
Computation-Efficient Parallel Prefix

YEN-CHUN LIN

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology

43 Keelung Road, Section 4, Taipei 106

TAIWAN

Abstract: - We are interested in solving the prefix problem of n inputs using p < n processors on completely

connected distributed-memory multicomputers (CCDMMs). This paper improves a previous work in three

respects. First, the communication time of the previous algorithm is reduced significantly. Second, we show that

p(p + 1)/2 < n is required for the new algorithm and the original one to be applicable. Third, we argue that for the

new algorithm to be faster than other algorithms run on CCDMMs, n > p3 is required. The new algorithm can

achieve linear speedup and is cost-optimal when n = Ω(p2 log p).

Key-Words: - Completely connected multicomputer, cost-optimal, half-duplex, linear speedup, parallel

algorithms, prefix computation

1 Introduction
Given n inputs x

1
, x

2
, ... , x

n
 and an associative binary

operation, denoted by o, the prefix computation

problem, or simply the prefix problem, is to compute

the n prefixes

y
i
 = x

1
 o x

2
 o ... o x

i
, 1 ≤ i ≤ n.

In this paper, we will use x
i
’s and y

i
’s to represent

inputs and outputs, respectively. Prefix computation

has been extensively studied for its broad

applications [1-3, 8, 10, 12, 14, 21-25, 46, 48, 50, 51];

it is used, for example, in biological sequence

comparison, cryptography, loop parallelization, the

solution of linear recurrences, carry-look-ahead

addition, polynomial evaluation and interpolation,

and digital filtering. The binary operation o can be a

simple Boolean operation or a time-consuming

multiplication of matrices [11]. Because of its

importance, prefix computation has been proposed as

a basic operation [4]. In fact, many parallel prefix

algorithms have been proposed [1, 7, 9, 17, 22, 24, 26,

27, 33, 38, 39, 41-43], and many parallel prefix

circuits have also been designed [3, 5, 6, 13, 16, 19,

23, 24, 27-30, 34-37, 40, 44, 49-51]. In particular,

Egecioglu and Kog give a computation-efficient

parallel prefix algorithm (henceforth named EK) for

the completely connected distributed-memory

multicomputer (CCDMM) model with p < n

processing elements (PEs) [11].

With half-duplex communication, each PE of a

CCDMM can only send a message to or receive a

message from any other PE in a communication step.

The half-duplex model of communication is very

important [20]. Although a PE of a modern

multicomputer can send and receive in the same step,

it usually takes longer to send and receive in a step

than to send only or receive only due to the inherent

hardware capability and software overhead [18, 31,

45]. On a p-PE system, the half-duplex

communication ensures that no more than p/2

messages are communicated in a communication step

and thus a communication step will not take too much

time.

In this paper, we also solve the prefix problem of

n input items on the same CCDMM. This paper first

presents an algorithm that improves on the

communication time of Algorithm EK on the same

half-duplex CCDMM model. Then, we show how the

communication time can be further reduced with a

stronger communication capability. The

communication time is reduced from Θ(n) = Ω(p3) of
Algorithm EK to Θ(p log p). These algorithms each

take 2n(p + 1)/(p(p + 1) + 2) – 1 computation steps.

We then take two different approaches to show that

merely p < n is not enough for these algorithms to be

applicable; exactly, p(p + 1)/2 < n is required. We

also show that for these algorithms to be faster than

the other CCDMM algorithms, n > p3 is required.

Thus, the communication time is reduced from Θ(n)

= Ω(p3) to Θ(p log p).

Section 2 presents the new prefix algorithm for

the half-duplex CCDMM. Section 3 uses the

broadcast and scatter collective communication

operations to further reduce the communication time.

Section 4 shows that Algorithm EK and our new

algorithm require a stricter condition than p < n, and

derives a much stronger condition of p(p + 1)/2 < n.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

Section 5 compares the new algorithm with other

CCDMM algorithms. Section 6 concludes this paper.

