
Improving Flash Storage System Performance by Using an

Extra RAM Buffer

Chi-Hsun Li Da-Wei Chang

Department of Computer Science Department of Electrical Engineering

National Chiao Tung University National Sun Yat-Sen University

1001 Ta-Hsueh Road, Hsinchu 70 Lien-Hai Road, Kaohsiung

Taiwan, R.O.C. Taiwan, R.O.C.

penny@os.nctu.edu.tw

http://os.nctu.edu.tw

davidchang@mail.ee.nsysu.edu.tw

http://140.117.166.140/eecamp2001/test/color/t

eacher/teachers.asp?tel=4187

Abstract: - Erasing flash memory blocks is a time-consuming and energy-wasting operation. Moreover, the

number of erase times is also limited. In this paper, we propose using an extra RAM buffer as the extension of

the flash memory to reduce the number of erase operations, and to prolong the flash lifetime. Based on the extra

RAM buffer, we propose a novel data clustering method, which allows the hot data usually be updated in the

RAM buffer, reducing the chances of updating and erasing flash blocks. We implemented the method as a Linux

kernel module. According to the performance results, the proposed data clustering method can eliminate

40%-90% of the erase operations when a 4Mbyte RAM buffer is used.

Key-Words: - flash memory, erase operations, cleaning policies, and data clustering.

1 Introduction
 Due to the small, light weight, shock resistance,

non-volatility, and little power consumption, flash

memory has been widely used in personal

communication devices and embedded multimedia

systems. However, some limitations of flash memory

have made it become challenging to design an

efficient storage system for it. One is that a flash data

block needs to be erased before storing new data on

it. The erase operation is slow as well as

energy-wasted. The other limitation is that the

number of erase operations of a flash block is limited.

Due to the above hardware limitations, a flash

memory based storage system should perform erase

operations as few as possible for prolonging the flash

lifetime, improving the system performance, and

reducing the power consumption.

 In this paper, we propose using an additional

battery-backed RAM buffer as the extension of the

flash memory to improve the system performance

and to prolong the flash lifetime. The need of battery

is to prevent data loss due to sudden power outages.

Based on the RAM buffer, we design and implement

a novel data clustering approach, called Dynamic

data clustering with Extra Buffer region (DEB). DEB

clusters data dynamically according to the data

update frequencies and update the hot data in the

RAM area, instead of flash. Therefore, the number of

erase operations can be reduced.

 According to the performance results, DEB can

eliminate 40%-90% of the erase operations when a

4Mbyte RAM buffer is used. Moreover, with the

increase of the RAM region size, more erase

operations can be eliminated.

 The rest of this paper is organized as follows.

Section 2 describes the data update problem and

introduces some cleaning policies. Section 3 presents

the design and implementation of DEB. Performance

results are shown in Section 4. Section 5 describes

the related work, which is followed by the

conclusions in Section 6.

2 Background

2.1 Data Update Problem
 For flash memory, in-place update is not suitable

for the following two reasons. First, a block has to be

erased before being updated. This decreases the

system performance. Second, in-place update makes

hot data blocks reach their erase cycle limits in a

short time. To avoid these problems,

non-in-place-update scheme was proposed. In this

scheme, new data is written to an empty space in the

flash memory and the obsolete data is left as garbage

(i.e., invalid data).

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

2.2 Flash Memory Cleaning Policies
 Many data management approach divides the

flash memory into larger, fix-sized segments for ease

of reclaiming invalid data. A segment is made up of a

number of contiguous blocks. When the number of

free segments is less than a certain threshold, a

software cleaning process (i.e., the cleaner) will be

triggered to reclaim the invalid data. The cleaner

reclaims a segment by migrating the valid data in the

segment to another one, and then erasing the

segment. After the erase operation, the segment will

be available for storing new data.

 The cleaner process use a segment selection

policy to determine which segments should be

cleaned. In this section, we introduce three segment

selection policies.

2.2.1 Greedy Policy

 The greedy policy selects a segment with the

largest amount of garbage. According to the previous

study [10], it works well in the case of uniform

access. However, it performs poorly under high

locality of references.

