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Abstract: The paper analyzes the scaling laws of the FX markets by applying a recently introduced
distribution-based class of estimators of the self-similarity parameter. Instead of evaluating specific
moments, the scaling of the whole distribution is studied by pairwise comparisons of time horizons. The
analysis shows that.
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1 Introduction

The analysis of the scaling properties of finan-
cial markets is attracting a growing interest for
both theoretical (no preferred time scale, continu-
ous time formulation, universality and parsimony)
and practical (stability under aggregation, small
number of parameters, analytical simplicity) rea-
sons. Since the pioneering work by [18], a huge
number of contributions has provided empirical
evidence of multi-scaling in finance (see, e.g., [20],
[5], [11], [24], [25], [24], [16] and [14] for the FX
markets; [9], [12], [3], [4], [22] and [26] for the
stock markets and [1] and [21] for the future mar-
kets).

A renewed interest towards the scaling prop-
erties of volatility has followed the Basel Accords,
which have reaffirmed the square—root—of—time
rule (correct only under self-similarity with pa-
rameter 12) as a proxy for estimating volatility on
different time horizons (see [19], [7]) and, ante lit-
teram, [8] for an analysis of the drawbacks of this
rule of thumb).

Indeed, [10] use scaling analysis to probe the
different degree of markets development.

In finance literature, using different tech-
niques, basically two types of scaling behaviours
are studied: the scaling of some volatility mea-
sures − tipically variance or absolute moments
of the returns − as a function of the time inter-
val and, once the time interval has been fixed, the
scaling behaviour of the tails of the distribution of
returns as a function of the size of the variation
[6]. To characterize the scaling properties of fi-
nancial markets, empirical tests generally use the

rescaled range analysis (introduced by [15] and
modified by [17]), the multiaffine analysis [23],
the more recent Detrended Fluctuation Analy-
sis ([23] and [2]), the ARFIMA estimation by
exact maximum likelihood, the moving average-
like analysis methods, the Average Wavelet Coef-
ficient Method (see, e.g. [13]).

In this paper we analyse the scaling behaviour
of the daily rates of four currencies (Canadian dol-
lar, Japanese yen, Swiss franc and British pound)
against U.S. dollar in the period 1972-2006. The
original idea underlying this work is the use of
a recently introduced distribution-based method
which - never used before, at least in the authors’
knowledge - provides a very immediate represen-
tation of the scaling relation between time hori-
zons.

2 Self-similarity and scaling

2.1 Theoretical background

Let us shortly recall the basic definition of
(strong) self-similarity which will be useful in the
following.

Definition 1 The continuous time, real-valued
process {X(t), t ∈ T}, with X(0) = 0, is self-
similar with index H0 > 0 (concisely, H0-ss) if,
for any a ∈ R+ and any integer k such that
t1, ..., tk ∈ T , the following equality holds for its
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finite-dimensional distributions

{X(at1),X(at2), ...,X(atk)} d
=

d
= {aH0X(t1), a

H0X(t2), ..., a
H0X(tk)} (1)

As equality (1) implies

E(|X(t)|q) = tH0qE(|X(1)|q) (2)

self-similarity is usually tested by analysing the
scaling behaviour of the sample (absolute) mo-
ments of X(t) but this approach leads to weak
conclusions because the reverse implication (from
(2) to (1)) is not necessarily true.

Bianchi (2004) reformulates definition (1) in
an equivalent way by introducing a proper met-
ric on the space of the rescaled probability dis-
tribution functions (pdf’s) as follows. Let A be
any bounded subset of R+, a = min (A) and
A = max(A) <∞, for any a ∈ A, consider the k-
dimensional distribution Φ of the a-lagged process
X(at). Equality (1) becomes

Φ (a)(x) = ΦaH0 (1) (x) (3)

where X(a) = (X(at1), ...,X(atk)) and x =
(x1, ..., xk) ∈ Rk. It follows

Φa−H (a)(x) =

=Pr
¡
a−HX(at1) < x1, ..., a

−HX(atk) < xk
¢
=

=by H0-ss=
=Pr

¡
aH0−HX(t1) < x1, ..., a

H0−HX(tk) < xk
¢
=

= ΦaH0−H (1)(x) =

=Pr
¡
X(t1) < aH−H0x1, ...,X(tk) < aH−H0xk

¢
=

= Φ (1)(a
H−H0x)

(4)

So, denoted by ρ the distance function in-
duced by the sup-norm k·k∞ on the space ΨH of
the (absolutely continuous) k-dimensional pdf’s
of {a−HX(at)} with respect to the set A, the di-
ameter of the metric space (ΨH , ρ)

δk(ΨH) = sup
x∈ k

sup
ai,aj∈A

¯̄̄
Φa−Hi (ai)