2 Parallel Prefix for the CCDMM
In this section, we describe a parallel algorithm that

solves the prefix problem of n inputs using p < n PEs

(exactly, as will be shown in a later section, n > p(p +

1)/2). The p PEs will be represented by P
1
, P

2
, ... , and

P
p
. To simplify the presentation, l:m is used to

represent the result of computing x
l
 o x

l+1
 o ... o x

m
,

where l ≤ m. Like Algorithm EK, it is assumed that

the time required to perform a binary operation is

greater than that required to transfer a message

between PEs. The algorithm has two phases. In the

first phase, we partition the inputs x
1
, x

2
, ... , x

n into

two parts L
1
 = (x

1
, x

2
, ... , x

v
) and L

2
 = (x

v+1
, x

v+2
, ... , x

n
),

where v = α
p
n and 0 < α

p
 < 1. The value of v is

chosen to make the number of computation steps

required by using the first p – 1 PEs to concurrently

compute the prefixes of the first v inputs in L
1
 equal

to the number of computation steps required by the

last PE, P
p
, to compute the prefixes of the n – v inputs

in L
2
. For ease of presentation, we will ignore the

ceiling function.

The same algorithm is used recursively for the

first p – 1 PEs to compute the prefixes of L
1
 in

parallel; in the mean time, we use the last PE to

compute the prefixes of L
2
 sequentially. In the second

phase, initially y
v
 = 1:v is sent from P

p–1
 to all the

other PEs. Then, we equally distribute the values z
v+i

= (v + 1):(v + i), i = 1, 2, ... , n – v, in P
p
 among all the

p PEs; thus, each PE contains (n – v)/p values. Finally,

the p PEs compute y
v+i
 = y

v
 o z

v+i
, i = 1, 2, ... , n – v, in

(n – v)/p parallel computation steps.

Two measures are used to evaluate the algorithm.

The first measure, denoted by Cp(n), is the number of

computation steps required by using p PEs to

compute the prefixes of n inputs. The second measure,

denoted by Rp(n), is the number of communication

steps required. To help understand the algorithm and

derive Cp(n) and Rp(n), we will consider the cases p =

2 and p = 3.

First, consider the case p = 2. In the first phase,

we assign L
1
 = (x

1
, x

2
, ... , x

v
) to P

1
 and L

2
 =

(x
v+1
, x

v+2
, ... , x

n
) to P

2
. Then, P

1
 and P

2
 compute the

prefixes of L
1
 and L

2
 independently. By the rule of

choosing v, we make the number of computation

steps required by P
1
 and P

2
 to compute the prefixes of

L
1
 and L

2
, respectively, equal to each other. That is,

v – 1 = (n – v) – 1. Therefore, v = n/2. After this phase,

we will have all the prefixes of the L
1
 and L

2
 in P

1
 and

P
2
, respectively. Let

z
v+i
 = (v + 1):(v + i), i = 1, 2, ... , n/2,

be the n/2 prefixes computed in P2.

In the second phase, we send y
v
 = 1:v from P1 to

P2 in a communication step, and send the first half of

the prefixes computed in P2, i.e., zv+1, zv+2, ... , z3n/4,

from P2 to P1
 in another communication step. Then,

P1 can use yv and zv+1, zv+2, ... , z3n/4, and P2 can use yv

and z3n/4+1, z3n/4+2, ... , zn to compute the final prefixes

y
v+1
,

y
v+2
, ... , y

n
. Since the first phase takes n/2 – 1

computation steps and the second phase takes n/4

computation steps, the total number of computation

steps is

C2(n) = n/2 – 1 + n/4 = 3n/4 – 1. (1)

Clearly, the number of communication steps is

R2(n) = 1 + 1 = 2.

Now consider the case p = 3. In the first phase, we

assign L1 = (x1, x2, ... , xv) to P1 and P2, and assign L2 =

(x
v+1
, x

v+2
, ... , xn) to P3. Then P1 and P2 use the

algorithm just described for p = 2 to compute the

prefixes of L1 in parallel; they take C2(v) computation

steps. At the same time, P3 computes the prefixes of

L2 sequentially, taking (n – v) – 1 computation steps.

