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Abstract: - Most of the studies in visual cryptography (VC) are for binary images. Hou’s method [Pattern Recog. 

2003, Vol. 36, 1619-1629] is a good extension from binary to colors. In this study, we extend Hou’s method 

further so that the new scheme has fault-tolerant ability, namely, the secret image can still be revealed if one of 

the generated shares delays due to communication channel failure, or by natural crash of the storage equipment, 

or even destroyed by hackers. In the proposed scheme, a color secret image decomposes into three shares. Each 

share alone cannot reveal the secret image. However, gathering “any” two of the three shares can unveil the 

secret image. 
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1   Introduction 
Secret sharing [1] is one of the approaches to keep a 

secret safe. When the secret is an image, a 

well-known approach using sharing is the visual 

cryptography (VC) approach [2]. Many extended 

studies of [2] have been proposed; however, most of 

these studies (for example, [3]) are for binary images 

due to the nature of VC. Some studies extend VC to 

the encryption of gray-level images, for instance, 

Ref. [4, 5]. Recently, based on black-and-white VC 

and the color decomposition method, Hou [6] 

elegantly proposed three VC methods for color 

images. Hou’s methods to process color images have 

wide applications because color images are 

everywhere nowadays. In this study, we extend 

Hou’s work further so that the new scheme has 

fault-tolerant ability. Among Hou’s three methods, 

his Method 3 is the most elegant one. This study thus 

focuses on his Method 3.  

     A (k, n)-threshold visual cryptography scheme, as 

described by Naor and Shamir [2], is a method to 

encode a secret image into n shadow images (called 

shares). Any k of the n shares can be stacked to 

recover the secret image, but any k-1 or fewer of 

them gains no information about the secret image. In 

the current study, a new scheme is proposed to extend 

Hou’s Method 3 to a (2, 3)-threshold visual 

cryptography scheme for color images so that the 

new version has fault-tolerant ability.  

     The remaining portion of the paper is organized as 

follows. Section 2 briefly reviews binary 

(Black/White) visual cryptography, and the methods 

to deal with gray-level and color images using 

halftone techniques. The C-M-Y color 

decomposition used by Hou is also reviewed in this 

section. Section 3 presents the proposed (2, 

3)-threshold method for color images. Experimental 

results and comparisons are in Section 4. Finally, 

conclusions are given in Section 5.  

 

 

2   Reviewing the methods of visual 

cryptography 
 

2.1 Binary VC using 2×2 black-and-white 

blocks 
In the simplest design of black-and-white visual 

cryptography, a pixel (black or white) in a binary 

image is often decomposed into two size-extended 

(2×2 in size) sharing blocks according to the rules in 

Fig. 1. The four elements in each 2×2 sharing block 

are 50% black and 50% white, i.e. there are two white 

elements and two black elements in each block, 

regardless of whether the input pixel is a black pixel 

or a white one.  

 

 
Fig. 1 A sharing and stacking scheme for binary 

(black/white) images. 
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After the decomposition of the given binary 

secret image, the two obtained shares look like 

random noises, and each share is 2×2=4 times 

bigger than the secret image due to the 

size-extended decomposition (from a pixel to a 

block of size 2×2). Each share alone cannot 

provide any information about the secret image. 

However, after stacking the two shares, the binary 

secret image can be recovered, but the contrast 

degrades by 50%. (Compare Fig. 2 (c) with 2 (a).) 

The reason is obvious: according to the last column 

of Fig. 1, it can be seen that if the original input 

pixel is a white pixel, then after stacking, the 

corresponding 2-by-2 stacked block has 2 black 

elements and 2 white elements (instead of four 

white elements). Therefore, the white area of the 

binary input image will not be mapped to a white 

area in the stacked image, instead, it is mapped to 

an area whose brightness is more like gray (as 

shown in Fig. 2 (c)).  

 

 
(a)                       (b)                              (c) 

Fig. 2 An example of binary VC technology. (a) the 

input (a binary secret image), (b) the output 

(Shares 1 and 2), and (c) the result after stacking. 

 

2.2   Gray-leveled VC with the help of 

halftone technology  
Halftone technology is a method to use the density of 

the net dots to simulate the gray level. After the 

halftone transformation, the gray-level image 

becomes a binary one, which almost looks like a 

continuous-tone image. In our paper, an 

error-diffusion method designed earlier in our lab [7] 

is used as the halftone method to transform a 

gray-level secret image (or one of the three 

color-components of a color secret image [each 

component has 256 levels]) to a binary image. The 

traditional black-and-white VC method in Section 

2.1 can then be applied to generate the shares. Fig. 3 

shows an example. This kind of pre-processing 

(using halftone techniques to transform gray-level 

images to binary images) can also be found in other 

reported VC-designs ([5] and [6]).  

