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Abstract: This article is concerned with the method of diffusion modulation, which can be applied for various
conventional partial differential equation (PDE)-based restoration models in order to effectively restore not only
fine structures but also slow transitions. We in particular introduce the equalized net diffusion (END) which tries
to equalize the anisotropic diffusion over a wide range of image content. Although the new reformulated models
incorporating END are highly nonlinear, they can be simulated efficiently by adopting linearized stable numerical
procedures. The END-incorporated models have outperformed over the basic (conventional) PDE-based models
in both quality and efficiency.
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1 Introduction

Image denoising is an important step for various image-
related applications and is often necessary as a pre-
processing for other imaging techniques such as seg-
mentation, registration, and visualization. Thus im-
age denoising methods have occupied a peculiar po-
sition in image processing, computer graphics, and
their applications [5, 10]. A considerable research
has been carried out for the theoretical and compu-
tational understanding of partial differential equation
(PDE)-based denoising models such as the Perona-
Malik model [12], the total variation (TV) model [13],
and their variants [1, 2, 3, 15]. However, most of those
PDE-based denoising models may lose fine structures
and “natural look”, during the restoration, due to an
undesired dissipation and/or a tendency of converging
to a piecewise constant image.

In this article, we will introduce the method of
diffusion modulation in order to significantly reduce
the artifacts and efficiently suppress the noise. In par-
ticular, we will study a new mathematical formulation
such as the equalized net diffusion (END). The ob-
jective in this article is to develop an effective (non-
variational) restoration model which can restore fine
structures and slow transitions as well. Note that the
set of PDEs derived from variational approaches is
much smaller than the set of all available diffusion-
like PDEs.

The article is organized as follows. In Section 2,
we briefly review conventional PDE-based models in
image denoising: variational approaches followed by
their non-variational variants. Section 3 begins with
analyzing sources of undesired dissipation of conven-
tional PDE-based models. The same section presents
the END reformulation. In Section 4, numerical ex-
amples are presented to show effectiveness of the new
END reformulation. Section 5 concludes our develop-
ment and experiments. It has been numerically veri-
fied that the END reformulation can restore fine struc-
tures satisfactorily, outperforming over the basic (con-
ventional) PDE-based models in both quality and effi-
ciency.

In this article, images are considered as discrete
functions having real-values between 0 and 1 (by scal-
ing by a factor of 1/255). After processing, they will
be scaled back for the 8-bit display.

2 Preliminaries

This section reviews briefly variational approaches in
image denoising and their non-variational variants.

Let u0 be an observed image of the form

u0 = u + v, (1)

where u is the desired image and v denotes the noise
having a zero mean. Then a common denoising tech-
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nique is to minimize a functional of gradient:

u = arg min
u

{ ∫
Ω

ρ(|∇u|) dx+
λ

2

∫
Ω
(u0 − u)2 dx

}
,

(2)
where Ω is the image domain, ρ is an increasing func-
tion (often, convex), and λ ≥ 0 denotes the constraint
parameter. It is often convenient to transform the min-
imization problem (2) into a differential equation, called
the Euler-Lagrange equation, by applying the varia-
tional calculus [14]:

−∇ ·
(
ρ′(|∇u|) ∇u

|∇u|

)
= λ (u0 − u). (3)

For an edge-adaptive image denoising, it is required
to hold ρ′(x)/x → 0 as x →∞.

For a convenient numerical simulation of (3), the
energy descent direction may be parameterized by an
artificial time t. That is, u can be considered as an evo-
lutionary function and the corresponding evolutionary
equation can be obtained by adding ∂u

∂t on the left side
of (3).

When ρ(x) = x, the model (3) in its evolutionary
form becomes the total variation (TV) model [13]:

∂u

∂t
− κ(u) = λ(u0 − u), (TV) (4)

where κ(u) is the mean curvature defined as

κ(u) = ∇ ·
( ∇u

|∇u|

)
.