(x)− Φa−Hj (aj)
(x)
¯̄̄

(5)

measures the discrepancy among the rescaled dis-
tributions. If self-similarity holds then, for any
H 6= H0

1, by (4), one can trivially notice that

sup
ai,aj∈A

¯̄̄
Φa−Hi (ai)

(x)− Φa−Hj (aj)
(x)
¯̄̄
=

=
¯̄̄
Φ −H ( )(x)− Φ −H ( )(x)

¯̄̄
(6)

1For an H0-ss process, when H = H0 it is trivial to

check that sup
ai,aj∈A

Φ
a−Hi (ai)

(x)−Φ
a−Hj (aj)

(x) collapses

to zero, whatever ai and aj .

and relation (5) reduces itself to the well-known
statistics of Kolmogorov-Smirnov, enriching the
self-similarity analysis with an inferential sup-
port.

2.2 Scaling surfaces

In this work we observe that, given two any lags
a and b, for a true self-similar process it follows
from (3) that

Φa−H0 (a)(x) = Φb−H0 (b) (x)

and, combining this with (6), (5) can be written
as

δk(ΨH) = sup
x∈ k

¯̄̄
Φb−H (b)(x)− Φa−H (a)(x)

¯̄̄
.
(7)

The last relation represents a useful form for
testing the scaling properties of a time series by
means of the pairwise comparisons of the time
horizons (a, b). So, from a geometrical view-
point, the idea consists in associating at each pair
(a, b) with a < b for a, b ∈ A the third coordi-
nate given by the estimated self-similarity para-
meterH0(a, b) whenever the null hypothesis of the
Kolmogorov-Smirnov test (identity of the rescaled
distributions Φb−H (b)(x) and Φa−H (a)(x)) is not
rejected at a given p-level.

In an equivalent way, we can see the result
in form of a strictly lower triangular matrix dis-
playing the maximum horizons on the rows and
the minimum horizons on the columns and whose
elements are the parameters H0’s.

Basically, in our approach the definition of
self-similarity is not required to hold for any time
horizon; we will be content to determine which
(if any) parameter H0 minimizes the distance (7)
to such an extent to be statistically negligible.
Therefore, once the set A has been fixed, the
analysis of the shape of the surface drawn by the
points (a, b,H0) will provide information about
the nature of the time series: a H0-high plane will
indicate that the process is truly H0 self-similar
(relatively to the set A); on the contrary, a jagged
surface is expected to be generated by a multiscal-
ing process. Just as an example, Figure 1 repro-
duces the scaling surface of the increments of a
standard Brownian motion, which is self-similar
with parameter 12 , and − as expected − the sur-
face is rather flat just around the value 1

2 . Even
if with a worse approximation due to the gener-
ators, analogous results are obtained with other
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Figure 1: Scaling surface of a sampled Brownian mo-
tion

self-similar processes with dependent increments
such as the fractional Brownian motion of para-
meter H0 6= 1

2 .

Finally, notice (also in Figure 1) the spurious
effect which appears when the two lags assume
close high values: in these cases the estimated
parameter H0 tends to polarize at the extreme
values of the scale in a very unstable way. If
the process has continuous trajectories and self-
similar stationary increments, this effect can be
easily explained reasoning as follows. Given two
sufficiently close and large lags a and b = a + �,
for �→ 0, by self-similarity one has³
1 +

�

a

´H0

[X(t+a)−X(t)] d
= X(t+a+�)−X(t)

but, by continuity lim�→0X(t+a+ �) = X(t+a),
hence the distribution of the increments {X(t +
a) − X(t)} will be very close to that of the in-
crements {X(t + a + �) − X(t)}. The larger is
a, the closer to 1 is

¡
1 + �

a

¢
and the exponent H0

becomes negligible in order to guarantee the iden-
tity of the distributions, for the continuity and the
large values of a predominate over the values of
H0 itself.

3 Empirical application

3.1 Dataset and methodology

The exchange rate of four currencies against the
U.S. dollar (base currency) has been analysed.

In detail, the dataset concerns the daily quotes
of the Canadian Dollar, the British Pound, the
Swiss Franc and the Japanese Yen from January
3th, 1972 to September 6th, 2006, for an amount
of 8,728 observations. The values, provided by
Prof. Werner Antweiler at UBC’s Sauder School
of Business, University of British Columbia, re-
fer to the quotes of the noon spot rates (Eastern
Time) as determined by trades in the Toronto
interbank market and are expressed in volume
notation2. For each time series the daily log-price
variations have been calculated and considered as
input for the scaling analysis. The lags a and
b have been taken in the set of time horizons
A = {1, 2, ..., 100} corresponding to five months
of the trading calendar and the null hypothesis
has been tested for α = 0.05 and α = 0.01.
The scaling surfaces are obtained by filtering only
those estimated H0’s for which the correspond-
ing diameter (7) is below the critical value of the
Kolmogorov-Smirnov statistics.

