
 (2, 3)-threshold visual cryptography for color images

Kun-Yuan Chao* and Ja-Chen Lin

Department of Computer and Information Science,

National Chiao Tung University,

1001 Ta Hsueh Rd., Hsinchu, Taiwan, 300,

R.O.C.

*Corresponding author. kychao@cis.nctu.edu.tw

jclin@cis.nctu.edu.tw

Abstract: - Most of the studies in visual cryptography (VC) are for binary images. Hou’s method [Pattern Recog.

2003, Vol. 36, 1619-1629] is a good extension from binary to colors. In this study, we extend Hou’s method

further so that the new scheme has fault-tolerant ability, namely, the secret image can still be revealed if one of

the generated shares delays due to communication channel failure, or by natural crash of the storage equipment,

or even destroyed by hackers. In the proposed scheme, a color secret image decomposes into three shares. Each

share alone cannot reveal the secret image. However, gathering “any” two of the three shares can unveil the

secret image.

Key-Words: - Visual cryptography; C-M-Y color decomposition; Error diffusion; Shares; Stacking

1 Introduction
Secret sharing [1] is one of the approaches to keep a

secret safe. When the secret is an image, a

well-known approach using sharing is the visual

cryptography (VC) approach [2]. Many extended

studies of [2] have been proposed; however, most of

these studies (for example, [3]) are for binary images

due to the nature of VC. Some studies extend VC to

the encryption of gray-level images, for instance,

Ref. [4, 5]. Recently, based on black-and-white VC

and the color decomposition method, Hou [6]

elegantly proposed three VC methods for color

images. Hou’s methods to process color images have

wide applications because color images are

everywhere nowadays. In this study, we extend

Hou’s work further so that the new scheme has

fault-tolerant ability. Among Hou’s three methods,

his Method 3 is the most elegant one. This study thus

focuses on his Method 3.

 A (k, n)-threshold visual cryptography scheme, as

described by Naor and Shamir [2], is a method to

encode a secret image into n shadow images (called

shares). Any k of the n shares can be stacked to

recover the secret image, but any k-1 or fewer of

them gains no information about the secret image. In

the current study, a new scheme is proposed to extend

Hou’s Method 3 to a (2, 3)-threshold visual

cryptography scheme for color images so that the

new version has fault-tolerant ability.

 The remaining portion of the paper is organized as

follows. Section 2 briefly reviews binary

(Black/White) visual cryptography, and the methods

to deal with gray-level and color images using

halftone techniques. The C-M-Y color

decomposition used by Hou is also reviewed in this

section. Section 3 presents the proposed (2,

3)-threshold method for color images. Experimental

results and comparisons are in Section 4. Finally,

conclusions are given in Section 5.

2 Reviewing the methods of visual

cryptography

2.1 Binary VC using 2×2 black-and-white

blocks
In the simplest design of black-and-white visual

cryptography, a pixel (black or white) in a binary

image is often decomposed into two size-extended

(2×2 in size) sharing blocks according to the rules in

Fig. 1. The four elements in each 2×2 sharing block

are 50% black and 50% white, i.e. there are two white

elements and two black elements in each block,

regardless of whether the input pixel is a black pixel

or a white one.

Fig. 1 A sharing and stacking scheme for binary

(black/white) images.

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

After the decomposition of the given binary

secret image, the two obtained shares look like

random noises, and each share is 2×2=4 times

bigger than the secret image due to the

size-extended decomposition (from a pixel to a

block of size 2×2). Each share alone cannot

provide any information about the secret image.

However, after stacking the two shares, the binary

secret image can be recovered, but the contrast

degrades by 50%. (Compare Fig. 2 (c) with 2 (a).)

The reason is obvious: according to the last column

of Fig. 1, it can be seen that if the original input

pixel is a white pixel, then after stacking, the

corresponding 2-by-2 stacked block has 2 black

elements and 2 white elements (instead of four

white elements). Therefore, the white area of the

binary input image will not be mapped to a white

area in the stacked image, instead, it is mapped to

an area whose brightness is more like gray (as

shown in Fig. 2 (c)).

(a) (b) (c)

Fig. 2 An example of binary VC technology. (a) the

input (a binary secret image), (b) the output

(Shares 1 and 2), and (c) the result after stacking.