It is often the case that the constraint parameter λ is
set as a constant, as suggested by Rudin-Osher-Fatemi
[13]. In order to find the parameter, the authors merely
multiplied (4) by (u0 − u) and averaged the resulting
equation over the whole image domain Ω. Then, for
its state state,

λ = − 1
σ2

1
|Ω|

∫
Ω
(u0 − u) κ(u) dx, (5)

where σ2 is the noise variance.
Most of conventional PDE-based restoration mod-

els have shown either to converge to a piecewise con-
stant image or to lose fine structures of the given im-
age. For example, the TV model tends to converge
to a piecewise constant image. Such a phenomenon
is called the staircasing effect. In order to suppress
it, Marquina and Osher [9] suggested to multiply the
stationary TV model by a factor of |∇u|:

∂u

∂t
− |∇u|κ(u) = λ |∇u| (u0 − u). (ITV) (6)

Since |∇u| vanishes only on flat regions, its steady
state is analytically the same as that of the TV model
(4). We will call (6) the improved TV (ITV) model, as
called in [11]. Such a non-variational reformulation
turns out to reduce the staircasing effect successfully;
however, it is yet to be improved for a better preserva-
tion of fine structures.

To form another variant, we set ρ(x) = x2−q, 0 ≤
q < 2, in (3) and multiply the resulting equation by
|∇u|q [8]:

∂u

∂t
− |∇u|q ∇ ·

( ∇u

|∇u|q
)

= β (u0 − u), (CCAD)

(7)
where β = λ |∇u|q/(2− q). The second-order differ-
ential operator in (7) turns out to be closely related
to that of the Perona-Malik model [12], in particu-
lar when q → 2. Thus we will call (7) the convex-
concave anisotropic diffusion (CCAD). The CCAD
model can be implemented as a stable numerical al-
gorithm for all q ∈ [0, 2) [8]. It has been numerically
verified that for 1 < q < 2, the CCAD model is supe-
rior to the ITV model, a CCAD model with q = 1.

Now, we will consider a way of choosing a vari-
able constraint parameter for e.g. the TV model, which
has motivated the method of diffusion modulation to
be presented in the next section.

As an alternative to (5), one can get a variable
parameter λ = λ(x) by averaging locally:

λ(x) = − 1
σ2
x

1
|Ωx|

∫
Ωx

(u0 − u) κ(u) dx,

where Ωx is a neighborhood of x and σ2
x denotes the

local noise variance measured over Ωx. Then, the
right side of the above equation can be approximated
as

λ(x) ≈ 1
σ2
x

‖u0 − u‖x · ‖κ(u)‖x, (8)

where ‖·‖x denotes a local average over Ωx. Thus the
TV model (4), when its stationary equation is scaled
by 1/‖κ(u)‖x and regularized by a constant ε0 > 0,
can be rewritten as

∂u

∂t
− 1
‖κ(u)‖x + ε0

κ(u) =
1
σ2
x

‖u0 − u‖x (u0 − u).

(9)
The steady state of (9) must be essentially the same
as that of the TV model (4) incorporating (8), when
ε0 is small. However, in practice, their numerical so-
lutions differ a lot from each other. Note that the nu-
merical simulation is usually terminated much earlier
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than reaching the steady state. The non-variational re-
formulation (9) is more explicit and direct than the
original variational model (4), in the control of both
diffusion and constraint.

Note that the above explicit reformulation (9) can
be applied for various other models including the ITV
model (6) and the CCAD model (7).

3 The Method of Diffusion Modula-
tion

In this section, we will present the method of diffusion
modulation, introducing an effective denoising model
which consists of three components: the diffusion op-
erator, the modulator, and the constraint term. We first
analyze sources of undesired dissipation for conven-
tional PDE-based denoising models.

3.1 Sources of undesired dissipation

For simplicity, we exemplify the TV model (4); its
corresponding noise (residual) is v = u0− u. Thus, it
follows from (4) the associated residual equation

∂v

∂t
+ λ v = −κ(u). (10)

Although the given image u0 is piecewise smooth and
is the same as the desired image at t = 0, i.e., v(t =
0) ≡ 0, the residual at t > 0 becomes positive or neg-
ative at pixels where the image is concave or convex,
respectively. Thus the solution of the TV model at
t > 0, u(t) = u0 − v(t), must involve undesired dis-
sipation wherever its curvature is nonzero; the larger
the curvature is (in modulus), the more undesired dis-
sipation occurs.

The above observation for the TV model can be
applied to PDE-based denoising models of the form

∂u

∂t
+ Su = Q(u0 − u), (11)

where S is a diffusion operator and Q denotes a non-
negative constraint term. (With appropriate choices of
S and Q, the model (11) can express most of denois-
ing models, including aforementioned ones.)

We summarize the observation as follows: The
solution of (11) must incorporate more undesired dis-
sipation at pixels where the diffusion magnitude |Su|
is larger. This is an unwanted property and a ma-
jor source of undesired dissipation for conventional
PDE-based denoising models, with which fine struc-
tures can be easily deteriorated.

