
Mapping of SQL Relational Schemata to OWL Ontologies

IRINA ASTROVA, AHTO KALJA

Institute of Cybernetics

Tallinn University of Technology

Akadeemia tee 21, 12618 Tallinn

ESTONIA

Abstract: A novel approach is proposed. This approach maps a relational database defined by a relational

schema to an ontology. The ontology has a hierarchical structure, and it is no longer “impaired” by

optimization and bad database design of the relational schema. The approach can be used for migrating HTML

pages (especially those that are dynamically generated from a relational database) to the ontology-based

Semantic Web.

Key-Words: Relational databases, ontologies, SQL, OWL, Web, Semantic Web

1 Introduction
One of the main driving forces for the Semantic

Web has always been the expression, on the Web, of

the vast amount of relational database information in

a way that can be processed by machines [1].

Indeed, most information on the Web is not

machine-processable, because it is often represented

in HTML. This language describes how the

information looks like and not what it is. In order for

machines to process the information, it must be

represented in an ontology language (e.g. OWL) and

linked to ontologies. An ontology can be used for

annotating HTML pages with semantics.

 Manual or semi-automatic semantic annotation

[2] is time-consuming, subjective and error-prone. It

is even impossible on scale of the Web that contains

billions of pages. Most pages even do not exist until

they are dynamically generated from relational

databases at the time of submitting HTML forms.

 An alternative to the semantic annotation is

automatic or semi-automatic mapping of relational

databases (defined by relational schemata) to

ontologies [3]. However, this mapping is difficult

because a relational schema often captures few

explicit semantics. It is often optimized for

performance reasons. And it is often bad designed,

as it may be done by novice and untrained database

designers who are not familiar with database theory

and database methodology [4].

2 Related Work
A majority of the work has been done on extracting

entity-relationship (ER) models from relational

databases. There are few approaches that consider

OWL ontologies as the target; e.g.:

 Colomb et al. [5] propose an approach to

automatic mapping of ER models to OWL

ontologies (and back) via DL. The drawback of this

approach is that it does not discover semantics; it

just changes syntactic form.

 Upadhyaya and Kumar [6] propose an approach

to automatic mapping of extended ER models to

OWL ontologies. The drawback of this approach is

that it does not suit legacy systems that often come

with no or out-of-date extended ER models.

 Buccella et al. [7] propose an approach to semi-

automatic mapping of SQL relational schemata to

OWL ontologies. The drawback of this approach is

that it does not address optimization and bad

database design that often occur in practice. And it

ignores inheritance, thus extracting an ontology

that looks rather “relational”; i.e. the ontology has

the same flat structure as the original relational

schema.

 As an attempt to rectify the drawbacks of existing

approaches, we propose a novel approach.

3 Our Approach
Our approach maps a relational schema to an

ontology. The relational schema is represented in

SQL [8], the standard relational database language.

This language includes syntax for specifying tables,

columns with data types, constraints on columns,

and other semantics. The ontology is represented in

OWL [9], the standard ontology language. This

language includes syntax for specifying classes,

properties with domains and ranges, inheritance of

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

classes and properties, constraints on classes and

properties, and other semantics.

 There are five steps of our approach: (1)

classification of tables, (2) mapping tables, (3)

mapping columns, (4) mapping relationships, and

(5) mapping constraints. Next these steps will be

illustrated by example.

3.1 Classification of Tables
The first step of our approach is classification of

tables. Each table is classified into one of the three

categories: base, dependent and composite tables.

 If a table is independent of any other table in the

relational schema, it is a base table. If a table

depends on another table, it is a dependent table.

That is, a dependent table is a table whose primary

key includes the primary key of another table. All

other tables fall into the category of composite

tables. That is, a composite table is a table that is

neither base nor dependent.

 Example 1. A table Employee in Fig. 1 is a

base table, because it has no foreign key.