2.2 Gray-leveled VC with the help of

halftone technology
Halftone technology is a method to use the density of

the net dots to simulate the gray level. After the

halftone transformation, the gray-level image

becomes a binary one, which almost looks like a

continuous-tone image. In our paper, an

error-diffusion method designed earlier in our lab [7]

is used as the halftone method to transform a

gray-level secret image (or one of the three

color-components of a color secret image [each

component has 256 levels]) to a binary image. The

traditional black-and-white VC method in Section

2.1 can then be applied to generate the shares. Fig. 3

shows an example. This kind of pre-processing

(using halftone techniques to transform gray-level

images to binary images) can also be found in other

reported VC-designs ([5] and [6]).

 (a) (b) (c) (d)

Fig. 3 An example of gray-level VC with the help of

halftone technique. (a) the input (a gray-level secret

image), (b) the transformed halftone image, (c) the

output (Share 1 and Share 2), and (d) the stacked

result.

2.3 Hou’s Color VC with the help of color

decomposition method
Only a few studies present VC schemes for color

images. Hou’s Method 3 belongs to this special

category. Hou transformed a color secret image into

three halftone images C, M, and Y by using a

halftone algorithm three times (the first time is on the

C-component, then on the M-component, then on the

Y-component). Each 24-bit color pixel of the input

secret image then became a 3-bit pixel (C, M, Y)

where C was either 0 or 1 (so were M and Y). Hou

then applied a technique of binary visual

cryptography (similar to the one in Sec. 2.1) to each

of the three components, and thus generated six

temporary component-shares C1, C2, M1, M2, Y1,

and Y2. Hou then combined C1, M1, and Y1 to form

a colored halftone Share 1 (and combined C2, M2,

and Y2 to form Share 2). After stacking Share 1 and

Share 2, the content of the stacked image could then

be easily identified. Fig. 4 shows how to decompose a

3-bit blue pixel (C=1, M=1, Y=0) into two sharing

blocks and how to reconstruct the blue-like block.

This version of Hou’s generated two shares, and did

not sacrifice the contrast too much.

Fig. 4 Hou’s color pixel decomposition and

reconstruction.

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

3 The proposed (2, 3)-threshold visual

cryptography for color images
In Sec. 3.1, it describes how to share a pixel. Then it

will describe in Sec. 3.2 how to share an image.

3.1 The decomposition of a pseudo-color

pixel (C, M, Y) and its reconstruction using

OR operation

3.1.1 Sharing a 3-bit vector (C,M,Y) to obtain

three new vectors {(Ci,Mi,Yi): i=1~3}

Assume that each 24-bit color is composed of cyan,

magenta and yellow; and each 24-bit color pixel has

been reduced to 3-bit pseudo color by applying a

halftone method three times (the first time is on the

C-component, then on the M-component, then on the

Y-component, as stated in Sec. 2.3). Therefore, the

pseudo-color of a pixel can be denoted by (C, M, Y)

where the coordinate value of C is either 0 or 1, so do

the coordinate values of M and Y. For example, the

pseudo-color blue is (C=1, M=1, Y=0).

Each pseudo-color (C, M, Y) can be shared to

produce three new pseudo-colors (C, M, 0), (C, 0,

Y) and (0, M, Y). Any two or three of them can

recover the original pseudo-color (C, M, Y) by the

OR operation because

(C, M, 0) + (C, 0, Y) = (C, M, Y), (eq.1)

(C, 0, Y) + (0, M, Y) = (C, M, Y), (eq.2)

(C, M, 0) + (0, M, Y) = (C, M, Y), (eq.3)

(C, M, 0) + (C, 0, Y) + (0, M, Y) = (C, M, Y). (eq.4)

As an example, let us inspect the blue pixel whose

pseudo-color is (C=1, M=1, Y=0). The three shares

of (C=1, M=1, Y=0) are (1, 1, 0), (1, 0, 0) and (0, 1, 0).

Note that (via eq.1-4)

(1, 1, 0) + (1, 0, 0) = (1, 1, 0),

(1, 0, 0) + (0, 1, 0) = (1, 1, 0),

(1, 1, 0) + (0, 1, 0) = (1, 1, 0),

(1, 1, 0) + (1, 0, 0) + (0, 1, 0) = (1, 1, 0).

In other words, any two shares (or all three shares

together) can recover the original (1,1,0). In the

above, the operation “+” denotes “OR”; for example,

1 + 0 = 1 + 1 =1 + 1 + 1 = 1.

3.1.2 Painting the 2-by-2 block for each share

The above discussion in Sec. 3.1.1 only told us how

to share a 3-bit vector (C, M, Y) to create three other

3-bit vectors {(C, M, 0), (C, 0, Y), (0, M, Y)} with

the help of the overwriting operation using “0”. The

discussion mentioned nothing about how to paint the

image block for each share. This not-yet-touched

question will be answered using Fig. 5. In Fig. 5, it

shows how to decompose a 3-bit pseudo-color blue

pixel (C=1, M=1, Y=0) into three 2-by-2

pseudo-color blocks, and then how to reconstruct a

blue-like 2-by-2 block back from any two of these

three generated blocks.

