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Abstract: A novel approach is proposed. This approach maps a relational database defined by a relational 

schema to an ontology. The ontology has a hierarchical structure, and it is no longer “impaired” by 

optimization and bad database design of the relational schema. The approach can be used for migrating HTML 

pages (especially those that are dynamically generated from a relational database) to the ontology-based 

Semantic Web. 
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1   Introduction 
One of the main driving forces for the Semantic 

Web has always been the expression, on the Web, of 

the vast amount of relational database information in 

a way that can be processed by machines [1]. 

Indeed, most information on the Web is not 

machine-processable, because it is often represented 

in HTML. This language describes how the 

information looks like and not what it is. In order for 

machines to process the information, it must be 

represented in an ontology language (e.g. OWL) and 

linked to ontologies. An ontology can be used for 

annotating HTML pages with semantics. 

     Manual or semi-automatic semantic annotation 

[2] is time-consuming, subjective and error-prone. It 

is even impossible on scale of the Web that contains 

billions of pages. Most pages even do not exist until 

they are dynamically generated from relational 

databases at the time of submitting HTML forms. 

     An alternative to the semantic annotation is 

automatic or semi-automatic mapping of relational 

databases (defined by relational schemata) to 

ontologies [3]. However, this mapping is difficult 

because a relational schema often captures few 

explicit semantics. It is often optimized for 

performance reasons. And it is often bad designed, 

as it may be done by novice and untrained database 

designers who are not familiar with database theory 

and database methodology [4]. 

 

 

2   Related Work 
A majority of the work has been done on extracting 

entity-relationship (ER) models from relational 

databases. There are few approaches that consider 

OWL ontologies as the target; e.g.: 

     Colomb et al. [5] propose an approach to 

automatic mapping of ER models to OWL 

ontologies (and back) via DL. The drawback of this 

approach is that it does not discover semantics; it 

just changes syntactic form. 

     Upadhyaya and Kumar [6] propose an approach 

to automatic mapping of extended ER models to 

OWL ontologies. The drawback of this approach is 

that it does not suit legacy systems that often come 

with no or out-of-date extended ER models. 

     Buccella et al. [7] propose an approach to semi-

automatic mapping of SQL relational schemata to 

OWL ontologies. The drawback of this approach is 

that it does not address optimization and bad 

database design that often occur in practice. And it 

ignores inheritance, thus extracting an ontology 

that looks rather “relational”; i.e. the ontology has 

the same flat structure as the original relational 

schema. 

     As an attempt to rectify the drawbacks of existing 

approaches, we propose a novel approach. 

 

 

3   Our Approach 
Our approach maps a relational schema to an 

ontology. The relational schema is represented in 

SQL [8], the standard relational database language. 

This language includes syntax for specifying tables, 

columns with data types, constraints on columns, 

and other semantics. The ontology is represented in 

OWL [9], the standard ontology language. This 

language includes syntax for specifying classes, 

properties with domains and ranges, inheritance of 
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classes and properties, constraints on classes and 

properties, and other semantics.  

     There are five steps of our approach: (1) 

classification of tables, (2) mapping tables, (3) 

mapping columns, (4) mapping relationships, and 

(5) mapping constraints. Next these steps will be 

illustrated by example. 

 

 

3.1 Classification of Tables 
The first step of our approach is classification of 

tables. Each table is classified into one of the three 

categories: base, dependent and composite tables.  

     If a table is independent of any other table in the 

relational schema, it is a base table. If a table 

depends on another table, it is a dependent table. 

That is, a dependent table is a table whose primary 

key includes the primary key of another table. All 

other tables fall into the category of composite 

tables. That is, a composite table is a table that is 

neither base nor dependent. 

     Example 1. A table Employee in Fig. 1 is a 

base table, because it has no foreign key. 

 
CREATE TABLE Employee( 

 employeeID INTEGER PRIMARY KEY) 

Figure 1. Base tables 

 

     Example 2. A table Project in Fig. 2 is also a 

base table, because its foreign key is not (part of) its 

primary key. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 managerID INTEGER REFERENCES Employee) 

Figure 2. Base tables (contd.) 

