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Abstract: - We are interested in solving the prefix problem of n inputs using p < n processors on completely 

connected distributed-memory multicomputers (CCDMMs). This paper improves a previous work in three 

respects. First, the communication time of the previous algorithm is reduced significantly. Second, we show that 

p(p + 1)/2 < n is required for the new algorithm and the original one to be applicable. Third, we argue that for the 

new algorithm to be faster than other algorithms run on CCDMMs, n > p3 is required. The new algorithm can 

achieve linear speedup and is cost-optimal when n = Ω(p2 log p). 
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1   Introduction 
Given n inputs x

1
, x

2
, ... , x

n
 and an associative binary 

operation, denoted by o, the prefix computation 

problem, or simply the prefix problem, is to compute 

the n prefixes  

y
i
 = x

1
 o x

2
 o ... o x

i
, 1 ≤ i ≤ n. 

In this paper, we will use x
i
’s and y

i
’s to represent 

inputs and outputs, respectively. Prefix computation 

has been extensively studied for its broad 

applications [1-3, 8, 10, 12, 14, 21-25, 46, 48, 50, 51]; 

it is used, for example, in biological sequence 

comparison, cryptography, loop parallelization, the 

solution of linear recurrences, carry-look-ahead 

addition, polynomial evaluation and interpolation, 

and digital filtering. The binary operation o can be a 

simple Boolean operation or a time-consuming 

multiplication of matrices [11]. Because of its 

importance, prefix computation has been proposed as 

a basic operation [4]. In fact, many parallel prefix 

algorithms have been proposed [1, 7, 9, 17, 22, 24, 26, 

27, 33, 38, 39, 41-43], and many parallel prefix 

circuits have also been designed [3, 5, 6, 13, 16, 19, 

23, 24, 27-30, 34-37, 40, 44, 49-51]. In particular, 

Egecioglu and Kog give a computation-efficient 

parallel prefix algorithm (henceforth named EK) for 

the completely connected distributed-memory 

multicomputer (CCDMM) model with p < n 

processing elements (PEs) [11]. 

With half-duplex communication, each PE of a 

CCDMM can only send a message to or receive a 

message from any other PE in a communication step. 

The half-duplex model of communication is very 

important [20]. Although a PE of a modern 

multicomputer can send and receive in the same step, 

it usually takes longer to send and receive in a step 

than to send only or receive only due to the inherent 

hardware capability and software overhead [18, 31, 

45]. On a p-PE system, the half-duplex 

communication ensures that no more than p/2 

messages are communicated in a communication step 

and thus a communication step will not take too much 

time.  

In this paper, we also solve the prefix problem of 

n input items on the same CCDMM. This paper first 

presents an algorithm that improves on the 

communication time of Algorithm EK on the same 

half-duplex CCDMM model. Then, we show how the 

communication time can be further reduced with a 

stronger communication capability. The 

communication time is reduced from Θ(n) = Ω(p3) of 
Algorithm EK to Θ(p log p). These algorithms each 

take 2n(p + 1)/(p(p + 1) + 2) – 1 computation steps. 

We then take two different approaches to show that 

merely p < n is not enough for these algorithms to be 

applicable; exactly, p(p + 1)/2 < n is required. We 

also show that for these algorithms to be faster than 

the other CCDMM algorithms, n > p3 is required. 

Thus, the communication time is reduced from Θ(n) 

= Ω(p3) to Θ(p log p).  

Section 2 presents the new prefix algorithm for 

the half-duplex CCDMM. Section 3 uses the 

broadcast and scatter collective communication 

operations to further reduce the communication time. 

Section 4 shows that Algorithm EK and our new 

algorithm require a stricter condition than p < n, and 

derives a much stronger condition of p(p + 1)/2 < n. 
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Section 5 compares the new algorithm with other 

CCDMM algorithms. Section 6 concludes this paper. 

 

 

2   Parallel Prefix for the CCDMM 
In this section, we describe a parallel algorithm that 

solves the prefix problem of n inputs using p < n PEs 

(exactly, as will be shown in a later section, n > p(p + 

1)/2). The p PEs will be represented by P
1
, P

2
, ... , and 

P
p
. To simplify the presentation, l:m is used to 

represent the result of computing x
l
 o x

l+1
 o ... o x

m
, 

where l ≤ m. Like Algorithm EK, it is assumed that 

the time required to perform a binary operation is 

greater than that required to transfer a message 

between PEs. The algorithm has two phases. In the 

first phase, we partition the inputs x
1
, x

2
, ... , x

n into 

two parts L
1
 = (x

1
, x

2
, ... , x

v
) and L

2
 = (x

v+1
, x

v+2
, ... , x

n
), 

where v = α
p
n and 0 < α

p
 < 1. The value of v is 

chosen to make the number of computation steps 

required by using the first p – 1 PEs to concurrently 

compute the prefixes of the first v inputs in L
1
 equal 

to the number of computation steps required by the 

last PE, P
p
, to compute the prefixes of the n – v inputs 

in L
2
. For ease of presentation, we will ignore the 

ceiling function.  