Fig. 5 The color pixel decomposition (to generate

three shares) and reconstruction (from “any” two of

the three shares) used in our method.

As discussed in Sec. 3.1.1 above, the three

shares of (C=1, M=1, Y=0) are as follows: Share 1

is (C1=1, M1=1, Y1=0), Share 2 is (C2=1, M2=0,

Y2=0), and Share 3 is (C3=0, M3=1, Y3=0). Now,

as shown in Fig. 5, for the nine color components

{C1~C3, M1~M3, Y1~Y3}, each (1-bit) color

component is represented by a 2-by-2 block, and

paint the block by this rule: if the value of the 1-bit

color component is 1 (for example, C1 is 1) , then

the northeast and southwest elements of the block

are blank; if it is 0 (for example, C3 is 0), then the

northwest and southeast elements are blank. (As

for the other two elements of the 2-by-2 block, one

needs to paint the color of the color component

being discussed. For example, if C1 is the color

component being discussed, then paint cyan in

these two non-blank elements because “C” stands

for “Cyan”). Finally, combining the three 2-by-2

component blocks (each block has 4 elements, and

each element is 1-bit) that represent C1, M1, and

Y1, respectively, the 2-by-2 pseudo-color block is

obtained and called as Share 1. Analogue

statements yield Share 2 and Share 3. (Now,

although each 2-by-2 block in a share still has 4

elements, each element has 3 bits because each

element becomes a 3-dimensional vector (C, M,Y).)

Note that the northeast element of Share 3 is green

because the superposition of the cyan color and

yellow color yields the green color (see the

northeast elements of the 2-by-2 component blocks

of C3, Y3, and M3). Without the loss of generality

in VC, the three 2-by-2 pseudo-color blocks must

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

be randomly re-permutated into shares for security.

The sharing procedure of a secret pixel ends here.

In later days, when a receiver wants to

reconstruct the secret pixel (the blue pixel in the

above example), he just stacks together “any” two

of the three shares, then continue the stacking with

a 2-by-2 mask block which is black in the northeast

and southwest elements (and blank in the northwest

and southeast elements). In the bottom half of Fig.

5, this process is shown to indicate how to

reconstruct a blue-like block which represents the

blue pixel shown at the top of Fig. 5 (if the two

black elements in the 45 degree direction [the

northeast and southwest] of the resulting 2-by-2

block always be ignored). The receiver can also see

that in Fig. 5, without the help of the mask block,

stacking Shares 1 and 2 will be different from

stacking Shares 1 and 3 (or from stacking Shares 2

and 3), although in each case the -45 degree

direction (the northwest and southeast elements) is

always the expected blue color.

3.1.3 Diversity of the design (using “rotation” or

“switch” locally to get better view globally)

If the technique described in Fig. 5 repeatedly is used

to expand each 3-bit pixel of a 256-by-256 halftoned

pseudo-color image, although three 512-by-512

shares can be obtained, the reconstruction results

from stacking the shares will be a little strange,

because there exists a great number of black lines in

the 45 degree direction (southwest to northeast).

These black lines are caused by the repeated

appearance of the same pair of black elements shown

in each resulting block of Fig. 5. In fact, the same pair

of black elements appears 256×256 times when the

input secret image is 256×256 in size; and these black

elements are always in the 45 degree (southwest to

northeast) direction.

To avoid this phenomenon, only one thing has

to be avoided is that the black pair always appear in

the same position. To achieve this, just notice that

if “all” 2-by-2 blocks are rotated (including the 9

component blocks, the 3 shares, the mask, and the

resulting blocks) in Fig. 5 by 90 degrees, the

system still works. That is, there are still three

2-by-2 shares (but rotated), and by stacking the

rotated mask with any two of the three rotated

shares, the rotated result still has two blue elements

(and two dummy black elements).