 

 
      (a)           (b)                  (c)                        (d) 

Fig. 3 An example of gray-level VC with the help of 

halftone technique. (a) the input (a gray-level secret 

image), (b) the transformed halftone image, (c) the 

output (Share 1 and Share 2), and (d) the stacked 

result. 

 

2.3   Hou’s Color VC with the help of color 

decomposition method  
Only a few studies present VC schemes for color 

images. Hou’s Method 3 belongs to this special 

category. Hou transformed a color secret image into 

three halftone images C, M, and Y by using a 

halftone algorithm three times (the first time is on the 

C-component, then on the M-component, then on the 

Y-component). Each 24-bit color pixel of the input 

secret image then became a 3-bit pixel (C, M, Y) 

where C was either 0 or 1 (so were M and Y). Hou 

then applied a technique of binary visual 

cryptography (similar to the one in Sec. 2.1) to each 

of the three components, and thus generated six 

temporary component-shares C1, C2, M1, M2, Y1, 

and Y2. Hou then combined C1, M1, and Y1 to form 

a colored halftone Share 1 (and combined C2, M2, 

and Y2 to form Share 2). After stacking Share 1 and 

Share 2, the content of the stacked image could then 

be easily identified. Fig. 4 shows how to decompose a 

3-bit blue pixel (C=1, M=1, Y=0) into two sharing 

blocks and how to reconstruct the blue-like block. 

This version of Hou’s generated two shares, and did 

not sacrifice the contrast too much. 

 

 
Fig. 4 Hou’s color pixel decomposition and 

reconstruction. 
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3   The proposed (2, 3)-threshold visual 

cryptography for color images 
In Sec. 3.1, it describes how to share a pixel. Then it 

will describe in Sec. 3.2 how to share an image. 

 

3.1   The decomposition of a pseudo-color 

pixel (C, M, Y) and its reconstruction   using 

OR operation 

 
3.1.1 Sharing a 3-bit vector (C,M,Y) to obtain 

three new vectors {(Ci,Mi,Yi): i=1~3} 

Assume that each 24-bit color is composed of cyan, 

magenta and yellow; and each 24-bit color pixel has 

been reduced to 3-bit pseudo color by applying a 

halftone method three times (the first time is on the 

C-component, then on the M-component, then on the 

Y-component, as stated in Sec. 2.3). Therefore, the 

pseudo-color of a pixel can be denoted by (C, M, Y) 

where the coordinate value of C is either 0 or 1, so do 

the coordinate values of M and Y. For example, the 

pseudo-color blue is (C=1, M=1, Y=0). 

Each pseudo-color (C, M, Y) can be shared to 

produce three new pseudo-colors (C, M, 0), (C, 0, 

Y) and (0, M, Y). Any two or three of them can 

recover the original pseudo-color (C, M, Y) by the 

OR operation because 

(C, M, 0) + (C, 0, Y) = (C, M, Y),                     (eq.1) 

(C, 0, Y) + (0, M, Y) = (C, M, Y),                     (eq.2) 

(C, M, 0) + (0, M, Y) = (C, M, Y),                    (eq.3) 

(C, M, 0) + (C, 0, Y) + (0, M, Y) = (C, M, Y).  (eq.4) 

As an example, let us inspect the blue pixel whose 

pseudo-color is (C=1, M=1, Y=0). The three shares 

of (C=1, M=1, Y=0) are (1, 1, 0), (1, 0, 0) and (0, 1, 0). 

Note that (via eq.1-4) 

(1, 1, 0) + (1, 0, 0) = (1, 1, 0), 

(1, 0, 0) + (0, 1, 0) = (1, 1, 0), 

(1, 1, 0) + (0, 1, 0) = (1, 1, 0), 

(1, 1, 0) + (1, 0, 0) + (0, 1, 0) = (1, 1, 0). 

In other words, any two shares (or all three shares 

together) can recover the original (1,1,0). In the 

above, the operation “+” denotes “OR”; for example, 

1 + 0 = 1 + 1 =1 + 1 + 1 = 1. 