 

     Example 3. A table SoftwareProject in Fig. 

3 is a dependent table, because its foreign key is its 

primary key. 

 
CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY REFERENCES 

Project) 

Figure 3. Dependent tables 

 

     Example 4. A table Task in Fig. 4 is also a 

dependent table, because its foreign key is part of its 

primary key. 

 
CREATE TABLE Task( 

 taskID INTEGER, 

 projectID INTEGER PRIMARY KEY REFERENCES 

Project, 

 CONSTRAINT Task_PK PRIMARY KEY(taskID, 

projectID)) 

Figure 4. Dependent tables (contd.) 

 

     Example 5. A table Involvement in Fig. 5 is a 

composite table, because its primary key is 

composed of the primary keys of two other tables: 

Employee and Project. 

 
CREATE TABLE Involvement( 

 employeeID INTEGER REFERENCES Employee, 

 projectID INTEGER REFERENCES Project, 

 CONSTRAINT Involvement_PK PRIMARY 

KEY(employeeID, projectID)) 

Figure 5. Composite tables 

 

 

3.2 Mapping Tables 
The second step of our approach is mapping tables. 

Each table maps to a class, with the exception of 

composite tables. Composite tables represent 

relationships. Therefore, they map to classes or 

object properties1, depending on their structures.  

     Example 1. Consider a table Project in Fig. 6. 

This table maps to a class Project, because it is a 

base table. 
 

CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 managerID INTEGER REFERENCES Employee) 

↓ 
<owl:Class rdf:ID="Project"/> 

Figure 6. Mapping base tables 

 

     Example 2. Consider a table Software-

Project in Fig. 7. This table maps to a class 

SoftwareProject, because it is a dependent 

table. 
 

CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY REFERENCES 

Project) 

↓ 
<owl:Class rdf:ID="SoftwareProject"/> 

Figure 7. Mapping dependent tables 

 

     Example 3. Consider a composite table 

Involvement in Fig. 8. This table represents a 

binary relationship between two tables: Employee 

and Project. Since the table entirely consists of 

                                                           
1
 A composite table can also map to multiple inheritance. 

But as there is no really good way to represent multiple 

inheritance in a relational schema, the table will map to a 

class. Users can then replace that class with multiple 

inheritance. 
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the primary keys of the two tables, it maps to a pair 

of object properties: involves and 

involvedBy. One object property is the inverse of 

another, meaning that the relationship is 

bidirectional; i.e. a project involves an employee. 

And an employee is involved in a project. 
 

CREATE TABLE Involvement( 

 employeeID INTEGER REFERENCES Employee, 

 projectID INTEGER REFERENCES Project, 

 CONSTRAINT Involvement_PK PRIMARY 

KEY(employeeID, projectID)) 

↓ 
<owl:ObjectProperty rdf:ID="involves"> 

 <rdfs:domain rdf:resource="#Project"/> 

 <rdfs:range rdf:resource="#Employee"/> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:ID="involvedIn"> 

 <owl:inverseOf 

rdf:resource="#involves"/> 

</owl:ObjectProperty> 

Figure 8. Mapping composite tables 

 

     Example 4. Consider a composite table 

Involvement in Fig. 9. Not only does that table 

consist of the primary keys of the two tables, but it 

also contains an additional column hours. 

Therefore, it maps to a class Involvement and a 

pair of object properties for each table participating 

in the relationship. (The object properties are not 

shown in Fig. 9 because of a lack of space.) 

 
CREATE TABLE Involvement( 

 employeeID INTEGER REFERENCES Employee, 

 projectID INTEGER REFERENCES Project, 

 hours INTEGER, 

 CONSTRAINT Involvement_PK PRIMARY 

KEY(employeeID, projectID)) 

↓ 
<owl:Class rdf:ID="Involvement"/> 

Figure 9. Mapping composite tables (contd.) 