In fact, there are C(4,2)=4×3/2! = 6 possible

ways to assign the two dummy black elements in a

2-by-2 mask. For example, (NE, SW) is the one

shown in Fig. 5; (NW, SE) is the one introduced

above for the rotated version; and (NE, NW) is

another kind, etc. Without the loss of generality,

this sub-section only introduces how to modify the

design when the mask has the two dummy black

elements in (NE, NW). Compare the (NE, NW)

mask with the old mask shown in Fig. 5 (the (NE,

SW) mask), it may say the new mask is obtained by

switching the SW (Southwest) and NW (Northwest)

elements in the mask of Fig. 5. Therefore, it only

has to switch the SW and NW elements for “all”

2-by-2 blocks shown in Fig. 5. The new design is

then complete. After all, the stacking of the blocks

is actually done by doing the stacking in an

element-by-element manner. That is, stack the NE

element first, then stack the NW, then stack the SW,

then stack the SE. Therefore, if the 4 elements of all

2-by-2 blocks in Fig. 5 (before the generation of the

shares) are permuted using a specified permutation

rule, then the 4 elements of the result will also be

permuted by the same permutation rule.

3.2 The (2, 3)-threshold visual cryptography

for a color image
By the ED halftone algorithm (Han and Lin, 1997), a

256-by-256 full-color (24-bit) secret image can be

transformed into three 256-by-256 (1-bit) halftone

images C, M, and Y; or equivalently, a 256-by-256

pseudo-color (3-bit) C-M-Y image. Then the above

sharing method may be employed for each pixel.

Thus three 512-by-512 3-bit pseudo-color images

(C1, M1, Y1), (C2, M2, Y2), and (C3, Y3, M3) will

be generated. These three pseudo-color images are

the three expected shares.

Algorithm to share a secret image

1. Transform the 24-bit color image into a 3-bit

C-M-Y pseudo-color halftone image.

2. For each pixel Pij of the halftone image, whose

pseudo-color components are (cij, mij, yij), do the

following:

(a) Create a 2-by-2 mask block Bij, in which two of

the four elements are randomly assigned to be black,

then leave the other two elements being white

(blank).

(b) According to the positions that the two black

elements appear in the mask block Bij, use a way

analogous to the one used in Fig. 5 to expand (cij, mij,

yij) into nine 2-by-2 blocks, C1ij, C2ij, C3ij, M1ij,

M2ij, M3ij, Y1ij, Y2ij, and Y3ij.

(c) Combine blocks C1ij, M1ij, and Y1ij to paint the

combined block (i,j) for Share 1.

(d) Combine blocks C2ij, M2ij, and Y2ij to paint the

combined block (i,j) for Share 2.

(e) Combine blocks C3ij, M3ij, and Y3ij to paint the

combined block (i,j) for Share 3.

(f) Re-permute the three combined blocks randomly

into Share 1, 2, and 3.

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

3. After finishing Step 2 (when all pixels Pij have

been processed), the three desired shares can be

obtained by collecting all the combined blocks (of the

corresponding share). A mask image is also obtained

by collecting all the mask blocks.

4. In later days, after stacking the mask image with

any two of the three shares, the pseudo-color version

of the secret image is unveiled.

4 Experimental results
A secret image Lena is decomposed into the three

shares shown in Fig. 6. None of the shares alone

reveal any information about the Lena image. After

stacking Shares 1 and 2, the stacked image is the one

shown in Fig. 7 (a). Then, after stacking Fig. 7 (a)

with the mask shown in Fig. 7 (b), the result is

obtained in Fig. 7 (c). Analogously, Fig. 8 and Fig. 9

show other stacked results when the action of

stacking Shares 1 and 2 in Fig. 7 are replaced by

stacking Shares 1 and 3 (Fig. 8) or by stacking shares

2 and 3 (Fig.9).

(a) (b) (c)

Fig. 6 The three shares of Lena. (a) Share 1, (b)

Share 2, and (c) Share 3.

(a) (b) (c)

Fig. 7 Stacking Shares 1 and 2. (a) is the intermediate

image after stacking Shares 1 and 2, (b) is the mask,

and (c) is the final image after stacking (a) with (b).

(a) (b)

Fig. 8 Stacking Shares 1 and 3. (a) is the intermediate

image after stacking Shares 1 and 3; and (b) is the

final image after stacking (a) with the mask in Fig.

7(b).

(a) (b)

Fig. 9 Stacking Shares 2 and 3. (a) is the intermediate

image after stacking Shares 2 and 3; and (b) is the

final image after stacking (a) with the mask in Fig.

7(b).

We also compare in Fig. 10 the resulting

images of Hou’s with ours (Fig. 7(c), which is

identical to Fig. 8(b) and 9(b)), it can be seen that

the two methods yield images of very similar

quality. In fact, just like Hou’s method, our

resulting image also has a brightness loss, which is

a common phenomenon seen in all reported VC

methods.

(a) (b) (c)

Fig. 10 Comparison between the proposed scheme

and Hou’s Method 3. (a) is the resulting image in Fig.

