancyclic property and show that Crossed cubes is geodesic 4-pancyclic.
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1 Introduction
In this paper, a network is represented as a loopless
undirected graph. For the graph definition and nota-
tion we follow [2]. G = (V, E) is a graph ifV is a
finite set andE is a subset of{(u, v) | (u, v) is an un-
ordered pair ofV }. We say thatV is thevertex setand
E is theedge set. Two verticesu andv areadjacentif
(u, v) ∈ E. A path is a sequence of adjacent vertices,
written as〈v(0), v(1), v(2), . . . , v(m)〉, in which all
the verticesv(0), v(1), . . . , v(m) are distinct except
possibly v(0) = v(m). We also write the path
〈v(0), P, v(m)〉, whereP = 〈v(0), v(1) . . . , v(m)〉.
The length of a pathP , denoted bylen(P ), is the
number of edges inP . For convenience, we also
use(v(0), v(m))i to denote the path joiningv(0) and
v(m) of lengthi. Let u andv be two vertices ofG.
Thedistancebetweenu andv, denoted bydG(u, v) is
the length of the shortest path ofG joining u andv.
The diameter ofG is the maximum distance between
any pair of vertices onG.

Path embedding problems have attracted much
research attention [9, 13]. A graphG is panconnected
if each pair of distinct verticesu, v are joined by a
path of lengthl, dG(u, v) ≤ l ≤ |V (G)| − 1. A cycle

is a path with at least three vertices such that the first
vertex is the same as the last one. Al-cycle is a cycle
of lengthl. A ring structure is often used as an inter-
connection architecture for local area network and as a
control and data flow structure in distributed networks
due to its beneficial properties. The ring embedding
problem, which deals with all the possible lengths of
the cycles, is investigated in a lot of interconnection
networks [3, 5, 12, 13]. In general, a graph ispan-
cyclic if it contains a cycle of every length from3 to
|V (G)| inclusive.

An n-dimensional crossed cube,CQn [6, 7], is a
variation of hypercubeQn and preserves many of its
desirable properties.CQn has2n vertices andn2n−1

links, same as hypercubeQn. However, it has a small
diameter⌈n+1

2 ⌉, about half that ofQn.
In this paper, we consider the geodesic cycle

embedding problem inCQn. The geodesic pan-
cyclic property was proposed recently by Chan et. al.
[3]. Herein, we will prove thatCQn is geodesic 4-
pancyclic forn ≥ 3. The rest of this paper is orga-
nized as follows. In the next section we study neces-
sary definitions and discuss some useful properties of
the Crossed cubes. Section 3 then shows thatCQn is
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geodesic 4-pancyclic. Finally, we present our conclu-
sions and implications.

2 Preliminaries
In this section, we will give the relevant definitions in
graph theory and for the Crossed cubes. To define the
Crossed cubes, as proposed by Efe [6], the notion of
so called ”pair related” relation is introduced.

Definition 1 [6] Let R =
{(00, 00), (10, 10), (01, 11), (11, 01)}. Two two-
digit binary stringsu = u1u0 andv = v1v0 are pair
related, denoted asu ∼ v, if and only if(u, v) ∈ R.

The following is the recursive definition of then-
dimensional Crossed cubeCQn.

Definition 2 [6] The Crossed cubeCQ1 is a com-
plete graph with two nodes labelled by 0 and 1, re-
spectively. Forn ≥ 2, ann-dimensional Crossed cube
CQn consists of two(n−1)-dimensional sub-Crossed
cubes,CQ0

n−1 and CQ1
n−1, and a perfect matching

between the nodes ofCQ0
n−1 andCQ1

n−1 according
to the following rule:

Let V (CQ0
n−1) = {0un−2un−3...u0 : ui = 0

or 1} and V (CQ1
n−1) = {1vn−2vn−3...v0 : vi = 0

or 1}. The nodeu = 0un−2un−3...u0 ∈ V (CQ0
n−1)

and the nodev = 1vn−2vn−3...v0 ∈ V (CQ1
n−1) are

adjacent inCQn if and only if

(1) un−2 = vn−2 if n is even, and

(2) (u2i+1u2i, v2i+1v2i) ∈ R, for 0 ≤ i < ⌊n−1
2 ⌋.
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Figure 1: Illustrations ofCQ3 andCQ4.