2.2.2 Cost-Benefit Policy

 The cost-benefit policy [9] chooses to clean a

segment that maximizes the following formula:

u

uage

2

)1(* −
, where 10 ≤< u . (1)

 In the formula, u is the ratio of valid data in the

segment, and therefore (1-u) stands for the amount of

free space that can be reclaimed. The age indicates

the time elapsed since the latest block modification,

and it is used to represent the hotness of the valid

data. The 2u reflects the overheads of cleaning a

segment (i.e., read valid blocks from one segment

and write them to another one). This policy performs

well under high locality of references. However, it

does not perform as well as the greedy policy under

uniform access.

2.2.3 Cost Age Time (CAT) Policy

 The basic idea of the Cost Age Times (CAT)

policy [3, 4] is to minimize the cleaning costs, to give

the recently-cleaned segments more time to

accumulate garbage for reclamation, and to achieve

the goal of wear-leveling [6]. It chooses to clean

segments that minimize the following formula:

N
ageu

u
*

1
*

)1(−
, where 10 ≤< u . (2)

 The u/(1-u) reflects the ratio of overheads to the

benefit, where u represents the percentage of valid

data in a segment. The definition of age is similar to

that of the cost-benefit policy, and N stands for

number of times a segment has been erased.

3 Design and Implementation

3.1 Dynamic Data Clustering
 As mentioned in Section 2, when a segment is

selected to be cleaned, the valid data in it should be

migrated to another segment. If the system migrates

the valid data to a segment that will be cleaned in the

near future, the migration becomes wasteful.

Therefore, data reorganization is an important issue

to flash-memory based storage systems. Previous

research [3, 9, 12] pointed out that separating hot data

(i.e., frequently-updated data) from cold one can

reduce such cleaning overheads.

 Instead of classifying data into only two

categories, DAC [5] uses a more fine-grained

approach. It partitions the flash memory into several

logical regions that contain data with different

degrees of hotness. Each region includes a set of flash

segments, which are not needed to be physically

contiguous. The basic idea of DAC is to put data

segments with similar write access frequencies in the

same region. Because data access frequencies may

change over time, a data segment can be migrated

among regions when its write access frequency

changes. As shown in Figure 1, data will be moved

toward the hottest region if the update frequency

increases. On the contrary, it will be moved toward

the coldest region if the update frequency decreases.

When a segment is selected for cleaning, all of its

valid data will be moved to the free space of the next

colder region. This is because valid data in the

selected segment is usually colder than other data in

the same region.

Fig.1 Data Clustering in DAC

 On the basis of adding a RAM buffer as the

extension of flash memory, we propose two data

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

clustering approaches. The first one replaces the

hottest region in the DAC approach with the RAM

region, which is called the DAC
+
 approach. Since the

hottest data will be updated in the RAM, a large

number of erase operations can be eliminated.

However, this approach is not aggressive enough

because the hottest data must be moved through all

the regions to reach the hottest one. Moreover, some

frequently-updated data may be still not hot enough

to reach the hottest region even in the case that there

is still room in the RAM space.

 Therefore, we propose the second data clustering

approach called Dynamic data clustering with Extra

Buffer region (DEB). The basic idea of DEB is to

make hot data be updated in the RAM, instead of in

the flash memory, so as to reduce the number of erase

operations. Similar to DAC, DEB also partitions the

flash memory into several logical regions, and

always associate the extra RAM buffer a single

region. In DEB, the region is called the Extra Buffer

Region (EBR).

 Before describing the details of the DEB

approach, we introduce the concept of stable time

interval first. In DEB, each flash region has a

corresponding stable time interval, as shown in

Figure 2, which defines the range of the appropriate

stable time
1
 for the data in the region. Assuming that

sst(n) and lst(n) represent the shortest and longest

stable time of the interval corresponding to region n,

respectively. From the figure we can see that, the

value of sst(i) is equal to the value of lst(i+1), and

both sst and lst of a colder region are larger than the

corresponding values of a hotter region. This is

because the data in the former is more stable.

 Basically, an update involves two entities, the

block and the region that the block is associated with.

In order to simplify the description, we define an

update is fast if the time between the update and the

last update of the block (i.e., the stable time of the

block) is less than the sst value of the region.

Similarly, an update is said to be slow if the time is

more than the lst value of the region.