7(c), (b) is the input 24-bit color image Lena, and (c)

is the resulting image of Hou’s.

5 Conclusion and discussion
Most of the studies about visual cryptography deal

with binary images. The visual cryptography

proposed by Hou to process color images is thus

valuable because color images are everywhere

nowadays. In this study, we extend Hou’s method

further so that the new scheme has fault-tolerant

ability, namely, the secret image still has a chance to

be unveiled if one of the generated shares is delayed

in a communication channel, destroyed by hackers,

or crashed in natural life of the storage equipment. In

the proposed scheme, a color secret image is

decomposed into three shares. Each share alone

cannot unveil the secret image, while gathering any

two of the three shares can recover the secret image.

The storage of the mask image is briefly

discussed below. The mask image is mandatory;

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

otherwise, the stacked result will be

shares-dependent, i.e., the result of stacking Shares

1 and 2 is different from that of stacking Shares 1

and 3 (see Fig. 7 (a) and 8 (a).) To store the mask

image, there are at least three ways.

Assume that the secret image is 256-by-256 in

size. Then the first way is to store the 512-by-512

mask image directly, and the storage space is

512×512 bits. The second way is as follows. Since

there are only C(4,2)=4×3/2=6 kinds of pattern

blocks (see Sec. 3.1.3) for the mask blocks, this

way only has to record the indices (chosen from

1~6) indicating which kind is the first 2-by-2

block, …, which kind is the last (the 256×256-th)

2-by-2 block. Therefore, the storage space for the

mask image is at most 3×256×256 bits.

As for the third way, it needs almost no

storage space. Because a seed (a secret number)

can be used in a random-number-generator to

generate a sequence of 256×256 numbers, and each

number is in the range 1~6. This way creates this

sequence even before creating the three shares and

the mask image. Then, when a secret image wants

to be shared, in Step 2 (a) of the sharing algorithm

(see Sec. 3.2), the mask block pattern is chosen

according to this sequence of 256×256 numbers.

For example, if the generated sequence is

3524516236415…, then the first mask block (B11)

that will be used in Step 2(a) is of type 3, and the

second mask block (B12) that will be used in Step

2(a) is of type 5, etc. Obviously, this way only has

to store the seed instead of the whole sequence,

because when a receiver wants to unveil the secret

image later, he only has to use that seed to generate

again the very same sequence 3264516236415…,

and then expand this sequence to get the mask

image. Notably, storing the seed saves the storage

space at the expense of non-real time recovery in

the decoding phase to get the secret image.

 As a final remark, if the mask image is lost, the

receiver can still get exactly the recovery image

shown in Fig 7(c) by stacking all three shares (see Fig.

11). Of course, if he not only loses the mask image

but also loses one of the three shares, then he can only

recover the one shown in 7(a) or 8(a) or 9(a).

 As for the future work, this study is a basic study

for the (k, n)-threshold visual cryptography for color

images. In the future, more methods can be

developed by visual cryptograph researchers to create

n shares for a color image, and any k of these n shares

can be used to recover the image. (In this study, k=2

and n=3.)

Fig. 11 The image obtained by stacking all three

shares. (The mask image is not used here.)

Acknowledgements
This work is supported by National Science Council,

Taiwan, R.O.C., under grant NSC 94-2213-E-009

-093.

References:

[1] A. Shamir, How to share a secret,

Communications of the Association for

Computing Machinery, Vol.22, No.11, 1979, pp.

612-613.

[2] M. Naor, A. Shamir, Visual Cryptography,

In:Advances in Cryptology- EUROCRYPT’94

Lecture Notes in Computer Science,

Springer-Berlin, 1995, pp. 1-12.

[3] C.N. Yang, New visual secret sharing schemes

using probabilistic method, Pattern Recognition

Letters, Vol.25, 2004, pp. 481-494.

[4] C. Blundo, A.D. Santis, M. Naor, Visual

cryptography for gray level images, Information

Processing Letters, Vol.75, 2002, pp. 255-259.

[5] C.C. Lin, W.H. Tsai, Visual cryptography for

gray-level images by dithering techniques,

Pattern Recognition Letters, Vol.24, 2003, pp.

349-358.

[6] Y.C. Hou, Visual cryptography for color images,

Pattern Recognition, Vol.36, 2003, pp.

1619-1629.

[7] W.Y. Han, J.C. Lin, Error diffusion without

contouring effect, Journal of Electronic, Vol.6,

No.1 , 1997, pp. 133-139.

Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 2006 (pp89-94)