A vertex v is the k-dimensional neighbor (ab-
breviate ask-neighbor) ofu, denoted byv = uk,
if the left-first different bit of them isk. For a bi-
nary bitui, ui ∈ {0, 1}, the complement ofui is de-
noted byui = 1 − ui. For convenience, letu(i,j) =
uiui−1 . . . uj+1uj , i > j ≥ 0, and let symbolbi al-
ways belong{0, 1} throughout this paper.

Let x be anl-bit binary string withl ≤ n. We use
CQx

n−l to denote the subgraph ofCQn induced by the
set of vertices with the prefixx. It is shown in [10] that
CQx

n−l is isomorphic toCQn−l. Moreover, for two

l-bit binary stringsx and y, let CQ
{x,y}
n−l denote the

subgraph ofCQn induced byCQx
n−l

⋃
CQ

y
n−l. It is

proven in [7] thatCQ
{x,y}
n−l is isomorphic toCQn−l+1

if CQx
n−l andCQ

y
n−l are adjacent subgraphs ofCQn.

Next, Lemmas 1∼ 3 are useful for verifying the
following other results in this paper.

Lemma 1 [13] Let u and v be two vertices of
CQb1

n−1, where n ≥ 3. Then dCQn
(u, v) =

d
CQ

b1
n−1

(u, v).

Lemma 2 [6] The diameter of Crossed cube,CQn,
is ⌈n+1

2 ⌉.

Lemma 3 [13] Let u andv be two vertices ofCQn,
n ≥ 3. Then for every integeri, dCQn

(u, v) + 2 ≤
i ≤ 2n − 1, the path(u, v)i exists.

In [4], two reducing strategies ofCQn were pro-
posed depending on whethern is odd or even. For
n = 2k, we can can contract those vertices inCQ2k

having the same prefix of length two into a vertex
and obtain a graph with four vertices. And, this four-
vertex graph is isomorphic toCQ2, as shown in Fig.
2.(a). Similarly, forn = 2k+1, we can contract those
vertices inCQ2k+1 with the same prefix of length
three into a vertex and obtain a graph eight vertices.
Again, this eight-vertex graph is isomorphic toCQ3,
as shown in Fig. 2.(b). Moreover, for any two vertices
u, v in CQn, there are some observations on their rel-
ative position as the following lemma.

(a) CQn  (n=2k) (b) CQn  (n=2k+1)
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Figure 2: Subgraphs ofCQ2k andCQ2k+1.

Lemma 4 [4] For all n ≥ 2, u andv are two vertices
of CQn, then they satisfy either one of the following
three conditions:
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(1) u andv belong to a subgraphCQn−1 of CQn,
or

(2) u and v belong to two differentCQn−2 sub-
graphs ofCQn, where u ∈ V (CQb2b1

n−2) and

v ∈ V (CQb2b1
n−2), if n is even, or

(3) u and v belong to two differentCQn−3 sub-
graphs ofCQn, whereu ∈ V (CQb3b2b1

n−3 ) and

eitherv ∈ V (CQb3b2b1
n−3 ) or v ∈ V (CQb3b2b1

n−3 ), if
n is odd.

If the relative position ofu and v accords with
condition 2 of Lemma 4, by the routing algorithm in
[6], two shortest paths are described as Lemma 5.

Lemma 5 Let n be even,u ∈ V (CQb2b1
n−2) and v ∈

V (CQb2b1
n−2). There exist two shortest pathsP s

0 =

〈u, un−1, · · · , v〉 andP s
1 = 〈v, vn−1, · · · , u〉 joiningu

andv such that all vertices ofP s
0 (respectively,P s

1 ) in
CQ1

n−1 (respectively,CQ0
n−1) exceptu (respectively,

v).

Whenu andv conform to condition 3 of Lemma
4, by the symmetry ofCQ3, we only describe a phe-
nomenon for the shortest path withu ∈ V (CQ000

n−3)

andv ∈ V (CQ111
n−3) as Lemma 6.