 

3.1.2 Painting the 2-by-2 block for each share 

The above discussion in Sec. 3.1.1 only told us how 

to share a 3-bit vector (C, M, Y) to create three other 

3-bit vectors {(C, M, 0), (C, 0, Y), (0, M, Y)} with 

the help of  the overwriting operation using “0”. The 

discussion mentioned nothing about how to paint the 

image block for each share. This not-yet-touched 

question will be answered using Fig. 5. In Fig. 5, it 

shows how to decompose a 3-bit pseudo-color blue 

pixel (C=1, M=1, Y=0) into three 2-by-2 

pseudo-color blocks, and then how to reconstruct a 

blue-like 2-by-2 block back from any two of these 

three generated blocks. 

 

 
Fig. 5 The color pixel decomposition (to generate 

three shares) and reconstruction (from “any” two of 

the three shares) used in our method. 

 

As discussed in Sec. 3.1.1 above, the three 

shares of (C=1, M=1, Y=0) are as follows: Share 1 

is (C1=1, M1=1, Y1=0), Share 2 is (C2=1, M2=0, 

Y2=0), and Share 3 is (C3=0, M3=1, Y3=0). Now, 

as shown in Fig. 5, for the nine color components 

{C1~C3, M1~M3, Y1~Y3}, each (1-bit) color 

component is represented by a 2-by-2 block, and 

paint the block by this rule: if the value of the 1-bit 

color component is 1 (for example, C1 is 1) , then 

the northeast and southwest elements of the block 

are blank; if it is 0 (for example, C3 is 0), then the 

northwest and southeast elements are blank. (As 

for the other two elements of the 2-by-2 block, one 

needs to paint the color of the color component 

being discussed. For example, if C1 is the color 

component being discussed, then paint cyan in 

these two non-blank elements because “C” stands 

for “Cyan”). Finally, combining the three 2-by-2 

component blocks (each block has 4 elements, and 

each element is 1-bit) that represent C1, M1, and 

Y1, respectively, the 2-by-2 pseudo-color block is 

obtained and called as Share 1. Analogue 

statements yield Share 2 and Share 3. (Now, 

although each 2-by-2 block in a share still has 4 

elements, each element has 3 bits because each 

element becomes a 3-dimensional vector (C, M,Y).) 

Note that the northeast element of Share 3 is green 

because the superposition of the cyan color and 

yellow color yields the green color (see the 

northeast elements of the 2-by-2 component blocks 

of C3, Y3, and M3). Without the loss of generality 

in VC, the three 2-by-2 pseudo-color blocks must 
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be randomly re-permutated into shares for security. 

The sharing procedure of a secret pixel ends here. 

In later days, when a receiver wants to 

reconstruct the secret pixel (the blue pixel in the 

above example), he just stacks together “any” two 

of the three shares, then continue the stacking with 

a 2-by-2 mask block which is black in the northeast 

and southwest elements (and blank in the northwest 

and southeast elements). In the bottom half of Fig. 

5, this process is shown to indicate how to 

reconstruct a blue-like block which represents the 

blue pixel shown at the top of Fig. 5 (if the two 

black elements in the 45 degree direction [the 

northeast and southwest] of the resulting 2-by-2 

block always be ignored). The receiver can also see 

that in Fig. 5, without the help of the mask block, 

stacking Shares 1 and 2 will be different from 

stacking Shares 1 and 3 (or from stacking Shares 2 

and 3), although in each case the -45 degree 

direction (the northwest and southeast elements) is 

always the expected blue color. 

 

3.1.3 Diversity of the design (using “rotation” or 

“switch” locally to get better view globally) 

If the technique described in Fig. 5 repeatedly is used 

to expand each 3-bit pixel of a 256-by-256 halftoned 

pseudo-color image, although three 512-by-512 

shares can be obtained, the reconstruction results 

from stacking the shares will be a little strange, 

because there exists a great number of black lines in 

the 45 degree direction (southwest to northeast). 

These black lines are caused by the repeated 

appearance of the same pair of black elements shown 

in each resulting block of Fig. 5. In fact, the same pair 

of black elements appears 256×256 times when the 

input secret image is 256×256 in size; and these black 

elements are always in the 45 degree (southwest to 

northeast) direction. 

To avoid this phenomenon, only one thing has 

to be avoided is that the black pair always appear in 

the same position. To achieve this, just notice that 

if “all” 2-by-2 blocks are rotated (including the 9 

component blocks, the 3 shares, the mask, and the 

resulting blocks) in Fig. 5 by 90 degrees, the 

system still works. That is, there are still three 

2-by-2 shares (but rotated), and by stacking the 

rotated mask with any two of the three rotated 

shares, the rotated result still has two blue elements 

(and two dummy black elements). 