CREATE TABLE Employee(

 employeeID INTEGER PRIMARY KEY)

Figure 1. Base tables

 Example 2. A table Project in Fig. 2 is also a

base table, because its foreign key is not (part of) its

primary key.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 managerID INTEGER REFERENCES Employee)

Figure 2. Base tables (contd.)

 Example 3. A table SoftwareProject in Fig.

3 is a dependent table, because its foreign key is its

primary key.

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY REFERENCES

Project)

Figure 3. Dependent tables

 Example 4. A table Task in Fig. 4 is also a

dependent table, because its foreign key is part of its

primary key.

CREATE TABLE Task(

 taskID INTEGER,

 projectID INTEGER PRIMARY KEY REFERENCES

Project,

 CONSTRAINT Task_PK PRIMARY KEY(taskID,

projectID))

Figure 4. Dependent tables (contd.)

 Example 5. A table Involvement in Fig. 5 is a

composite table, because its primary key is

composed of the primary keys of two other tables:

Employee and Project.

CREATE TABLE Involvement(

 employeeID INTEGER REFERENCES Employee,

 projectID INTEGER REFERENCES Project,

 CONSTRAINT Involvement_PK PRIMARY

KEY(employeeID, projectID))

Figure 5. Composite tables

3.2 Mapping Tables
The second step of our approach is mapping tables.

Each table maps to a class, with the exception of

composite tables. Composite tables represent

relationships. Therefore, they map to classes or

object properties1, depending on their structures.

 Example 1. Consider a table Project in Fig. 6.

This table maps to a class Project, because it is a

base table.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 managerID INTEGER REFERENCES Employee)

↓
<owl:Class rdf:ID="Project"/>

Figure 6. Mapping base tables

 Example 2. Consider a table Software-

Project in Fig. 7. This table maps to a class

SoftwareProject, because it is a dependent

table.

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY REFERENCES

Project)

↓
<owl:Class rdf:ID="SoftwareProject"/>

Figure 7. Mapping dependent tables

 Example 3. Consider a composite table

Involvement in Fig. 8. This table represents a

binary relationship between two tables: Employee

and Project. Since the table entirely consists of

1
 A composite table can also map to multiple inheritance.

But as there is no really good way to represent multiple

inheritance in a relational schema, the table will map to a

class. Users can then replace that class with multiple

inheritance.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

the primary keys of the two tables, it maps to a pair

of object properties: involves and

involvedBy. One object property is the inverse of

another, meaning that the relationship is

bidirectional; i.e. a project involves an employee.

And an employee is involved in a project.

CREATE TABLE Involvement(

 employeeID INTEGER REFERENCES Employee,

 projectID INTEGER REFERENCES Project,

 CONSTRAINT Involvement_PK PRIMARY

KEY(employeeID, projectID))

↓
<owl:ObjectProperty rdf:ID="involves">

 <rdfs:domain rdf:resource="#Project"/>

 <rdfs:range rdf:resource="#Employee"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="involvedIn">

 <owl:inverseOf

rdf:resource="#involves"/>

</owl:ObjectProperty>

Figure 8. Mapping composite tables

 Example 4. Consider a composite table

Involvement in Fig. 9. Not only does that table

consist of the primary keys of the two tables, but it

also contains an additional column hours.

Therefore, it maps to a class Involvement and a

pair of object properties for each table participating

in the relationship. (The object properties are not

shown in Fig. 9 because of a lack of space.)

CREATE TABLE Involvement(

 employeeID INTEGER REFERENCES Employee,

 projectID INTEGER REFERENCES Project,

 hours INTEGER,

 CONSTRAINT Involvement_PK PRIMARY

KEY(employeeID, projectID))

↓
<owl:Class rdf:ID="Involvement"/>

Figure 9. Mapping composite tables (contd.)