 

     Example 5. Consider a composite table 

Involvement in Fig. 10. This table represents a 

ternary relationship between three tables: 

Employee, Project and Skill. Since only a 

binary relationship can be represented through a pair 

of object properties, the table maps to a class 

Involvement and a pair of object properties for 

each table participating in the relationship. (The 

object properties are not shown in Fig. 10 because of 

a lack of space.) 

 
CREATE TABLE Involvement( 

 employeeID INTEGER REFERENCES Employee, 

 projectID INTEGER REFERENCES Project, 

 skillID INTEGER REFERENCES Skill, 

 CONSTRAINT Involvement_PK PRIMARY 

KEY(employeeID, projectID, skillID)) 

↓ 

<owl:Class rdf:ID="Involvement"/> 

Figure 10. Mapping composite tables (contd.) 

 

 

3.3 Mapping Columns 
The third step of our approach is mapping columns. 

Each column in a table maps to a data type property 

in a class, with the exception of foreign keys. 

Foreign keys are ignored for a while, as they 

represent relationships.  

     Example 1. Consider a column projectID in a 

table Project in Fig. 11. This column maps to a 

data type property projectID in a class 

Project. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY) 

↓ 

<owl:DatatypeProperty rdf:ID="projectID"> 
 <rdfs:domain rdf:resource="#Project"/>    

 <rdfs:range 

rdf:resource="&xsd;integer"/> 

</owl:DatatypeProperty> 

Figure 11. Mapping columns 

 

 

3.4 Mapping Relationships 
The fourth step of our approach is mapping 

relationships. Relationships map to classes, object 

properties or inheritance, depending on the types of 

key, data and column correlations.  

     Given two tables r1 and r2, there are four types 

of: 

• Key correlation: key equality: K1=K2, key 

inclusion: K1⊂K2, key intersection: 

K1∩K2≠∅, K1–K2≠∅, K2–K1≠∅ and key 

disjointness: K1∩K2=∅ 

• Data correlation: data equality: 

r1[K1]=r2[K2], data inclusion: 

r1[K1]⊂r2[K2], data intersection: 

r1[K1]∩r2[K2]≠∅, r1[K1]–r2[K2]≠∅, 

r2[K2]–r1[K1]≠∅ and data disjointness: 

r1[K1]∩r2[K2]=∅ 

• Column correlation: column equality: 

C1=C2, column inclusion: C1⊂C2, column 

intersection: C1∩C2≠∅, C1–C2≠∅, C2–

C1≠∅ and column disjointness: C1∩C2=∅, 

     where K1 and K2 are primary keys of r1 and r2, 

respectively; C1 and C2 are columns of r1 and r2, 

respectively; r1[K1]=πK1(r1) and 
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r2[K2]=πK2(r2) are projections of r1 and r2 on K1 

and K2, respectively. 

     Example 1. Consider a relationship between 

Employee and Project in Fig. 12, when key 

disjointness holds on it. This relationship relates 

two tables, which are independent of each other. 

Since the relationship is binary, it maps to a pair of 

object properties: manages and managedBy. One 

object property is the inverse of another, meaning 

that the relationship is bidirectional; i.e. an 

employee manages a project. And a project is 

managed by an employee. 
 

CREATE TABLE Employee( 

 employeeID INTEGER PRIMARY KEY) 

CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 managerID INTEGER REFERENCES Employee) 

↓ 

<owl:ObjectProperty rdf:ID="manages"> 

 <rdfs:domain rdf:resource="#Employee"/> 

 <rdfs:range rdf:resource="#Project"/> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:ID="managedBy"> 
 <owl:inverseOf rdf:resource="#manages"/> 

</owl:ObjectProperty> 

Figure 12. Key disjointness 

 

     Example 2. Consider a relationship between 

Project and SoftwareProject in Fig. 13, 

when key equality and data inclusion hold on it. 