3.2 The equalized net diffusion (END)

In order to overcome the drawback of conventional
PDE-based models, we may consider the following
reformulation of (11), of which the diffusion opera-
tor is explicitly modulated by a function of diffusion
operator itself:

∂u

∂t
+ M(Su) Su = R (u0 − u), (12)

where M is a positive function (a modulator) and R
denotes an appropriate constraint term. We will call
M(Su) Su the net diffusion of the model (12), and
denote it by N(Su).

The purpose of the modulator M is to suppress
the undesired excessive dissipation at pixels of large
diffusion magnitude |Su|; a strategy will be discussed
below.

An effective modulator can be defined to impose
the net diffusion approximately equal over a wide range
of |Su| ≥ s0 > 0, for some s0. However, the net
diffusion function N(s) (:= M(s)s) must be increas-
ing and origin-symmetric. Note that the model (12)
converges in the direction in which the net diffusion
decreases (in modulus); the convergence must intro-
duce denoising, i.e., Su becomes smaller (in modu-
lus); which requires N to be increasing. The origin-
symmetry of N implies that N(−s) = −N(s), with
which N becomes equally diffusive for both concav-
ities (up and down). Such an equalized net diffusion
(END) function can be defined e.g. as

N(s) = M(s)s =
γ

1 + η |s|
s, (13)

for some positive constants η and γ. See Figure 1,
where |N(s)| evaluates (almost) the same values ex-
cept on smooth regions (where |s| is small) and there-
fore the function N may introduce an equalized net
diffusion in practice. Incorporating (13), the model
(12) can be rewritten as follows:

∂u

∂t
+

γ

1 + η |Su|
Su = R (u0 − u). (END) (14)

We will call it the equalized net diffusion (END) model
of (11).

Remark. The above method of diffusion modula-
tion is not completely new. The ITV model is based
on such a method in which the diffusion is modulated
to suppress the staircasing effect. On the other hand,
END reformulates the regularization framework in or-
der to preserve not only fine structures but also slow
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Fig. 1. The net diffusion function N(s) in (13) for
some choices of η and γ.

transitions satisfactorily. Note that the END model is
no longer conservative, i.e., there is no mathematical
guarantee that the average gray value of the input im-
age is the same as that of the outcome. However, since
the conventional PDE-based models tend to lose fine
structures (Section 3.1) and easily introduce undesired
dissipation, the END model has resulted in superior
images; see numerical experiments in Section 4.

3.3 Parameters η and γ

In the remainder of the section, we will consider a
strategy for the selection of appropriate η and γ. Let
un−1 be the solution in the last time level. Then the
constants η and γ for the computation of un can be
determined as

(a) N(T ) = χ
γ

η
, 0 < χ < 1,

(b) M(T ) = 1,
(15)

for some threshold T > 0. The equation (15.a) deter-
mines the sharpness of N near the origin; it becomes
sharper, as χ → 1. On the other hand, (15.b) implies

|N(s)| < |s| for |s| > T,

|N(s)| > |s| for |s| < T.
(16)

Thus the net diffusion, N(Su), is smaller than the
original diffusion (Su) at pixels where the image con-
tent changes rapidly (|Su| > T ), while it becomes
enlarged on slow transitions.

The equations in (15) can be easily solved for η
and γ, as follows:

η =
χ

1− χ
· 1
T

, γ = 1 + η T =
1

1− χ
. (17)

Then, it follows from the above that

T ≤ |N(s)| ≤ γ

η
= T

1
χ

, for |s| ≥ T. (18)

Thus the net diffusion on oscillatory regions (|Su| ≥
T ) can differ only by a factor of 1/χ. The parameter
χ must be large enough to try to equalize the net diffu-
sion on oscillatory regions; however, it should not be
too large, because otherwise the (almost flat) net dif-
fusion will hardly be effective in denoising. We will
set χ = 0.85 ∼ 0.95.