By the rule of choosing v,

 C2(v) = (n – v) – 1. (2)

Using Eqs. (1) and (2), we have

v = 4n/7.

Note that the prefixes computed in P3 are

z
4n/7+i

 = (4n/7 + 1):(4n/7 + i), i = 1, 2, ... , 3n/7.

In the second phase, we first send y
4n/7

 = 1:4n/7

from P2 to both P1 and P3 in 2 communication steps.

Then, we equally distribute the 3n/7 prefixes in P3

among all the three PEs; in other words, it takes 2

more communication steps to send the prefixes z
4n/7+1

,

z
4n/7+2

, ... , z
5n/7

 from P3 to P1, and send the prefixes

z
5n/7+1

, z
5n/7+2

, ... , z
6n/7

 from P3 to P2. Subsequently,

these three PEs can use y
4n/7

 and the distributed

prefixes to compute the final prefixes concurrently in

n/7 computation steps. Thus,

C3(n) = C2(4n/7) + n/7 = 3n/7 – 1 + n/7 = 4n/7 – 1,

R3(n) = R2(α3n) + 2 + 2 = 6.

It is straightforward to obtain the following two

equations from [11]:

 Cp(n) = 2n(p + 1)/(p(p + 1) + 2) – 1, (3)

 v = n(p(p – 1) + 2)/(p(p + 1) + 2). (4)

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

The values of Cp(n) and v are the same as those of

Algorithm EK. In contrast, the number of

communication steps Rp(n) is reduced. Note that Rp(n)

is the sum of the following: (1) the number of

communication steps, Rp–1(v), required by the first

p – 1 PEs to compute the prefixes of v inputs, (2) the

number of communication steps required by Pp–1 to

send y
v
 = 1:v to the other p – 1 PEs, and (3) the

number of communication steps taken to equally

distribute among all the p PEs the n – v prefixes

computed by Pp. So,

 Rp(n) = Rp–1(v) + (p – 1) + (p – 1)

 = Rp–1(αpn) + 2p – 2

 = Rp–2(αp–1αpn) + 2(p – 1) – 2 + 2p – 2

 = R2(α3α4 ... αpn) + ∑
=

−
p

i

i
3

)22(.

Since R2(n) = 2 for n > 1, we have Rp(n) = p(p – 1).

Let us compare Rp(n) with

REK = np(p – 1)/(p(p + 1) + 2) + p(p – 1)/2,

which is the number of communication steps taken

by Algorithm EK. As we will see in Section 4, the

two algorithms can only be applicable under the

condition n ≥ p(p + 1)/2 + 1. If n = p(p + 1)/2 + 1, then

Rp(n) = REK. If n > p(p + 1)/2 + 1, then Rp(n) < REK;

the new algorithm is faster than Algorithm EK. In

Section 3, we will see further improvement of the

communication time.

3 Further Time Reduction
For portable parallel programming, the

Message-Passing Interface (MPI) [15] has been

common. For ease of programming, the MPI includes

collective communication primitives, which involve

more than two communicating PEs in a single

instruction. Using a single collective communication

primitive can be experimentally faster than using a

sequence of point-to-point operations to achieve the

same function [47].

Thus, in the second phase of our algorithm, we

can replace the p – 1 transfers of y
v
from Pp–1 to all

other PEs with a single broadcast operation to

achieve the same effect. The broadcast primitive

takes Θ(log p) steps to transfer a message to p PEs on

a multicomputer, and we can assume that it takes c1
log p steps to broadcast yv, where c1 is a constant and

0 < c1 ≤ 1 [47].