The same algorithm is used recursively for the 

first p – 1 PEs to compute the prefixes of L
1
 in 

parallel; in the mean time, we use the last PE to 

compute the prefixes of L
2
 sequentially. In the second 

phase, initially y
v
 = 1:v is sent from P

p–1
 to all the 

other PEs. Then, we equally distribute the values z
v+i
 

= (v + 1):(v + i), i = 1, 2, ... , n – v, in P
p
 among all the 

p PEs; thus, each PE contains (n – v)/p values. Finally, 

the p PEs compute y
v+i
 = y

v
 o z

v+i
, i = 1, 2, ... , n – v, in 

(n – v)/p parallel computation steps. 

Two measures are used to evaluate the algorithm. 

The first measure, denoted by Cp(n), is the number of 

computation steps required by using p PEs to 

compute the prefixes of n inputs. The second measure, 

denoted by Rp(n), is the number of communication 

steps required. To help understand the algorithm and 

derive Cp(n) and Rp(n), we will consider the cases p = 

2 and p = 3. 

First, consider the case p = 2. In the first phase, 

we assign L
1
 = (x

1
, x

2
, ... , x

v
) to P

1
 and L

2
 =               

(x
v+1
, x

v+2
, ... , x

n
) to P

2
. Then, P

1
 and P

2
 compute the 

prefixes of L
1
 and L

2
 independently. By the rule of 

choosing v, we make the number of computation 

steps required by P
1
 and P

2
 to compute the prefixes of 

L
1
 and L

2
, respectively, equal to each other. That is, 

v – 1 = (n – v) – 1. Therefore, v = n/2. After this phase, 

we will have all the prefixes of the L
1
 and L

2
 in P

1
 and 

P
2
, respectively. Let  

z
v+i
 = (v + 1):(v + i), i = 1, 2, ... , n/2, 

be the n/2 prefixes computed in P2. 

In the second phase, we send y
v
 = 1:v from P1 to 

P2 in a communication step, and send the first half of 

the prefixes computed in P2, i.e., zv+1, zv+2, ... , z3n/4, 

from P2 to P1
 in another communication step. Then, 

P1 can use yv and zv+1, zv+2, ... , z3n/4, and P2 can use yv 

and z3n/4+1, z3n/4+2, ... , zn to compute the final prefixes 

y
v+1
,
 
y
v+2
, ... , y

n
. Since the first phase takes n/2 – 1 

computation steps and the second phase takes n/4 

computation steps, the total number of computation 

steps is  

C2(n) = n/2 – 1 + n/4 = 3n/4 – 1. (1) 

Clearly, the number of communication steps is  

R2(n) = 1 + 1 = 2. 

Now consider the case p = 3. In the first phase, we 

assign L1 = (x1, x2, ... , xv) to P1 and P2, and assign L2 = 

(x
v+1
, x

v+2
, ... , xn) to P3. Then P1 and P2 use the 

algorithm just described for p = 2 to compute the 

prefixes of L1 in parallel; they take C2(v) computation 

steps. At the same time, P3 computes the prefixes of 

L2 sequentially, taking (n – v) – 1 computation steps. 

By the rule of choosing v,  

        C2(v) = (n – v) – 1.  (2) 

Using Eqs. (1) and (2), we have 

v = 4n/7. 

Note that the prefixes computed in P3 are  

z
4n/7+i

 = (4n/7 + 1):(4n/7 + i), i = 1, 2, ... , 3n/7. 

In the second phase, we first send y
4n/7

 = 1:4n/7 

from P2 to both P1 and P3 in 2 communication steps. 