Lemma 6 Let n be odd (n ≥ 3), u ∈ V (CQ000
n−3)

and v ∈ V (CQ111
n−3). There exists one shortest path

〈u, P0, v
n−1, v〉 joining u andv such that all vertices

of P0 belong toV (CQ
{000,001}
n−3 ).

Expending the result of the shortest path in
Lemma 6, we have another path joiningu andv of
lengthdCQCQn(u,v)+2 as the following lemma.

Lemma 7 Let n be odd (n ≥ 3), u ∈ V (CQ000
n−3)

and v ∈ V (CQ111
n−3). Then there exists the path

〈u, un−2, P1, (v
n−2)n−1, vn−2, v〉 joining u and v of

lengthdCQn
(u, v) + 2, where all vertices ofP1 be-

long toV (CQ
{010,011}
n−3 ).

3 CQn is 4-geodesic pancyclic
This section is dedicated to illustrating the geodesic
pancyclic property of crossed cubes. Next, the con-
cepts of geodesic cycle and geodesick-pancyclic are
formally defined and discussed.

Definition 3 Let G be a graph. For two vertices
u, v ∈ V (G), a cycle is called a geodesic cycle with
u and v if a shortest path ofG joining u and v lies
on the cycle. A geodesicl-cycle withu and v in G,
denoted bygC l(u, v; G), is a geodesic cycle of length
l.

Definition 4 Let G be a graph. For two vertices
u, v ∈ V (G), it is called geodesick-pancyclic withu
andv if for every integerl satisfying2dG(u, v) + k ≤
l ≤ |V (G)|, the geodesic cyclegC l(u, v; G) exists.

Let C = 〈u, Ps, v, Pc, u〉 be a geodesic cycle
with verticesu andv, wherePs is the shortest path
joining u and v on C. We call Ps and Pc as s-
path and c-path of C, respectively. Letlen(C) =
2dG(u, v) + k. Clearly, len(Ps) = dG(u, v) and
len(Pc) = dG(u, v) + k.

Definition 5 Let G be a graph.G is called geodesic
k-pancyclic if any distinct two vertices onG are
geodesick-pancyclic with them. The geodesic-
pancyclicity ofG, denoted bygpc(G), is defined as
the minimum integerk such thatG is geodesick-
pancyclic.

We now propose thatCQ3 is 2-geodesic pan-
cyclic.

Lemma 8 CQ3 is geodesic 2-pancyclic.

Proof: SinceCQ3 is vertex-transitive, we assume
that u = 000 and considerv as the four cases: (1)
v ∈ {001, 100}, (2) v = 010, (3) v ∈ {011, 110}, and
(4) v ∈ {101, 111}. By the symmetry ofCQ3, there
is only one vertex discussed for each case and related
geodesic cycles are listed as Table 1. ♦

For simplifying the proof of the geodesic pan-
cyclic property ofCQn, two auxiliary lemmas are
present as follows.

Lemma 9 Let u, v ∈ V (CQb1
n−1). There exist the

geodesic cyclesgC l(u, v; CQn) for all 2dCQn
(u, v)+

k + 1 + ⌈n
2 ⌉ ≤ l ≤ 2n if the following two conditions

are satisfied.

(a) 2d
CQ

b1
n−1

(u, v) + k + 2 ≤ 2n−1 and

(b) there exist the geodesic cycles
gC l0(u, v; CQb1

n−1) for all 2d
CQ

b1
n−1

(u, v) + k ≤

l0 ≤ 2n−1.

Proof: Without loss of generality, assumeu, v ∈
V (CQ0

n−1). By condition (b), there exist the geodesic
cycles gC l0(u, v; CQ0

n−1) for all 2dCQ0

n−1

(u, v) +

k ≤ l0 ≤ 2n−1. Let 〈u, Ps, v, x, P ′
c, u〉

be the geodesic cyclegC l0(u, v; CQ0
n−1) where

Ps be the s-path and〈u, P ′
c, x, v〉 be the c-

path of gC l0(u, v; CQ0
n−1). By Lemma 2,

dCQ1

n−1

(vn−1, xn−1) ≤ ⌈n
2 ⌉. By Lemma 3, there ex-

ist the paths(vn−1, xn−1)i for all ⌈n
2 ⌉, ⌈

n
2 ⌉ + 2 ≤
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i ≤ 2n−1 − 1. Thus, we can construct a cycle
C as 〈u, Ps, v, vn−1,(vn−1, xn−1)i, xn−1, x, P ′

c, u〉.
By Lemma 1,dCQn

(u, v) = dCQ0

n−1

(u, v). Then

len(P ′
c) = l0−dCQ0

n−1

(u, v)−1 = l0−dCQn
(u, v)−

1. Hence,len(C) = dCQn
(u, v) + 1 + i + 1 + (l0 −

dCQn
(u, v) − 1) = 1 + i + l0.