 Example 5. Consider a composite table

Involvement in Fig. 10. This table represents a

ternary relationship between three tables:

Employee, Project and Skill. Since only a

binary relationship can be represented through a pair

of object properties, the table maps to a class

Involvement and a pair of object properties for

each table participating in the relationship. (The

object properties are not shown in Fig. 10 because of

a lack of space.)

CREATE TABLE Involvement(

 employeeID INTEGER REFERENCES Employee,

 projectID INTEGER REFERENCES Project,

 skillID INTEGER REFERENCES Skill,

 CONSTRAINT Involvement_PK PRIMARY

KEY(employeeID, projectID, skillID))

↓

<owl:Class rdf:ID="Involvement"/>

Figure 10. Mapping composite tables (contd.)

3.3 Mapping Columns
The third step of our approach is mapping columns.

Each column in a table maps to a data type property

in a class, with the exception of foreign keys.

Foreign keys are ignored for a while, as they

represent relationships.

 Example 1. Consider a column projectID in a

table Project in Fig. 11. This column maps to a

data type property projectID in a class

Project.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY)

↓

<owl:DatatypeProperty rdf:ID="projectID">
 <rdfs:domain rdf:resource="#Project"/>

 <rdfs:range

rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

Figure 11. Mapping columns

3.4 Mapping Relationships
The fourth step of our approach is mapping

relationships. Relationships map to classes, object

properties or inheritance, depending on the types of

key, data and column correlations.

 Given two tables r1 and r2, there are four types

of:

• Key correlation: key equality: K1=K2, key

inclusion: K1⊂K2, key intersection:

K1∩K2≠∅, K1–K2≠∅, K2–K1≠∅ and key

disjointness: K1∩K2=∅

• Data correlation: data equality:

r1[K1]=r2[K2], data inclusion:

r1[K1]⊂r2[K2], data intersection:

r1[K1]∩r2[K2]≠∅, r1[K1]–r2[K2]≠∅,

r2[K2]–r1[K1]≠∅ and data disjointness:

r1[K1]∩r2[K2]=∅

• Column correlation: column equality:

C1=C2, column inclusion: C1⊂C2, column

intersection: C1∩C2≠∅, C1–C2≠∅, C2–

C1≠∅ and column disjointness: C1∩C2=∅,

 where K1 and K2 are primary keys of r1 and r2,

respectively; C1 and C2 are columns of r1 and r2,

respectively; r1[K1]=πK1(r1) and

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

r2[K2]=πK2(r2) are projections of r1 and r2 on K1

and K2, respectively.

 Example 1. Consider a relationship between

Employee and Project in Fig. 12, when key

disjointness holds on it. This relationship relates

two tables, which are independent of each other.

Since the relationship is binary, it maps to a pair of

object properties: manages and managedBy. One

object property is the inverse of another, meaning

that the relationship is bidirectional; i.e. an

employee manages a project. And a project is

managed by an employee.

CREATE TABLE Employee(

 employeeID INTEGER PRIMARY KEY)

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 managerID INTEGER REFERENCES Employee)

↓

<owl:ObjectProperty rdf:ID="manages">

 <rdfs:domain rdf:resource="#Employee"/>

 <rdfs:range rdf:resource="#Project"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="managedBy">
 <owl:inverseOf rdf:resource="#manages"/>

</owl:ObjectProperty>

Figure 12. Key disjointness

 Example 2. Consider a relationship between

Project and SoftwareProject in Fig. 13,

when key equality and data inclusion hold on it.

This relationship maps to single inheritance, as all

data of SoftwareProject are also included in

Project; i.e. a software project is a project. But

the converse is not true; e.g. some projects can be

hardware projects.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE)

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY REFERENCES

Project,

 language VARCHAR)

↓

<owl:Class rdf:ID="SoftwareProject">

 <rdfs:subClassOf

rdf:resource="#Project"/>

</owl:Class>

Figure 13. Key equality and data inclusion

 Example 3. Consider a relationship between

HardwareProject and SoftwareProject in

Fig. 14, when key equality, data disjointness and

column intersection hold on it. This example also

illustrates single inheritance. Because some columns

are common to both (disjoint) tables,

HardwareProject and SoftwareProject

are part of the inheritance hierarchy; but there is no

table corresponding to their superclass. Therefore,

we create a class Project whose subclasses are

HardwareProject and SoftwareProject.