Then, we equally distribute the 3n/7 prefixes in P3 

among all the three PEs; in other words, it takes 2 

more communication steps to send the prefixes z
4n/7+1

, 

z
4n/7+2

, ... , z
5n/7

 from P3 to P1, and send the prefixes 

z
5n/7+1

, z
5n/7+2

, ... , z
6n/7

 from P3 to P2. Subsequently, 

these three PEs can use y
4n/7

 and the distributed 

prefixes to compute the final prefixes concurrently in 

n/7 computation steps. Thus,  

C3(n) = C2(4n/7) + n/7 = 3n/7 – 1 + n/7 = 4n/7 – 1, 

R3(n) = R2(α3n) + 2 + 2 = 6. 

It is straightforward to obtain the following two 

equations from [11]: 

  Cp(n) = 2n(p + 1)/(p(p + 1) + 2) – 1,  (3) 

  v = n(p(p – 1) + 2)/(p(p + 1) + 2).  (4) 
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The values of Cp(n) and v are the same as those of 

Algorithm EK. In contrast, the number of 

communication steps Rp(n) is reduced. Note that Rp(n) 

is the sum of the following: (1) the number of 

communication steps, Rp–1(v), required by the first  

p – 1 PEs to compute the prefixes of v inputs, (2) the 

number of communication steps required by Pp–1 to 

send y
v
 = 1:v to the other p – 1 PEs, and (3) the 

number of communication steps taken to equally 

distribute among all the p PEs the n – v prefixes 

computed by Pp. So, 

    Rp(n) = Rp–1(v) + (p – 1) + (p – 1) 

 = Rp–1(αpn) + 2p – 2  

 = Rp–2(αp–1αpn) + 2(p – 1) – 2 + 2p – 2  

 = R2(α3α4 ... αpn) + ∑
=

−
p

i

i
3

)22( . 

Since R2(n) = 2 for n > 1, we have Rp(n) = p(p – 1). 

Let us compare Rp(n) with  

REK = np(p – 1)/(p(p + 1) + 2) + p(p – 1)/2,  

which is the number of communication steps taken 

by Algorithm EK. As we will see in Section 4, the 

two algorithms can only be applicable under the 

condition n ≥ p(p + 1)/2 + 1. If n = p(p + 1)/2 + 1, then 

Rp(n) = REK. If n > p(p + 1)/2 + 1, then Rp(n) < REK; 

the new algorithm is faster than Algorithm EK. In 

Section 3, we will see further improvement of the 

communication time. 

 

 

3   Further Time Reduction 
For portable parallel programming, the 

Message-Passing Interface (MPI) [15] has been 

common. For ease of programming, the MPI includes 

collective communication primitives, which involve 

more than two communicating PEs in a single 

instruction. Using a single collective communication 

primitive can be experimentally faster than using a 

sequence of point-to-point operations to achieve the 

same function [47].  

Thus, in the second phase of our algorithm, we 

can replace the p – 1 transfers of y
v 
from Pp–1 to all 

other PEs with a single broadcast operation to 

achieve the same effect. The broadcast primitive 

takes Θ(log p) steps to transfer a message to p PEs on 

a multicomputer, and we can assume that it takes c1 
log p steps to broadcast yv, where c1 is a constant and 

0 < c1 ≤ 1 [47].  

Similarly, the n – v prefixes computed by P
p
 can 

be equally distributed among all the PEs by a single 

scatter operation to further reduce the 

communication time. With an appropriate 

implementation, a scatter operation can take Θ(log p) 

time, which is equivalent to c2 log p steps, where c2 is 

a constant and 0 < c2 ≤ 1 [47]. Let c = c1 + c2. Thus, 

     Rp(n) = Rp–1(αpn) + c log p 

   = Rp–2(αp-1αpn) + c log (p–1) + c log p 

   = R2(α3α4 ... αpn) + c ∑
=

p

i

i
3

 log . 

Since R2(n) = 2 for n > 1, and ∑
=

p

i

i
3

 log  = Θ(p log p), 

we have  

Rp(n) = Θ(p log p). 

Therefore, the algorithm takes Θ(n/p + p log p) 

time. If n = Ω(p2 log p), then n/p = Ω (p log p), and 

thus Θ(n/p + p log p) = Θ(n/p). Since the sequential 

solution for the prefix problem takes Θ(n) time, the 

new algorithm achieves linear speedup and is 

cost-optimal when n = Ω(p2 log p). 
 

 

4   Precondition of the Algorithms 
Recall that Eq. (3) gives the number of computation 

steps required by Algorithm EK and our new 

algorithm. In this section, we show that p < n is not 

sufficient for Eq. (3) to be valid, and a stronger 

relation of p and n is required.  