Fig. 2 Stable Time Interval

1
 We define the stable time as the time period between the

most recently two updates of the data.

Fig. 3 Data Clustering in DEB

 Figure 3 shows the data clustering diagram of

DEB. Data reorganization happens when data blocks

are updated or when segments are cleaned, and the

rules of the data clustering can be summarized as

follows:

1. Newly created data blocks are placed in the

EBR.

2. If a fast update happens on a block, we check

the last update of this block. If the last update

was not a fast one, the new data is written to the

free space of the next hotter region (denoted as

f1 in Figure 3). Otherwise, the new data is

written to the free space of the EBR (denoted as

f2 in Figure 3). After writing the new data, the

obsolete data block in the original region is

invalidated as garbage.

3. If a slow update happens on a block, the new

data is written to the free space of the next

colder region (denoted as s in Figure 3). And,

the obsolete data block in the original region is

invalidated as garbage.

4. If the update is neither a fast one nor a slow one

(i.e., the stable time fits in the interval of the

current region), the new data is written to the

free space of the current region and the obsolete

data block is invalidated as garbage.

5. If the used space of the EBR is greater than a

pre-defined threshold, DEB writes back the

oldest data in EBR to the suitable regions until

the used space in the EBR is lower than half of

the threshold (denoted as w in Figure 3). The

suitable region for the data means that the time

elapsed since the last update of the data fits in

the stable time interval of that region.

6. If a data block update happens in the EBR, the

block is updated in place.

7. When a segment is selected for cleaning, all

valid data blocks in it are copied to the free

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

space of the next colder region. This is the same

as the DAC approach.

 From the above rules we can see that, DEB

clusters data blocks with similar update frequencies.

More importantly, it allows the hot data to reach the

EBR in a more efficient way.

3.2 Prototype Implementation
 To evaluate the effectiveness of DEB, we

implemented a flash-based log file systems, named

Log Flash Storage System (LFSS). It uses

non-in-place-update scheme for data update and

DEB for reducing the erasing times of flash blocks.

We implemented LFSS as a MTD [17] user module

in Linux 2.4.20. As shown in Figure 5, different from

JFFS2 that provides an interface to the virtual file

system, LFSS provides its interface (such as read,

write, erase, and update) directly to user-space

programs.

Fig. 5 LFSS in Linux

4 Experimental Results and Analysis
 For ease of experiment in PC environment, we use

SDRAM, instead of flash memory, for performance

evaluation. Therefore, we implement a SDRAM

MTD driver to connect the MTD layer, as shown in

Figure 5. The driver records the number of erase

operations of each segment. Note that using SDRAM

for experiment does not affect the performance

results since they are reported in number of erase

operations.

 All measurements were performed on a machine

with a 2.0 GHz Pentium 4 processor and 256 Mbytes

DRAM. Since the cleaning overhead has little impact

on system performance at low flash utilization [3],

we filled 90% of flash memory space before each

experiment is performed. For all the experiments, the

size of the (simulated) flash is 64 Mbytes, which is

divided into four regions. The stable time intervals

are 100, 200, 300, and 400 seconds, respectively.

Table 1 shows the four approaches for comparison.

The first two approaches do not use extra RAM

buffers, while the other two use a 4-Mbyte buffer.

Table 1. Approaches for Comparison

Approaches Description

JFFS JFFS2 without RAM regions

DAC DAC without RAM regions

DAC
+
(4MB) DAC

+
 with a 4MB RAM region

LFSS(4MB) DEB with a 4MB RAM region

4.1 Benefit of the Extra RAM Region
 The first experiment shows the benefit of using an

extra RAM buffer as the extension of the flash

memory, and presents the performance improvement

of LFSS. Figure 6 shows the performance results

obtained by the aforementioned SDRAM MTD

driver when running the Postmark [8] file

benchmark. From the figure we can see that, adding

an extra RAM region does help to reduce the number

of erase operations. For example, compared with

JFFS2, LFSS eliminates 40%-90% of the erase

operations. Moreover, DEB outperforms DAC
+
 with

the presence of the RAM region. This is because the

former can move hot data to the RAM region in a

more efficient way.