The threshold T must be small enough to equal-
ize the net diffusion on every interesting oscillatory
region including edges and textures. It has been nu-
merically verified that T can be chosen to be an aver-
age of |Su|, S0:

T = S0 :=
( 1
|Ω|

∫
Ω
|Su|2 dx

)1/2
. (19)

Since the diffusion magnitude |Su| evaluated from os-
cillatory regions is typically larger than the L2-average
S0, the threshold T in (19) suffices to equalize the net
diffusion for regions of fine structures. For example,
for Su = −|∇u|q∇·(∇u/|∇u|q), 0 ≤ q < 2, the av-
erage S0 is often evaluated between 0.01 and 0.3 for
typical natural images. (The images have been scaled
to have values in [0, 1].) Let S0 = 0.1 and select
χ = 0.9. Then it follows from (17), (18), and (19)
that η = 90, γ = 10, and

0.1 ≤ |N(s)| ≤ 0.111 · · · , for |s| ≥ S0 = 0.1.

Note that the choice of T in (19) keeps an average of
the modulator M to be one.

The above arguments for the choice of η and γ
can be summarized as follows:

1. Select a constant χ, 0 < χ < 1.

2. Compute the L2-average of |Su|, S0:

S0 =
( 1
|Ω|

∫
Ω
|Su|2 dx

)1/2
. (20)

3. Compute the parameters η and γ:

η =
χ

1− χ
· 1
S0

, γ =
1

1− χ
. (21)

Thus END requires the user to select only a single
parameter, χ, which determines the sharpness of the
net diffusion function N . (One can set χ = 0.85 ∼
0.95, in practice.) With the resulting parameters η and
γ, the average of the diffusion modulator M becomes
one (independently on the selection of χ, 0 < χ < 1).
Note that when χ = 0, we have M(s) ≡ 1 and there-
fore the END model (14) turns out to be the conven-
tional model (11).
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(a) (b)

Fig. 2. The Lenna: (a) The original image and (b) a noisy image contaminated by a Gaussian noise of PSNR=22.8
(dB).

Table 1. A PSNR analysis.
q = 0.0 q = 0.5 q = 1.0 q = 1.4 q = 1.8

CCAD[q] 27.0 27.2 27.8 28.2 28.3
END-CCAD[q] 29.8 29.8 30.1 30.2 30.3

4 Numerical Experiments

For numerical experiments, we select CCAD (7) for
the basic model; in its END-incorporated model (14),
we set χ = 0.9. The constraint parameters β and R,
respectively in (7) and (14), are chosen utilizing the
so-called texture-free residual parameterization sug-
gested in [8]. For an efficient simulation of the mod-
els, we adopt an incomplete Crank-Nicolson alternat-
ing direction implicit (CN-ADI) time-stepping itera-
tive procedure [4, 7]. The CN-ADI iteration is stopped
along with the stopping criterion:

‖un − un−1‖∞ < 0.01.

For simplicity, the noise is considered to be Gaussian.
To show effectiveness of the new model, we be-

gin with the Lenna image, as depicted in Figure 2.
A Gaussian noise of PSNR=22.8 (dB) is incorporated
into Figure 2(b). In the following, the CCAD model
with a selected q will be denoted by CCAD[q] and its
corresponding END model by END-CCAD[q].

Table 1 presents PSNRs for the restored images,
from Figure 2(b), by CCAD[q] and END-CCAD[q]

for various q’s. Note that CCAD[0] becomes the lin-
ear heat equation, while CCAD[1] is the ITV model
(6). The CCAD model can restore a better image as q
increases; it has been numerically verified that the best
result can be obtained when q = 1.5 ∼ 1.9. As one
can see from the table, the END reformulation has im-
proved the restoration quality more dramatically than
different choices of basic models. Note that the PSNR
of END-CCAD[0], the END-incorporated linear heat
flow, is larger than those of all CCAD models (not in-
corporating END). In practice, the END incorporation
increases the computational cost by 30-50% per iter-
ation. However, the END models have converged in
2-5 CN-ADI iterations for all cases we have tested (in-
cluding those not presented in this article); the END
reformulation is often more efficient.

See [6] for more examples and analysis which
demonstrate effectiveness of the END reformulation.

5 Conclusions

Conventional PDE-based restoration models may lose
important fine structures, during image denoising. In
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order to significantly reduce the artifacts, we have stud-
ied the method of diffusion modulation, particularly
the equalized net diffusion (END). The reformulated
models incorporating END are highly nonlinear; how-
ever, they can be implemented as a stable and effi-
cient computational algorithm by applying linearized
Crank-Nicolson alternating direction implicit
(CN-ADI) method. It has been numerically verified
that the newly reformulated models can restore not
only fine structures but also slow transitions satisfac-
torily, just in 2-5 linearized CN-ADI iterations, out-
performing over the conventional PDE-based restora-
tion models in both quality and efficiency.
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