As an example, when p = 128 and n = 256, from 

Eq. (3) we have C128(256) < 3. Clearly, it is 

impossible to compute the prefixes of 256 inputs in 3 

or fewer computation steps. This is confirmed by 

Snir’s finding [44]. Snir has proved that the number 

of computation steps needed when using p PEs to 

compute the prefixes of n > p inputs must satisfy  

Cp(n) ≥ (2n – 2)/(p + 1).   

Consequently, C128(256) ≥ 4. Therefore, Eq. (3) is not 

valid under this situation.  

In fact, the algorithms are not applicable when p = 

128 and n = 256. If we try to use any of the algorithms 

in this case, then v = 253 inputs are assigned to the 

first 127 PEs and n – v = 3 inputs to the last PE. 

Applying the same algorithm recursively to p = 127 

and n = 253 will lead to the situation that many PEs 

are not even assigned any input to work. Furthermore, 

in the second phase, when trying to equally distribute 

the 3 prefixes obtained by P128 among the PEs, 125 

out of 128 PEs are actually not assigned any value. 

Thus, the algorithms should not be used in this case. 

The situation improves when there are n – v ≥ p 

inputs assigned to the last PE. This ensures that in the 

second phase each PE can be distributed at least one 

of the prefixes computed in the first phase by the last 

PE. From n – v ≥ p and Eq. (4), we obtain the 

precondition for using the algorithms: n > p(p + 1)/2. 
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Therefore, the algorithms are applicable only 

when n > p(p + 1)/2. For example, if n = 128, the 

algorithms are applicable when p ≤ 15; on the other 

hand, if p = 256, then n > 32896 is required. 

 

 

5   Comparison with Other Algorithms 
In this section, we compare the new algorithm with 

other algorithms that run on CCDMMs. On the basis 

of a parallel prefix algorithm presented by Kruskal, 

Rudolph, and Snir for the exclusive-read 

exclusive-write parallel random-access machine 

(PRAM) [22], a corresponding algorithm for the 

1-port CCDMM with p ≤ n PEs requires Cp(n) =   

2n/p + log2 p – 2 and Rp(n) = log2 p + 1 [11]. With 

k-port communication, each PE has k input ports and 

k output ports to communicate with other PEs in one 

communication step, for some k ≥ 1. Lin and Lin 

present a parallel prefix algorithm named PLL for the 

half-duplex CCDMM [32]; with p PEs, where 10 ≤ p 

< n, PLL requires Cp(n) = 2n/p + 1.44 log2 p – 1 and 

Rp(n) = 1.44 log2 p + 1. On a k-port CCDMM of p < n 

PEs, parallel algorithms requiring Cp(n) = 2n/p +       

(k + 1) logk+1 p – 2 and Rp(n) = logk+1 p have also been 

presented [38]. 

Clearly, our new algorithm requires more 

communication steps than any of the other algorithms. 

Thus, the new algorithm must have a Cp(n) that is 

small enough for it to be faster than the other 

algorithms. Because each of the others needs a few 

more than 2n/p computation steps, the new algorithm 

may be faster only if the difference between 2n/p and 

the Cp(n) of Eq. (3) is large enough to compensate for 

its larger Rp(n). Let D = 2n/p – 2n(p + 1)/(p(p + 1) + 2) 

= 4n/(p3 + p2 + 2p). The value of D should be large to 

make our algorithm faster.  

Thus, it is reasonable to say that n > p3 is required 

for the new algorithm to be competitive. Note that the 

ratio of the time required by a computation step to the 

time required by a communication step also has an 

impact on whether the new algorithm is faster. If the 

ratio is large enough, which may be especially true 

when the binary operation o is matrix multiplication, 

the new algorithm can be faster when n > p3; on the 

other hand, if the ratio is small, n >> p3 may be 

required for the new algorithm to be faster. 

 

 

6   Conclusion 
We have presented a parallel algorithm for the 

CCDMM to solve the prefix problem on n inputs 

using p PEs, where n > p(p + 1)/2. The new algorithm 

can achieve linear speedup and is cost-optimal when 

n = Ω(p2 log p). It takes much less communication 

time than Algorithm EK. We have also proved that 

these algorithms should only work under the 

condition n > p(p + 1)/2. They require less 

computation time than other algorithms for 

CCDMMs. The new algorithm can be faster than the 

others when n > p3.  

It should be noted that the new algorithm readily 

yields an algorithm of time complexity Θ(n/p) for the 

concurrent-read exclusive-write PRAM. The two 

collective operations in the second phase now 

translate to concurrent reads. Clearly, the algorithm 

achieves linear speedup and is cost-optimal. 
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