Fig. 6 System Performance under Postmark

4.2 Effect of Reference Locality
 In this experiment, we measure the performance

of LFSS under different degrees of reference

localities. We use notation y/x for representing

locality of references, which means that x percent of

the total accesses refer to y percent of the total data.

In this experiment, we use a test program to update 40

Mbytes of data according to the given reference

locality, and we use CAT as the cleaning policy.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

 Figure 7 shows the performance results under

different reference localities. As shown in the figure,

the percentage of the eliminated erase operations

grows with the increase of reference locality.

Moreover, the performance difference between LFSS

and DAC
+
is larger for lower locality of references.

This is because, if DAC
+
 is used and the reference

locality is not extremely high, some data may be not

hot enough to reach the hottest region, even in the

case that the region is not fully occupied. Thus,

updating the data still involves writing and even

erasing flash blocks.

Fig. 7 Effect of Different Locality of References

4.3 Effect of EBR Size
 Figure 8 shows the performance of LFSS under

different sizes of EBR. The values of the zero-sized

EBR represent the performance results of LFSS

without EBR, which are used for comparison. As

shown in the figure, the number of eliminated erase

operations grows with the increase of the EBR size

no matter which cleaning policy is used. With a

4-Mbyte EBR, 88% to 95% of the erase operations

are eliminated.

Fig. 8 Performance under Different Sizes of EBR

5 Related Work
 Several flash-based file/storage systems were

proposed. JFFS2 [16] is a log-structured file system

[12, 13] especially used for flash devices on

embedded systems. It sits between the Virtual File

System (VFS) and the MTD layers, and stores

metadata/data on raw nodes, which are distributed all

over the flash memory. Similar to JFFS2, LFSS also

uses log-like structure to store data. However, LFSS

incorporates a data clustering technique for reducing

the number of erase operations.

 Microsoft Flash File System (MFFS) [14] uses

linked lists to manage data in flash memory, and

includes the greedy policy for reclaiming invalid

data. However, previous research [7] reported that

MFFS performs poorly when accessing large files.

Specifically, its write performance degrades linearly

with the growth of file size.

 DAC [5] classifies data according to the write

access frequencies, and it performs dynamic data

clustering when data is updated or segments are

cleaned. LFSS uses the DEB data clustering

approach, which is an improvement of DAC when an

extra RAM region is presented.

 eNVy [20] is a large flash memory-based storage

system, which provides a memory interface rather

than a block-based disk interface. Similar to LFSS,

eNVy uses a small battery-backed SRAM for

write-buffering. However, LFSS uses the DEB data

clustering approach to make hot data always be

updated in the RAM region.

 M-Systems’s TrueFFS [11] allows flash memory

to emulate a hard disk. Basically, it is a block device

driver that can be used with an existing file system.

The data presentation part, which is called Flash

Translation Layer (FTL), is popular in DiskOnChip

devices and has been used as the base layer of some

research efforts [18, 19].

 Chang et al. [1] proposed a flexible management

scheme for large-scale flash-memory storage

systems. It manages high-capacity flash memory

storage systems based on the behaviors of realistic

access patterns. Besides, it uses the real time garbage

collection mechanism [2] to manage its invalid data.

 For cleaning policies, Rosenblum and Ousterhout

[12] showed that the greedy policy performs poorly

under high locality of references, and hence proposed

a cost-benefit policy similar to Formula (1). In

addition to cost and benefit, the Cost Age Times

(CAT) [3, 4] policy also consider the number of erase

operations performed on each segment to provide

better wear leveling.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

6 Conclusions and Future Work
 In this paper, we propose using an extra

battery-backed RAM region as the extension of flash

memory to reduce the number of erase operations.

Based on the extra RAM region, we proposed a data

clustering technique that allows the hot data to be

updated in the RAM region so that the number of

erase operations can be reduced. We implemented

the technique as a Linux kernel module. According to

the performance results, it eliminates a large amount

of erase operations. With the increase of the extra

RAM size, the number of eliminated erase operations

grows. In the future, we plan to implement the VFS

interface for LFSS so as to allow application

programs to use LFSS through ordinary file-related

system calls.