Similarly, the n – v prefixes computed by P
p
 can

be equally distributed among all the PEs by a single

scatter operation to further reduce the

communication time. With an appropriate

implementation, a scatter operation can take Θ(log p)

time, which is equivalent to c2 log p steps, where c2 is

a constant and 0 < c2 ≤ 1 [47]. Let c = c1 + c2. Thus,

 Rp(n) = Rp–1(αpn) + c log p

 = Rp–2(αp-1αpn) + c log (p–1) + c log p

 = R2(α3α4 ... αpn) + c ∑
=

p

i

i
3

 log .

Since R2(n) = 2 for n > 1, and ∑
=

p

i

i
3

 log = Θ(p log p),

we have

Rp(n) = Θ(p log p).

Therefore, the algorithm takes Θ(n/p + p log p)

time. If n = Ω(p2 log p), then n/p = Ω (p log p), and

thus Θ(n/p + p log p) = Θ(n/p). Since the sequential

solution for the prefix problem takes Θ(n) time, the

new algorithm achieves linear speedup and is

cost-optimal when n = Ω(p2 log p).

4 Precondition of the Algorithms
Recall that Eq. (3) gives the number of computation

steps required by Algorithm EK and our new

algorithm. In this section, we show that p < n is not

sufficient for Eq. (3) to be valid, and a stronger

relation of p and n is required.

As an example, when p = 128 and n = 256, from

Eq. (3) we have C128(256) < 3. Clearly, it is

impossible to compute the prefixes of 256 inputs in 3

or fewer computation steps. This is confirmed by

Snir’s finding [44]. Snir has proved that the number

of computation steps needed when using p PEs to

compute the prefixes of n > p inputs must satisfy

Cp(n) ≥ (2n – 2)/(p + 1).

Consequently, C128(256) ≥ 4. Therefore, Eq. (3) is not

valid under this situation.

In fact, the algorithms are not applicable when p =

128 and n = 256. If we try to use any of the algorithms

in this case, then v = 253 inputs are assigned to the

first 127 PEs and n – v = 3 inputs to the last PE.

Applying the same algorithm recursively to p = 127

and n = 253 will lead to the situation that many PEs

are not even assigned any input to work. Furthermore,

in the second phase, when trying to equally distribute

the 3 prefixes obtained by P128 among the PEs, 125

out of 128 PEs are actually not assigned any value.

Thus, the algorithms should not be used in this case.

The situation improves when there are n – v ≥ p

inputs assigned to the last PE. This ensures that in the

second phase each PE can be distributed at least one

of the prefixes computed in the first phase by the last

PE. From n – v ≥ p and Eq. (4), we obtain the

precondition for using the algorithms: n > p(p + 1)/2.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

Therefore, the algorithms are applicable only

when n > p(p + 1)/2. For example, if n = 128, the

algorithms are applicable when p ≤ 15; on the other

hand, if p = 256, then n > 32896 is required.

5 Comparison with Other Algorithms
In this section, we compare the new algorithm with

other algorithms that run on CCDMMs. On the basis

of a parallel prefix algorithm presented by Kruskal,

Rudolph, and Snir for the exclusive-read

exclusive-write parallel random-access machine

(PRAM) [22], a corresponding algorithm for the

1-port CCDMM with p ≤ n PEs requires Cp(n) =

2n/p + log2 p – 2 and Rp(n) = log2 p + 1 [11]. With

k-port communication, each PE has k input ports and

k output ports to communicate with other PEs in one

communication step, for some k ≥ 1. Lin and Lin

present a parallel prefix algorithm named PLL for the

half-duplex CCDMM [32]; with p PEs, where 10 ≤ p

< n, PLL requires Cp(n) = 2n/p + 1.44 log2 p – 1 and

Rp(n) = 1.44 log2 p + 1. On a k-port CCDMM of p < n

PEs, parallel algorithms requiring Cp(n) = 2n/p +

(k + 1) logk+1 p – 2 and Rp(n) = logk+1 p have also been

presented [38].

Clearly, our new algorithm requires more

communication steps than any of the other algorithms.