For each currency, the whole time series, the
first 4, 000 and the last 4, 000 datapoints have
been separately examined in order to check the
stability of the results.

3.2 Discussion of result

Figures 2(a)—(d) summarize the results of our
analysis. For all the currencies the scaling sur-
faces are jagged indicating that, when the test
has passed, the estimated self-similarity parame-
ter H0 heavily changes from point to point; the
holes of the scaling surfaces denote that the val-
ues of the corresponding diameter (7) exceed the
critical threshold, given the confidence level α.
This behaviour sizes the multiscaling nature of the
analysed series, which show significantly differ-
ent self-similarity parameters when different pairs
of time horizons are considered. Nevertheless, in
spite of the complexity of this behaviour, the tech-
nique we have used is somewhat punctual because
it does not limit itself to assess the existence of
a plethora of scaling exponents, but attaches its
own exponent to each chosen pair of horizons.

2According to the rule schemed in Northern America,
the values express the number of units of the target cur-
rency per unit of the base currency.
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Figure 2. Scaling surfaces of (a) CAN/USD, (b)

CHF/USD, (c) GPB/USD, (d) YEN/USD

Dividing the
whole time series into two separate subperiods,
observations 1 − 4, 000 (01/04/72;12/17/87) and
4, 728− 8727 (11/08/90;09/06/06), reveals inter-
esting features of the scaling surfaces: in all the
analysed series the estimated H0’s are in the first
subperiod higher than in the second one, for which
asymptotically (for large a and b) they seem to
converge to 1

2 (Figures 3-?). As high values of H
indicate more regular behaviours that can gener-
ate arbitrage and values close to 1

2 are associated
to pure random processes that exclude arbitrage
opportunities, from a financial viewpoint the dif-
ferent shape of the scaling surfaces in the two sub-
periods can be interpreted as a signal of improve-
ment of the efficiency of the FX markets in the
last years.

Scaling surface at α = 0.01 of the CAN/USD. (above)
first 4,000 datapoints (bottom) last 4,000 datapoints
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Scaling surface at α = 0.01 of the CHF/USD. (above)
first 4,000 datapoints (bottom) last 4,000 datapoints

Scaling surface at α = 0.01 of the GPB/USD. (above)
first 4,000 datapoints (bottom) last 4,000 datapoints

Scaling surface at α = 0.01 of the YEN/USD. (above)
first 4,000 datapoints (bottom) last 4,000 datapoints

4 Conclusion

In this paper we have proposed to test the scaling
properties of financial time series by using a re-
cently introduced estimator of the self-similarity
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parameter based on the whole distribution in
place of the traditional approaches which gener-
ally refer to specific moments.

As shown in the previous section, the tech-
nique allows in a very simple way to assign at
each pair of fixed time horizons the exponent H0

(if any) which makes the two rescaled distribu-
tions identical at a given p-value. In spite of its
simplicity, the method looks very useful in many
circumstances: for example, when investors have
to scale the volatility between two time horizons a
and b (e.g. from daily volatility to weekly volatil-
ity), the rule of thumb consists in multiplying the
base volatility a (1 day) by the square root of b
(5, number of trading days in a week). This rule,
based on the assumption of self-similarity with
parameter 12 of the price process, is well known to
be misleading (see e.g. [7], [8] or [19]) and can be

easily replaced by the following σb ∼=
¡
b
a

¢H0(a,b)
σa,

whereH0(a, b) is the proper scaling index that can
be calculated using the above procedure.

Possible further development will concern
how to manage the spurious effect which produces
the unstable values of the estimated H0 on the
subdiagonals.
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[7] Dańıelsson J., Zigrand J.P. (2004), On time-
scaling of risk and the square-root-of-time
rule, FMG Discussion Paper dp439, London
School of Economics and Political Science,
London, United Kingdom

[8] Diebold F.X., Hickman A., Inoue A., Schuer-
mann T. (1997), Converting 1-Day Volatility
to h-Day Volatility: Scaling by is Worse than
You Think, Penn Institute for Economic Re-
search Working Papers, 97-030

[9] Di Matteo T. (2006), Multi-Scaling in Fi-
nance, to appear in Quantitative Finance

[10] Di Matteo T., T. Aste and M.M. Dacorogna
(2005), Long-term memories of developed
and emerging markets: Using the scaling
analysis to characterize their stage of devel-
opment, Journal of Banking & Finance, 29,
827—851

[11] Fang H., K.S. Lai and M. Lai (1994), Fractal
structure in currency futures price dynamics,
Journal of Futures Markets, 14, 2, 169-181

[12] Gopikrishnan P., Plerou V., Amaral L. A.
N., Meyer M. & Stanley H. E. (1999), Scaling
of the distribution of fluctuations of financial
market indices, Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 60, 5, 5305—5316
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