CREATE TABLE HardwareProject(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE,

 supplier VARCHAR)

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE,

 language VARCHAR)

↓

<owl:Class rdf:ID="Project">

 <owl:DatatypeProperty

rdf:ID="projectID">

 <rdfs:range

rdf:resource="&xsd;integer"/>

 </owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="budget">

 <rdfs:range rdf:resource="&xsd;float"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="dueDate">

 <rdfs:range rdf:resource="&xsd;date"/>

 </owl:DatatypeProperty>

</owl:Class>

<owl:Class rdf:ID="HardwareProject">

 <rdfs:subClassOf

rdf:resource="#Project"/>

<owl:DatatypeProperty rdf:ID="supplier">

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

</owl:Class>

<owl:Class rdf:ID="SoftwareProject">

<rdfs:subClassOf

rdf:resource="#Project"/>

<owl:disjointWith
rdf:resource="#HardwareProject"/>

<owl:DatatypeProperty rdf:ID="language">

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

</owl:Class>

Figure 14. Key equality, data disjointness

and column intersection

 Example 4. Consider a relationship between

HardwareProject and SoftwareProject in

Fig. 15, when key equality, data disjointness and

column equality hold on it. This is an example of

optimization: horizontal partitioning, where data of a

single table have been split into two (disjoint) tables,

having the same columns. Therefore, we create a

class Project whose individuals are the union of

the data of the two tables.

CREATE TABLE HardwareProject(

 projectID INTEGER PRIMARY KEY,

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

 budget FLOAT,

 dueDate DATE)

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE)

↓

<owl:Class rdf:ID="SoftwareProject">

 <owl:disjointWith

rdf:resource="#HardwareProject"/>

 </owl:Class>

<owl:Class rdf:ID="Project">

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class

rdf:about="#SoftwareProject"/>

 <owl:Class

rdf:about="#HardwareProject"/>

 </owl:unionOf>

</owl:Class>

Figure 15. Key equality, data disjointness

and column equality

 Example 5. Consider a relationship between

HardwareProject and SoftwareProject in

Fig. 16, when key equality, data intersection and

column equality hold on it. Because some data are

common to both tables, we create a class Project

whose individuals are the intersection of the data of

the two tables.

CREATE TABLE HardwareProject(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE)

CREATE TABLE SoftwareProject(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT,

 dueDate DATE)

↓

<owl:Class rdf:ID="Project">
 <owl:intersectionOf

rdf:parseType="Collection">

 <owl:Class

rdf:about="#SoftwareProject"/>

 <owl:Class

rdf:about="#HardwareProject"/>

 </owl:intersectionOf>

</owl:Class>

Figure 16. Key equality, data intersection

and column equality

3.5 Mapping Constraints
The fifth step of our approach is mapping

constraints. Constraints specify if a column in a

table is unique or not null, or if the column is a

primary key or a foreign key. Constraints also

specify a data range for the column.

 Example 1. Consider a unique constraint in Fig.

17. This constraint specifies that a column budget

in a table Project is unique, meaning that no two

data in the table have the same value for the column.

Therefore, the constraint maps to a functional

property.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT UNIQUE)

↓

<owl:FunctionalProperty rdf:ID="budget"/>

Figure 17. Mapping unique constraints

 Example 2. Consider a not null constraint in Fig.

18. This constraint specifies that a column budget

in a table Project is not null, meaning that all

data in the table contains values for the column.