Thus, the new algorithm must have a Cp(n) that is

small enough for it to be faster than the other

algorithms. Because each of the others needs a few

more than 2n/p computation steps, the new algorithm

may be faster only if the difference between 2n/p and

the Cp(n) of Eq. (3) is large enough to compensate for

its larger Rp(n). Let D = 2n/p – 2n(p + 1)/(p(p + 1) + 2)

= 4n/(p3 + p2 + 2p). The value of D should be large to

make our algorithm faster.

Thus, it is reasonable to say that n > p3 is required

for the new algorithm to be competitive. Note that the

ratio of the time required by a computation step to the

time required by a communication step also has an

impact on whether the new algorithm is faster. If the

ratio is large enough, which may be especially true

when the binary operation o is matrix multiplication,

the new algorithm can be faster when n > p3; on the

other hand, if the ratio is small, n >> p3 may be

required for the new algorithm to be faster.

6 Conclusion
We have presented a parallel algorithm for the

CCDMM to solve the prefix problem on n inputs

using p PEs, where n > p(p + 1)/2. The new algorithm

can achieve linear speedup and is cost-optimal when

n = Ω(p2 log p). It takes much less communication

time than Algorithm EK. We have also proved that

these algorithms should only work under the

condition n > p(p + 1)/2. They require less

computation time than other algorithms for

CCDMMs. The new algorithm can be faster than the

others when n > p3.

It should be noted that the new algorithm readily

yields an algorithm of time complexity Θ(n/p) for the

concurrent-read exclusive-write PRAM. The two

collective operations in the second phase now

translate to concurrent reads. Clearly, the algorithm

achieves linear speedup and is cost-optimal.

Acknowledgments:

This research was supported in part by the National

Science Council of Taiwan under contract NSC

91-2218-E-011-002.

References:

[1] S.G. Akl, Parallel Computation: Models and

Methods, Prentice-Hall, 1997.

[2] S. Aluru, N. Futamura, K. Mehrotra, Parallel

biological sequence comparison using prefix

computaions, J. Parallel Distrib. Comput., Vol.

63, No. 3, 2003, pp. 264-272.

[3] A. Bilgory, D.D. Gajski, A heuristic for suffix

solutions, IEEE Trans. Comput., Vol. C-35, No.

1, 1986, pp. 34-42.

[4] G.E. Blelloch, Scans as primitive operations,

IEEE Trans. Comput., Vol. 38, No. 11, 1989,

pp. 1526-1538.

[5] R.P. Brent, H.T. Kung, A regular layout for

parallel adders, IEEE Trans. Comput., Vol.

C-31, No. 3, 1982, pp. 260-264.

[6] D.A. Carlson, B. Sugla, Limited width parallel

prefix circuits, J. Supercomput., Vol. 4, No. 2,

1990, pp. 107-129.

[7] L. Cinque, G. Bongiovanni, Parallel prefix

computation on a pyramid computer, Pattern

Recognition Lett., Vol. 16, No. 1, 1995, pp.

19-22.

[8] R. Cole, U. Vishkin, Faster optimal parallel

prefix sums and list ranking, Infom. Contr., Vol.

81, 1989, pp. 334-352.

[9] A. Datta, Multiple addition and prefix sum on a

linear array with a reconfigurable pipelined bus

system, J. Supercomput., Vol. 29, No. 3, 2004,

pp. 303-317.

[10] C. Efstathiou, H.T. Vergos, D. Nikolos, Fast

parallel-prefix modulo 2n + 1 adders, IEEE

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

Trans. Comput., Vol. 53, No. 9, 2004, pp.

1211-1216.

[11] O. Egecioglu, C.K. Koc, Parallel prefix

computation with few processors, Computers

Math. Applic., Vol. 24, No. 4, 1992, pp. 77-84.

[12] A. Ferreira, S. Ubeda, Parallel complexity of

the medial axis computation, in Proc. Int. Conf.

on Image Processing, vol. 2, Washington, D.C.,

1995, pp. 105-108.

[13] F.E. Fich, New bounds for parallel prefix

circuits, in Proc. 15th Symp. on the Theory of

Computing, 1983, pp. 100-109.