Note that2dCQ0

n−1

(u, v) + k ≤ l0 ≤ 2n−1 and

⌈n
2 ⌉, ⌈

n
2 ⌉+ 2 ≤ i ≤ 2n−1 − 1. Suppose thati = ⌈n

2 ⌉.
Then2dCQn

(u, v)+k+1+⌈n
2 ⌉ ≤ len(C) ≤ 2n−1 +

1 + ⌈n
2 ⌉. On the other hand,2dCQ0

n−1

(u, v) + k +

⌈n
2 ⌉ + 3 ≤ len(C) ≤ 2n if ⌈n

2 ⌉ + 2 ≤ i ≤ 2n−1 − 1.
By condition (a),2dCQ0

n−1

(u, v) + k + ⌈n
2 ⌉ + 3 ≤

2n−1+1+⌈n
2 ⌉. Hence, we can get2dCQn

(u, v)+k+
1 + ⌈n

2 ⌉ ≤ len(C) ≤ 2n by adjusting the values ofl0
andi. As a result, the geodesic cyclesgC l(u, v; CQn)
for all 2dCQn

(u, v) + k + 1 + ⌈n
2 ⌉ ≤ l ≤ 2n can be

constructed by formatC. The proof is complete. ♦

Lemma 10 Let u ∈ V (CQb1
n−1), v ∈ V (CQb1

n−1)

and u 6= vn−1. There exist the geodesic cycles
gC l(u, v; CQn) for all 2dCQn

(u, v)+ k− 1 + ⌈n
2 ⌉ ≤

l ≤ 2n if the following three conditions are satisfied.

(a) dCQn
(u, v) = d

CQ
b1
n−1

(u, vn−1) + 1,

(b) 2d
CQ

b1
n−1

(u, vn−1) + k + 2 ≤ 2n−1, and

(c) there exist the geodesic cy-
cles gC l0(u, vn−1; CQb1

n−1) for all
2d

CQ
b1
n−1

(u, vn−1) + k ≤ l0 ≤ 2n−1.

Proof: Without loss of generality, assume
u, vn−1 ∈ V (CQ0

n−1). By condition (c), there
exist the geodesic cyclesgC l0(u, vn−1; CQ0

n−1) for
all 2dCQ0

n−1

(u, vn−1) + k ≤ l0 ≤ 2n−1. Let

〈u, Ps, v
n−1〉 and 〈u, P ′

c, x, vn−1〉 be the s-path and
the c-path ofgC l0(u, vn−1; CQ0

n−1), respectively.
By Lemma 2, dCQ1

n−1

(v, xn−1) ≤ ⌈n
2 ⌉. By

Lemma 3, there exist the paths(v, xn−1)i for all
⌈n

2 ⌉, ⌈
n
2 ⌉ + 2 ≤ i ≤ 2n−1 − 1. Thus, we can

construct a cycleC as 〈u, Ps, v
n−1, v, (v, xn−1)i,

xn−1, x, P ′
c, u〉. By condition (a), dCQn

(u, v) =
dCQ0

n−1

(u, vn−1) + 1 = len(Ps) + 1 andlen(P ′
c) =

l0 − dCQ0

n−1

(u, vn−1)− 1 = l0 − dCQn
(u, v). Hence,

len(C) = dCQ0

n−1

(u, vn−1) + 1 + i + 1 + len(P ′
c) =

(dCQn
(u, v)− 1) + 1 + i + 1 + (l0 − dCQn

(u, v)) =
i + l0 + 1.