This relationship maps to single inheritance, as all 

data of SoftwareProject are also included in 

Project; i.e. a software project is a project. But 

the converse is not true; e.g. some projects can be 

hardware projects. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE) 

CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY REFERENCES 

Project, 

 language VARCHAR) 

↓ 

<owl:Class rdf:ID="SoftwareProject"> 

 <rdfs:subClassOf 

rdf:resource="#Project"/> 

</owl:Class> 

Figure 13. Key equality and data inclusion 

 

     Example 3. Consider a relationship between 

HardwareProject and SoftwareProject in 

Fig. 14, when key equality, data disjointness and 

column intersection hold on it. This example also 

illustrates single inheritance. Because some columns 

are common to both (disjoint) tables, 

HardwareProject and SoftwareProject 

are part of the inheritance hierarchy; but there is no 

table corresponding to their superclass. Therefore, 

we create a class Project whose subclasses are 

HardwareProject and SoftwareProject. 

 
CREATE TABLE HardwareProject( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE, 

 supplier VARCHAR) 

CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE, 

 language VARCHAR) 

↓ 

<owl:Class rdf:ID="Project"> 

 <owl:DatatypeProperty 

rdf:ID="projectID"> 

 <rdfs:range 

rdf:resource="&xsd;integer"/> 

 </owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:ID="budget"> 

 <rdfs:range rdf:resource="&xsd;float"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:ID="dueDate">    

 <rdfs:range rdf:resource="&xsd;date"/> 

 </owl:DatatypeProperty> 

</owl:Class> 

<owl:Class rdf:ID="HardwareProject"> 

 <rdfs:subClassOf 

rdf:resource="#Project"/> 

<owl:DatatypeProperty rdf:ID="supplier">  

<rdfs:range rdf:resource="&xsd;string"/> 

</owl:DatatypeProperty> 

</owl:Class> 

<owl:Class rdf:ID="SoftwareProject"> 

<rdfs:subClassOf 

rdf:resource="#Project"/> 

<owl:disjointWith 
rdf:resource="#HardwareProject"/> 

<owl:DatatypeProperty rdf:ID="language">   

<rdfs:range rdf:resource="&xsd;string"/> 

</owl:DatatypeProperty> 

</owl:Class> 

Figure 14. Key equality, data disjointness 

and column intersection 

 

     Example 4. Consider a relationship between 

HardwareProject and SoftwareProject in 

Fig. 15, when key equality, data disjointness and 

column equality hold on it. This is an example of 

optimization: horizontal partitioning, where data of a 

single table have been split into two (disjoint) tables, 

having the same columns. Therefore, we create a 

class Project whose individuals are the union of 

the data of the two tables. 

 
CREATE TABLE HardwareProject( 

 projectID INTEGER PRIMARY KEY, 
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 budget FLOAT, 

 dueDate DATE) 

CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE) 

↓ 

<owl:Class rdf:ID="SoftwareProject"> 

 <owl:disjointWith 

rdf:resource="#HardwareProject"/> 

 </owl:Class> 

<owl:Class rdf:ID="Project"> 

 <owl:unionOf rdf:parseType="Collection"> 

  <owl:Class 

rdf:about="#SoftwareProject"/> 

  <owl:Class 

rdf:about="#HardwareProject"/> 

 </owl:unionOf> 

</owl:Class> 

Figure 15. Key equality, data disjointness 

and column equality 

 

     Example 5. Consider a relationship between 

HardwareProject and SoftwareProject in 

Fig. 16, when key equality, data intersection and 

column equality hold on it. Because some data are 

common to both tables, we create a class Project 

whose individuals are the intersection of the data of 

the two tables. 

 
CREATE TABLE HardwareProject( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE) 

CREATE TABLE SoftwareProject( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT, 

 dueDate DATE) 

↓ 

<owl:Class rdf:ID="Project"> 
 <owl:intersectionOf 

rdf:parseType="Collection"> 

  <owl:Class 

rdf:about="#SoftwareProject"/> 

  <owl:Class 

rdf:about="#HardwareProject"/> 

 </owl:intersectionOf>  

</owl:Class> 

Figure 16. Key equality, data intersection 

and column equality 

 

 

3.5 Mapping Constraints 
The fifth step of our approach is mapping 

constraints. Constraints specify if a column in a 

table is unique or not null, or if the column is a 

primary key or a foreign key. Constraints also 

specify a data range for the column. 