[14] A.L. Fisher, A.M. Ghuloum, Parallelizing

complex scans and reductions, in Proc. ACM

SIGPLAN '94 Conf. on Programming

Language Design and Implementation, Orlando,

FL, 1994, pp. 135-146.

[15] W. Gropp, E. Lusk, A. Skjellum, Using MPI:

Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1994.

[16] T. Han, D.A. Carlson, Fast area-efficient VLSI

adders, in Proc. 8th Computer Arithmetic

Symp., Como, Italy, 1987, pp. 49-56.

[17] D.R. Helman, J. JaJa, Prefix computations on

symmetric multiprocessors, J. Parallel Distrib.

Comput., Vol. 61, 2001, pp. 265-278.

[18] Inmos, The Transputer Databook, Inmos, 1992.

[19] P.M. Kogge, H.S. Stone, A parallel algorithm

for the efficient solution of a general class of

recurrence equations, IEEE Trans. Comput.,

Vol. C-22, No. 8, 1973, pp. 783-791.

[20] D.W. Krumme, G. Cybenko, K.N.

Venkataraman, Gossiping in minimal time,

SIAM J. Comput., Vol. 21, No. 1, 1992, pp.

111-139.

[21] C.P. Kruskal, T. Madej, L. Rudolph, Parallel

prefix on fully connected direct connection

machines, in Proc. Int. Conf. on Parallel

Processing, St. Charles, IL, 1986, pp. 278-284.

[22] C.P. Kruskal, L. Rudolph, M. Snir, The power

of parallel prefix, IEEE Trans. Comput., Vol.

C-34, No. 10, 1985, pp. 965-968.

[23] R.E. Ladner, M.J. Fischer, Parallel prefix

computation, J. ACM, Vol. 27, No. 4, 1980, pp.

831-838.

[24] S. Lakshmivarahan, S.K. Dhall, Parallel

Computing Using the Prefix Problem, Oxford

University Press, 1994.

[25] F.T. Leighton, Introduction to Parallel

Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufmann, 1992.

[26] R. Lin, K. Nakano, S. Olariu, M.C. Pinotti, J.L.

Schwing, A.Y. Zomaya, Scalable

hardware-algorithms for binary prefix sums,

IEEE Trans. Parallel Distributed Syst., Vol. 11,

No. 8, 2000, pp. 838-850.

[27] Y.-C. Lin, Optimal parallel prefix circuits with

fan-out 2 and corresponding parallel algorithms,

Neural, Parallel & Scientific Computations,

Vol. 7, No. 1, 1999, pp. 33-42.

[28] Y.-C. Lin, J.-N. Chen, Z4: A new depth-size

optimal parallel prefix circuit with small depth,

Neural, Parallel & Scientific Computations,

Vol. 11, No. 3, 2003, pp. 221-235.

[29] Y.-C. Lin, J.-W. Hsiao, A new approach to

constructing optimal parallel prefix circuits

with small depth, J. Parallel Distrib. Comput.,

Vol. 64, No. 1, 2004, pp. 97-107.

[30] Y.-C. Lin, Y.-H. Hsu, C.-K. Liu, Constructing

H4, a fast depth-size optimal parallel prefix

circuit, J. Supercomput., Vol. 24, No. 3, 2003,

pp. 279-304.

[31] Y.-C. Lin, H.Y. Lai, Perfectly overlapped

generation of long runs on a transputer array for

sorting, Microprocessors Microsystems, Vol.

20, No. 5, 1997, pp. 529-539.

[32] Y.-C. Lin, C.M. Lin, Efficient parallel prefix

algorithms on fully connected message-passing

computers, in Proc. 3rd Int. Conf. on High

Performance Computing, IEEE Computer

Society Press, Trivandrum, India, 1996, pp.

316-321.

[33] Y.-C. Lin, C.M. Lin, Efficient parallel prefix

algorithms on multicomputers, J. Information

Science and Engineering, Vol. 16, No. 1, 2000,

pp. 41-64.