In fact, there are C(4,2)=4×3/2! = 6 possible 

ways to assign the two dummy black elements in a 

2-by-2 mask. For example, (NE, SW) is the one 

shown in Fig. 5; (NW, SE) is the one introduced 

above for the rotated version; and (NE, NW) is 

another kind, etc. Without the loss of generality, 

this sub-section only introduces how to modify the 

design when the mask has the two dummy black 

elements in (NE, NW). Compare the (NE, NW) 

mask with the old mask shown in Fig. 5 (the (NE, 

SW) mask), it may say the new mask is obtained by 

switching the SW (Southwest) and NW (Northwest) 

elements in the mask of Fig. 5. Therefore, it only 

has to switch the SW and NW elements for “all” 

2-by-2 blocks shown in Fig. 5. The new design is 

then complete. After all, the stacking of the blocks 

is actually done by doing the stacking in an 

element-by-element manner. That is, stack the NE 

element first, then stack the NW, then stack the SW, 

then stack the SE. Therefore, if the 4 elements of all 

2-by-2 blocks in Fig. 5 (before the generation of the 

shares) are permuted using a specified permutation 

rule, then the 4 elements of the result will also be 

permuted by the same permutation rule. 

 

3.2   The (2, 3)-threshold visual cryptography 

for a color image 
By the ED halftone algorithm (Han and Lin, 1997), a 

256-by-256 full-color (24-bit) secret image can be 

transformed into three 256-by-256 (1-bit) halftone 

images C, M, and Y; or equivalently, a 256-by-256 

pseudo-color (3-bit) C-M-Y image. Then the above 

sharing method may be employed for each pixel. 

Thus three 512-by-512 3-bit pseudo-color images 

(C1, M1, Y1), (C2, M2, Y2), and (C3, Y3, M3) will 

be generated. These three pseudo-color images are 

the three expected shares. 

Algorithm to share a secret image 

1. Transform the 24-bit color image into a 3-bit 

C-M-Y pseudo-color halftone image. 

2. For each pixel Pij of the halftone image, whose 

pseudo-color components are (cij, mij, yij), do the 

following: 

(a) Create a 2-by-2 mask block Bij, in which two of 

the four elements are randomly assigned to be black, 

then leave the other two elements being white 

(blank). 

(b) According to the positions that the two black 

elements appear in the mask block Bij, use a way 

analogous to the one used in Fig. 5 to expand (cij, mij, 

yij) into nine 2-by-2 blocks, C1ij, C2ij, C3ij, M1ij, 

M2ij, M3ij, Y1ij, Y2ij, and Y3ij. 

(c) Combine blocks C1ij, M1ij, and Y1ij to paint the 

combined block (i,j) for Share 1. 

(d) Combine blocks C2ij, M2ij, and Y2ij to paint the 

combined block (i,j) for Share 2. 

(e) Combine blocks C3ij, M3ij, and Y3ij to paint the 

combined block (i,j) for Share 3. 

(f) Re-permute the three combined blocks randomly 

into Share 1, 2, and 3. 
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3. After finishing Step 2 (when all pixels Pij have 

been processed), the three desired shares can be 

obtained by collecting all the combined blocks (of the 

corresponding share). A mask image is also obtained 

by collecting all the mask blocks. 

4. In later days, after stacking the mask image with 

any two of the three shares, the pseudo-color version 

of the secret image is unveiled. 

 

 

4   Experimental results 
A secret image Lena is decomposed into the three 

shares shown in Fig. 6. None of the shares alone 

reveal any information about the Lena image. After 

stacking Shares 1 and 2, the stacked image is the one 

shown in Fig. 7 (a). Then, after stacking Fig. 7 (a) 

with the mask shown in Fig. 7 (b), the result is 

obtained in Fig. 7 (c). Analogously, Fig. 8 and Fig. 9 

show other stacked results when the action of 

stacking Shares 1 and 2 in Fig. 7 are replaced by 

stacking Shares 1 and 3 (Fig. 8) or by stacking shares 

2 and 3 (Fig.9). 

 

 
(a)                       (b)                          (c) 

Fig. 6  The three shares of Lena. (a) Share 1, (b) 

Share 2, and (c) Share 3. 

 

 
(a)                       (b)                          (c) 

Fig. 7  Stacking Shares 1 and 2. (a) is the intermediate 

image after stacking Shares 1 and 2, (b) is the mask, 

and (c) is the final image after stacking (a) with (b). 