Note that2dCQ0

n−1

(u, vn−1) + k ≤ l0 ≤ 2n−1

and ⌈n
2 ⌉, ⌈

n
2 ⌉ + 2 ≤ i ≤ 2n−1 − 1. Suppose that

i = ⌈n
2 ⌉. Then2dCQ0

n−1

(u, vn−1) + k + 1 + ⌈n
2 ⌉ ≤

len(C) ≤ 2n−1 + 1 + ⌈n
2 ⌉. On the other hand,

2dCQ0

n−1

(u, vn−1) + k + ⌈n
2 ⌉ + 3 ≤ len(C) ≤ 2n

if ⌈n
2 ⌉ + 2 ≤ i ≤ 2n−1 − 1. By condition (b),

2dCQ0

n−1

(u, vn−1) + k + ⌈n
2 ⌉+ 3 ≤ 2n−1 + 1 + ⌈n

2 ⌉.

That is, we can get2dCQ0

n−1

(u, vn−1)+k+1+⌈n
2 ⌉ ≤

len(C) ≤ 2n by adjusting the values ofl0 and i.
Note thatdCQ0

n−1

(u, vn−1) = dCQn
(u, v)− 1. So the

geodesic cyclesgC l(u, v; CQn) for all 2dCQn
(u, v)+

k− 1 + ⌈n
2 ⌉ ≤ l ≤ 2n can be constructed with format

C. The proof is complete. ♦

Then,CQ4 is demonstrated to be 2-geodesic pan-
cyclic.

Lemma 11 CQ4 is geodesic 2-pancyclic.

Proof: To prove this case is very tedious. With long
and detail discussion, we have completed theoretical
proof for CQ4. Nevertheless, we do not present it in
this paper for reducing complexity. However, we can
also verify this small case directly using computer.♦

We are now ready to show the geodesic pan-
cyclicity of crossed cubes forn ≥ 3 as follows.

Theorem 1 CQn is 4-geodesic pancyclic forn ≥ 3.

Proof: We show this theorem by induction onn. By
Lemmas 8 and 11, the theorem holds forn = 3, 4.
Assume that the theorem is true for every integer
5 ≤ m < n. Let u andv be two vertices inCQn.
According to their relative position with Lemma 4,
we can divide this proof into three cases: (1)bothu

andv belong to the same subgraphCQn−1 of CQn,

(2)u ∈ V (CQb2b1
n−2) andv ∈ V (CQb2b1

n−2) if n is even,

and (3)u ∈ V (CQb3b2b1
n−3 ) and eitherv ∈ V (CQb3b2b1

n−3 )

or v ∈ V (CQb3b2b1
n−3 ) if n is odd. In addition, letk = 4

throughout the proof.

Case 1: Both u andv belong to the same subgraph
CQn−1 of CQn.

Without loss of generality, assumeu, v ∈
CQ0

n−1. By Lemma 2,2dCQ0

n−1

(u, v)+(k = 4)+2 ≤

2⌈n
2 ⌉ + 6 ≤ 2n−1 for n ≥ 5. By induction hypothe-

sis, there exist the geodesic cyclesgC l0(u, v; CQ0
n−1)

for all 2dCQ0

n−1

(u, v) + (k = 4) ≤ l0 ≤ 2n−1.
Since conditions (a) and (b) of Lemma 9 both hold,
there exist the geodesic cyclesgC l1(u, v; CQn) for
all 2dCQn

(u, v) + (k = 4) + 1 + ⌈n
2 ⌉ ≤ l1 ≤

2n. By Lemma 1,dCQ0

n−1

(u, v) = dCQn
(u, v). By
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Lemma 2,2dCQ0

n−1

(u, v) + (k = 4) + 1 + ⌈n
2 ⌉ ≤

3⌈n
2 ⌉ + 5 ≤ 2n−1 for n ≥ 5. With the geodesic cy-

cles gC l0(u, v; CQ0
n−1) and gC l1(u, v; CQn), there

exist the geodesic cyclesgC l(u, v; CQn) for all
2dCQn

(u, v) + 4 ≤ l ≤ 2n.

Case 2:u ∈ V (CQb2b1
n−2) andv ∈ V (CQb2b1

n−2) if n is
even.