[34] Y.-C. Lin, C.-K. Liu, Finding optimal parallel

prefix circuits with fan-out 2 in constant time,

Inform. Process. Lett., Vol. 70, No. 4, 1999, pp.

191-195.

[35] Y.-C. Lin, C.-C. Shih, Optimal parallel prefix

circuits with fan-out at most 4, in Proc. 2nd

IASTED Int. Conf. on Parallel and Distributed

Computing and Networks, Brisbane, Australia,

1998, pp. 312-317.

[36] Y.-C. Lin, C.-C. Shih, A new class of

depth-size optimal parallel prefix circuits, J.

Supercomput., Vol. 14, No. 1, 1999, pp. 39-52.

[37] Y.-C. Lin, C.-Y. Su, Faster optimal parallel

prefix circuits: New algorithmic construction, J.

Parallel Distrib. Comput., Vol. 65, No. 12,

2005, pp. 1585-1595.

[38] Y.-C. Lin, C.-S. Yeh, Efficient parallel prefix

algorithms on multiport message-passing

systems, Inform. Process. Lett., Vol. 71, No. 2,

1999, pp. 91-95.

[39] Y.-C. Lin, C.-S. Yeh, Optimal parallel prefix on

the postal model, J. Information Science and

Engineering, Vol. 19, No. 1, 2003, pp. 75-83.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

[40] J. Liu, S. Zhou, H. Zhu, C.-K. Cheng, An

algorithmic approach for generic parallel

adders, in Proc. ICCAD, San Jose, CA, 2003,

pp. 734-740.

[41] R. Manohar, J.A. Tierno, Asynchronous

parallel prefix computation, IEEE Trans.

Comput., Vol. 47, No. 11, 1998, pp. 1244-1252.

[42] Y. Pan, S.Q. Zheng, K. Li, H. Shen, An

improved generalization of mesh-connected

computers with multiple buses, IEEE Trans.

Parallel Distributed Syst., Vol. 12, No. 3, 2001,

pp. 293-305.

[43] E.E. Santos, Optimal and efficient algorithms

for summing and prefix summing on parallel

machines, J. Parallel Distrib. Comput., Vol. 62,

2002, pp. 517-543.

[44] M. Snir, Depth-size trade-offs for parallel

prefix computation, J. Algorithms, Vol. 7, 1986,

pp. 185-201.

[45] M. Snir, P. Hochschild, D.D. Frye, K.J. Gildea,

The communication software and parallel

environment of the IBM SP2, IBM Syst. J., Vol.

34, No. 2, 1995, pp. 205-221.

[46] H. Wang, A. Nicolau, K.S. Siu, The strict time

lower bound and optimal schedules for parallel

prefix with resource constraints, IEEE Trans.

Comput., Vol. 45, No. 11, 1996, pp. 1257-1271.

[47] Z. Xu, K. Hwang, Modeling communication

overhead: MPI and MPL performance on the

IBM SP2, IEEE Parallel & Distributed

Technology, Vol. 4, No. 1, 1996, pp. 9-23.

[48] F. Zhou, P. Kornerup, Computing moments by

prefix sums, J. VLSI Signal Process. Systems,

Vol. 25, No. 1, 2000, pp. 5-17.

[49] H. Zhu, C.-K. Cheng, R. Graham, On the

construction of zero-deficiency parallel prefix

adders, in Proc. 13th Int. Workshop on Logic

and Synthesis, Temecula, CA, 2004, pp.

280-286.

[50] R. Zimmermann, Non-heuristic optimization

and synthesis of parallel-prefix adders, in Proc.

Int. Workshop on Logic and Architecture

Synthesis, Grenoble, France, 1996, pp.

123-132.

[51] R. Zimmermann, Binary Adder Architectures

for Cell-Based VLSI and Their Synthesis, PhD

thesis, Swiss Federal Institute of Technology

(ETH) Zurich, 1997.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp280-285)