References:

[1] L. P. Chang and T. W. Kuo, An Efficient

Management Scheme for Large-Scale

Flash-Memory Storage Systems, Proceedings

of ACM Symposium on Applied Computing,

Nicosia, Cyprus, Mar. 2004, pp. 862-868.

[2] L. P. Chang and T. W. Kuo, A Real-Time

Garbage Collection Mechanism for

Flash-Memory Storage Systems in Embedded

Systems, Proceedings of the Eighth

International Conference on Real-Time

Computing systems and Applications, Tokyo,

Japan, Mar. 2002.

[3] M. L. Chiang and R. C. Chang, Cleaning Policies

in Mobile Computers Using Flash Memory,

Journal of Systems and Software, Vol. 48, No. 3,

1999, pp. 213-231.

[4] M. L. Chiang, P. C. H. Lee, and R. C. Chang,

Managing Flash Memory in Personal

Communication Devices, Proceedings of the

1997 International Symposium on Consumer

Electronics (ISCE’97), Singapore, Dec. 1997, pp.

177-182.

[5] M. L. Chiang, P. C. H. Lee, and R. C. Chang,

Using Data Clustering to Improve Cleaning

Performance for Flash Memory, Software

Practice & Experience, Vol. 29, No.3, Mar. 1999,

pp. 267-290.

[6] B. Dipert and M. Levy, Designing with Flash

Memory, Annabooks, 1993.

[7] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B.

Marsh, and J. A. Tauber, Storage Alternatives for

Mobile Computers, Proceedings of the First

Symposium on Operating Systems Design and

Implementation (OSDI), 1994, pp. 25-37.

[8] J. Katcher, PostMark: A New File System

Benchmark, available

http://www.netapp.com/tech_library/3022.html.

[9] A. Kawaguchi, S. Nishioka, and H. Motoda, A

Flash-Memory Based File System, Proceedings

of the 1995 USENIX Technical Conference, Jan.

1995, pp. 155-164.

[10] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.

Wang, and T. E. Anderson, Improving the

Performance of Log-Structured File Systems

with Adaptive Methods, Proceedings of the

Sixteenth ACM Symposium on Operating System

Principles, Oct. 1997, pp. 238-251.

[11] M-Systems, TrueFFS Technology, available at

http://www.m-systems.com/site/en-US/Technol

ogies/Technology/TrueFFS_Technology.htm,

2006.

[12] M. Rosenblum and J. K. Ousterhout, The

Design and Implementation of a Log-Structured

File System, ACM Transactions on Computer

Systems, Vol. 10, No. 1, 1992, pp. 26-52.

[13] M. Seltzer, K. Bostic, M. K. McKusick, and C.

Staelin, An Implementation of a Log-Structured

File System for UNIX, Proceedings of the 1993

Winter USENIX, 1993, pp. 307-326.

[14] P. Torelli, The Microsoft Flash File System, Dr.

Dobb’s Journal, Feb. 1995, pp. 62-72.

[15] University of Szeged, JFFS2 Improvement

Project, available at

http://www.inf.u-szeged.hu/jffs2/, 2006.

[16] D. Woodhouse, JFFS: The Journaling Flash File

System, available at

http://sources.redhat.com/jffs2/jffs2-html/jffs2-

html.html, 2001.

[17] D. Woodhouse, Memory Technology Device

(MTD) subsystem for Linux, available at

http://www.linux-mtd.infradead.org/, 2006.

[18] C. H. Wu, L. P. Chang, and T. W. Kuo, An

Efficient B-Tree Layer for Flash-Memory

Storage Systems, Proceedings of the 9th

International Conference on Real-Time and

Embedded Computing Systems and

Applications, Feb. 2003, pp. 409-430.

[19] C. H. Wu, L. P. Chang, and T. W. Kuo, An

Efficient R-Tree Implementation over

Flash-Memory Storage Systems, Proceedings

of the ACM 11th International Symposium on

Advances on Geographic Information Systems,

Nov. 2003, pp. 17-24.

[20] M. Wu and W. Zwaenepoel, eNVy: A

Non-Volatile, Main Memory Storage System,

Proceedings of the Sixth International

Conference on Architectural Support for

Programming Languages and Operating

Systems, San Jose, CA, Oct. 1994, pp. 86-97.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp175-180)