Therefore, the constraint maps to a minimum

cardinality of 1.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 budget FLOAT NOT NULL)

↓

<owl:Class rdf:ID="Project">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

rdf:resource="#budget"/>

 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger"1/>
 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Figure 18. Mapping not null constraints

 Example 3. Consider a primary key constraint in

Fig. 19. This constraint specifies that a column

projectID in a table Project is a primary key.

Since the primary key implies that the column is

both unique and not null, the constraint maps to both

a functional property and a minimum cardinality of

1.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY)

↓

<owl:Class rdf:ID="Project">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

rdf:resource="#projectID"/>

 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:FunctionalProperty

rdf:ID="projectID"/>

Figure 19. Mapping primary key constraints

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

 Example 4. Consider a check constraint in Fig.

20. This constraint specifies a data range for a

column type in a table Project through a list of

possible values. Therefore, the constraint maps to an

enumerated data type.

CREATE TABLE Project(

 projectID INTEGER PRIMARY KEY,

 type VARCHAR CHECK IN ("Software",

"Hardware"))

↓

<owl:Class rdf:ID="Project">

 <owl:DatatypeProperty rdf:ID="type">

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf>

 <rdf:List>

 <rdf:first

rdf:datatype="&xsd;string">"#Software"
 </rdf:first>
 <rdf:rest>

 <rdf:List>

 <rdf:first

rdf:datatype="&xsd;string">"#Hardware"

 </rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"

/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>
 </owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

 </owl:DatatypeProperty>

</owl:Class>

Figure 20. Mapping check constraints

4 Conclusion
We have proposed a novel approach to mapping

relational schemata to ontologies. Our approach is

based on an analysis of key, data and column

correlations as well as their combinations. This

analysis helps us: (1) discover “hidden” (implicit)

semantics; and (2) address optimization and bad

database design.

 In the future, our approach can be used for

migrating HTML pages (especially those that are

dynamically generated from relational databases) to

the ontology-based Semantic Web. The main reason

for this migration is to make the relational database

information on the Web machine-processable.

Acknowledgement
This research is partly sponsored by ESF (Estonian

Science Foundation) under the grant nr. 5766.

References:

[1] T. Berners-Lee, Relational Databases on the

Semantic Web, 2002,

http://www.w3.org/DesignIssues/RDB-

RDF.html

[2] M. Erdmann, A. Maedche, H. Schnurr and S.

Staab, From Manual to Semi-automatic Semantic

Annotation: About Ontology-based Text

Annotation Tools, Linköping Electronic Articles

in Computer and Information Science Journal

(ETAI), Vol. 6, No. 2, 2001

 [3] L. Stojanovic, N. Stojanovic and R. Volz,

Migrating Data-intensive Web Sites into the

Semantic Web, Proceedings of the 17
th
 ACM

Symposium on Applied Computing (SAC), 2002,

pp. 1100-1107

[4] W. Premerlani and Blaha, M.: An Approach for

Reverse Engineering of Relational Databases,

Communications of the ACM, Vol. 37, No. 5,

1994, pp. 42-49

[5] R. Colomb, A. Gerber and M. Lawley, Issues in

Mapping Metamodels in the Ontology

Development Metamodel, Proceedings of the 1
st

International Workshop on the Model-Driven

Semantic Web (MSDW), 2004, pp. 20-24

[6] S. Upadhyaya and P. Kumar, ERONTO: A Tool

for Extracting Ontologies from Extended ER

Diagrams, Proceedings of the 20
th
 ACM

Symposium on Applied Computing (SAC), 2005,

pp. 667-670

[7] A. Buccella, M. Penabad, F. Rodriguez, A.

Farina and A. Cechich, From Relational

Databases to OWL Ontologies, Proceeding of

the 6
th

 National Russian Research Conference

(RCDL), 2004

[8] J. Melton and A. Simon, Understanding the New

SQL: A Complete Guide, San Mateo, CA:

Morgan Kaufmann, 1993

[9] OWL Web Ontology Language Guide, 2004,

http://www.w3.org/TR/owl-guide

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp375-380)