     Example 1. Consider a unique constraint in Fig. 

17. This constraint specifies that a column budget 

in a table Project is unique, meaning that no two 

data in the table have the same value for the column. 

Therefore, the constraint maps to a functional 

property. 
 

CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT UNIQUE) 

↓ 

<owl:FunctionalProperty rdf:ID="budget"/> 

Figure 17. Mapping unique constraints 

 

     Example 2. Consider a not null constraint in Fig. 

18. This constraint specifies that a column budget 

in a table Project is not null, meaning that all 

data in the table contains values for the column. 

Therefore, the constraint maps to a minimum 

cardinality of 1. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 budget FLOAT NOT NULL) 

↓ 

<owl:Class rdf:ID="Project">  

 <rdfs:subClassOf> 

  <owl:Restriction>  

   <owl:onProperty 

rdf:resource="#budget"/> 

    <owl:minCardinality 

rdf:datatype="&xsd;nonNegativeInteger"1/> 
  </owl:Restriction>  

 </rdfs:subClassOf> 

</owl:Class> 

Figure 18. Mapping not null constraints 

 

     Example 3. Consider a primary key constraint in 

Fig. 19. This constraint specifies that a column 

projectID in a table Project is a primary key.  

Since the primary key implies that the column is 

both unique and not null, the constraint maps to both 

a functional property and a minimum cardinality of 

1. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY) 

↓ 

<owl:Class rdf:ID="Project">  

 <rdfs:subClassOf> 

  <owl:Restriction> 

   <owl:onProperty 

rdf:resource="#projectID"/> 

   <owl:minCardinality  

rdf:datatype="&xsd;nonNegativeInteger">1/> 

  </owl:Restriction> 

</rdfs:subClassOf> 

</owl:Class> 

<owl:FunctionalProperty 

rdf:ID="projectID"/> 

Figure 19. Mapping primary key constraints 
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     Example 4. Consider a check constraint in Fig. 

20. This constraint specifies a data range for a 

column type in a table Project through a list of 

possible values. Therefore, the constraint maps to an 

enumerated data type. 

 
CREATE TABLE Project( 

 projectID INTEGER PRIMARY KEY, 

 type VARCHAR CHECK IN ("Software", 

"Hardware")) 

↓ 

<owl:Class rdf:ID="Project"> 

 <owl:DatatypeProperty rdf:ID="type"> 

  <rdfs:range> 

   <owl:DataRange> 

    <owl:oneOf> 

     <rdf:List> 

      <rdf:first 

rdf:datatype="&xsd;string">"#Software" 
      </rdf:first> 
      <rdf:rest> 

       <rdf:List> 

        <rdf:first 

rdf:datatype="&xsd;string">"#Hardware" 

        </rdf:first> 

        <rdf:rest rdf:resource="&rdf;nil" 

/> 

       </rdf:List> 

      </rdf:rest> 

     </rdf:List> 
    </owl:oneOf> 

   </owl:DataRange> 

  </rdfs:range> 

 </owl:DatatypeProperty> 

</owl:Class> 

Figure 20. Mapping check constraints 

 

 

4   Conclusion 
We have proposed a novel approach to mapping 

relational schemata to ontologies. Our approach is 

based on an analysis of key, data and column 

correlations as well as their combinations. This 

analysis helps us: (1) discover “hidden” (implicit) 

semantics; and (2) address optimization and bad 

database design. 

     In the future, our approach can be used for 

migrating HTML pages (especially those that are 

dynamically generated from relational databases) to 

the ontology-based Semantic Web. The main reason 

for this migration is to make the relational database 

information on the Web machine-processable. 
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