 

 
(a)                       (b) 

Fig. 8  Stacking Shares 1 and 3. (a) is the intermediate 

image after stacking Shares 1 and 3; and (b) is the 

final image after stacking (a) with the mask in Fig. 

7(b). 

 

 
(a)                       (b) 

Fig. 9  Stacking Shares 2 and 3. (a) is the intermediate 

image after stacking Shares 2 and 3; and (b) is the 

final image after stacking (a) with the mask in Fig. 

7(b). 

 

We also compare in Fig. 10 the resulting 

images of Hou’s with ours (Fig. 7(c), which is 

identical to Fig. 8(b) and 9(b) ), it can be seen that 

the two methods yield images of very similar 

quality. In fact, just like Hou’s method, our 

resulting image also has a brightness loss, which is 

a common phenomenon seen in all reported VC 

methods. 

 

 
(a)                  (b)                    (c) 

Fig. 10  Comparison between the proposed scheme 

and Hou’s Method 3. (a) is the resulting image in Fig. 

7(c), (b) is the input 24-bit color image Lena, and (c) 

is the resulting image of Hou’s. 

 

 

5   Conclusion and discussion 
Most of the studies about visual cryptography deal 

with binary images. The visual cryptography 

proposed by Hou to process color images is thus 

valuable because color images are everywhere 

nowadays. In this study, we extend Hou’s method 

further so that the new scheme has fault-tolerant 

ability, namely, the secret image still has a chance to 

be unveiled if one of the generated shares is delayed 

in a communication channel, destroyed by hackers, 

or crashed in natural life of the storage equipment. In 

the proposed scheme, a color secret image is 

decomposed into three shares. Each share alone 

cannot unveil the secret image, while gathering any 

two of the three shares can recover the secret image. 

The storage of the mask image is briefly 

discussed below. The mask image is mandatory; 
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otherwise, the stacked result will be 

shares-dependent, i.e., the result of stacking Shares 

1 and 2 is different from that of stacking Shares 1 

and 3 (see Fig. 7 (a) and 8 (a).) To store the mask 

image, there are at least three ways.  

Assume that the secret image is 256-by-256 in 

size. Then the first way is to store the 512-by-512 

mask image directly, and the storage space is 

512×512 bits. The second way is as follows. Since 

there are only C(4,2)=4×3/2=6 kinds of pattern 

blocks (see Sec. 3.1.3) for the mask blocks, this 

way only has to record the indices (chosen from 

1~6) indicating which kind is the first 2-by-2 

block, …, which kind is the last (the 256×256-th) 

2-by-2 block. Therefore, the storage space for the 

mask image is at most 3×256×256 bits.  

As for the third way, it needs almost no 

storage space. Because a seed (a secret number) 

can be used in a random-number-generator to 

generate a sequence of 256×256 numbers, and each 

number is in the range 1~6. This way creates this 

sequence even before creating the three shares and 

the mask image. Then, when a secret image wants 

to be shared, in Step 2 (a) of the sharing algorithm 

(see Sec. 3.2), the mask block pattern is chosen 

according to this sequence of 256×256 numbers. 

For example, if the generated sequence is 

3524516236415…, then the first mask block (B11) 

that will be used in Step 2(a) is of type 3, and the 

second mask block (B12) that will be used in Step 

2(a) is of type 5, etc. Obviously, this way only has 

to store the seed instead of the whole sequence, 

because when a receiver wants to unveil the secret 

image later, he only has to use that seed to generate 

again the very same sequence 3264516236415…, 

and then expand this sequence to get the mask 

image. Notably, storing the seed saves the storage 

space at the expense of non-real time recovery in 

the decoding phase to get the secret image. 

     As a final remark, if the mask image is lost, the 

receiver can still get exactly the recovery image 

shown in Fig 7(c) by stacking all three shares (see Fig. 

11). Of course, if he not only loses the mask image 

but also loses one of the three shares, then he can only 

recover the one shown in 7(a) or 8(a) or 9(a). 

     As for the future work, this study is a basic study 

for the (k, n)-threshold visual cryptography for color 

images. In the future, more methods can be 

developed by visual cryptograph researchers to create 

n shares for a color image, and any k of these n shares 

can be used to recover the image. (In this study, k=2 

and n=3.) 

 

 
Fig. 11  The image obtained by stacking all three 

shares. (The mask image is not used here.) 
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