Without loss of generality, assume thatu ∈
CQ00

n−2 and v ∈ CQ11
n−2. Herein, we prove that

there exist the geodesic cyclesgC l(u, v; CQn) for all
2dCQn

(u, v) + 2 ≤ l ≤ 2n and divide the proof into
two subcases: (2.1)2dCQn

(u, v) + 2 ≤ l ≤ 2n−1 +
dCQn

(u, v) and (2.2)2dCQn
(u, v)+3+⌈n

2 ⌉ ≤ l ≤ 2n.

Subcase 2.1: 2dCQn
(u, v) + 2 ≤ l ≤ 2n−1 +

dCQn
(u, v).

By Lemma 5, there exist two shortest pathsP s
0 =

〈v, vn−1, · · · , u〉 andP s
1 = 〈u, un−1, · · · , v〉 joining

u and v. All vertices onP s
0 (respectively,P s

1 ) be-
long toV (CQ0

n−1) (respectively,V (CQ1
n−1)) except

v (respectively,u). By Lemma 3, there exist the
paths(u, vn−1)i for all dCQ0

n−1

(u, vn−1) + 2 ≤ i ≤

2n−1 − 1 in CQ0
n−1. Note thatdCQ0

n−1

(u, vn−1) =

dCQn
(u, v) − 1. ThendCQn

(u, v) + 1 ≤ i ≤ 2n−1 −
1. Let C = 〈u, P s

1 , v, vn−1, (vn−1, u)i, u〉. Then
len(C) = dCQn

(u, v) + 1 + i. Thus, there exist the
geodesic cyclesgC l(u, v; CQn) for all 2dCQn

(u, v)+
2 ≤ l ≤ 2n−1 + dCQn

(u, v) with formatC.

Subcase 2.2:2dCQn
(u, v) + 3 + ⌈n

2 ⌉ ≤ l ≤ 2n.

Note thatdCQ0

n−1

(u, vn−1) = dCQn
(u, v)−1. By

Lemma 2,2dCQ0

n−1

(u, vn−1)+(k = 4)+2 ≤ 2⌈n
2 ⌉+

6 ≤ 2n−1 for n ≥ 5. By induction hypothesis, there
exist the geodesic cyclesgC l0(u, vn−1; CQ0

n−1) for
all 2dCQ0

n−1

(u, vn−1) + (k = 4) ≤ l0 ≤ 2n−1. Since
all conditions of Lemma 10 are true, there exist the
geodesic cyclesgC l(u, v; CQn) for all 2dCQn

(u, v)+
(k = 4) − 1 + ⌈n

2 ⌉ ≤ l ≤ 2n.

Moreover,2dCQn
(u, v) + (k = 4) − 1 + ⌈n

2 ⌉ ≤

2n−1 + dCQn
(u, v) for n ≥ 4. Then there exist the

geodesic cyclesgC l(u, v; CQn) for all 2dCQn
(u, v)+

2 ≤ l ≤ 2n in this case.

Case 3: u ∈ V (CQb3b2b1
n−3 ) and either v ∈

V (CQb3b2b1
n−3 ) or v ∈ V (CQb3b2b1

n−3 ) if n is odd.

With the symmetric property ofCQ3, suppose
thatu ∈ CQ000

n−3 andv ∈ CQ111
n−3. Herein, we prove

that there exist the geodesic cyclesgC l(u, v; CQn)
for all 2dCQn

(u, v) + 4 ≤ l ≤ 2n and divide the
proof into two subcases: (3.1)2dCQn

(u, v) + 4 ≤
l ≤ 2n−1 +2dCQn

(u, v) and (3.2)2dCQn
(u, v)+3+

⌈n
2 ⌉ ≤ l ≤ 2n.

Subcase 3.1: 2dCQn
(u, v) + 4 ≤ l ≤ 2n−1 +

2dCQn
(u, v).

By Lemma 6, there exists a shortest pathPs =
〈u, P0, v

n−1, v〉 joining u and v such that all ver-

tices of 〈u, P0, v
n−1〉 belong to V (CQ

{000,001}
n−3 ).

By Lemma 7, there exists the path〈u, u(1) =
un−2, P1, v(2) = (vn−2)n−1, v(1) = vn−2, v〉 join-
ing u andv of lengthdCQn

(u, v) + 2. Herein,v(1) ∈
V (CQ101

n−3) and all vertices of path〈u(1), P1, v(2)〉

belong toV (CQ
{010,011}
n−3 ).

By Lemma 3, there exist such paths(v, v(1))i

for all 3 ≤ i ≤ 2n−1 − 1 in CQ1
n−1. Let

C = 〈u, Ps, v, (v, v(1))i, v(1), v(2), P1, u(1), u〉.
Note that len(Ps) = dCQn

(u, v) and len(P1) =
dCQn

(u, v) − 1. Thenlen(C) = dCQn
(u, v) + i +

1 + dCQn
(u, v) − 1 + 1 = 2dCQn

(u, v) + 1 + i. So
we can build the geodesic cyclesgC l(u, v; CQn) for
all 2dCQn

(u, v) + 4 ≤ l ≤ 2n−1 + 2dCQn
(u, v) with

formatC.

Subcase 3.2:2dCQn
(u, v) + 3 + ⌈n

2 ⌉ ≤ l ≤ 2n.

Note thatdCQ0

n−1

(u, vn−1) = dCQn
(u, v) − 1.

By Lemma 2,2dCQ0

n−1

(u, vn−1) + (k = 4) + 2 ≤

2⌈n
2 ⌉+6 ≤ 2n−1 for n ≥ 5. By induction hypothesis,

there exist the geodesic cyclesgC l0(u, vn−1; CQ0
n−1)

for all 2dCQ0

n−1

(u, vn−1) + 4 ≤ l0 ≤ 2n−1.
Since the three conditions of Lemma 10 are all true,
there exist the geodesic cyclesgC l(u, v; CQn) for all
2dCQn

(u, v) + (k = 4) − 1 + ⌈n
2 ⌉ ≤ l ≤ 2n.

Moreover, 2dCQn
(u, v) + (k = 4) − 1 +

⌈n
2 ⌉ ≤ 2n−1 + 2dCQn

(u, v) for n ≥ 4. Therefore,
there exist the geodesic cyclesgC l(u, v; CQn) for all
2dCQn

(u, v) + 4 ≤ l ≤ 2n in this case.

This completes the proof. ♦

Furthermore, the geodesic-pancyclicity of
Crossed cubeCQn is stated as follows:

Corollary 1 2 ≤ gpc(CQn) ≤ 4 for n ≥ 3.
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4 Conclusions
In this paper, we study the existence of cycles with
some requirements inCQn. For the given two ver-
ticesu andv, the cycle is called a geodesic cycle if it
contains the shortest path betweenu andv. Clearly,
a geodesic cycle can minimize the transmission delay
from u to v. Herein, we prove thatCQn is geodesic
4-pancyclic.

The question of embedding geodesic cycles in
other important networks, like the star graphs, Twisted
cubes and M̈obius cubes still remains open.

Table 1: Summary of the geodesic cycles withu =
000 andv in CQ3.

v 〈geodesic cycle〉

001 〈000, 001, 011, 010, 000〉

001 〈000, 001, 111, 110, 010, 000〉

001 〈000, 001, 011, 010, 110, 100, 000〉

001 〈000, 001, 011, 101, 111, 110, 010, 000〉

001 〈000, 001, 111, 110, 010, 011, 101, 100, 000〉

010 〈000, 010, 011, 001, 000〉

010 〈000, 010, 110, 111, 001, 000〉

010 〈000, 010, 110, 111, 101, 100, 000〉

010 〈000, 010, 011, 101, 111, 110, 100, 000〉

010 〈000, 010, 011, 101, 100, 110, 111, 001, 000〉

110 〈000, 010, 110, 100, 000〉

110 〈000, 010, 110, 111, 001, 000〉

110 〈000, 010, 110, 111, 101, 100, 000〉

110 〈000, 010, 110, 111, 101, 011, 001, 000〉

110 〈000, 010, 110, 111, 001, 011, 101, 100, 000〉

111 〈000, 001, 111, 110, 010, 000〉

111 〈000, 001, 111, 101, 011, 010, 000〉

111 〈000, 001, 111, 101, 100, 110, 010, 000〉

111 〈000, 001, 111, 110, 100, 101, 011, 010, 000〉
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