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Abstract: - In this work we present a vision system that includes circuits to compute different modalities in 
parallel, such as local image features (magnitude, phase and orientation), motion and stereo vision. This becomes 
possible by efficiently using the massive parallel computing resources of FPGA devices. The paper briefly 
describes the complete system and discusses the hardware consumption and performance of each visual 
modality. Finally, the work highlights that huge amount of data produced by such a system and the necessity of 
on-chip integration mechanisms. 
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1   Introduction 
After many years of research in the field of computer 
vision we are still far away from achieving 
outstanding vision skills similar to biological 
systems. Nevertheless, we have developed models for 
extracting robustly visual modalities such as stereo, 
motion, local features, etc; that are of high potential 
interest if we are able to use them in real-world 
applications. But most of these models require high 
computational load and cannot be processed in real-
time using conventional computing platforms (single 
processor computers). This strongly limits their 
usability only to applications in which vision 
processing can be done off-line, while most of the 
real-world applications (vigilance, navigation, 
automatic object recognition, etc) require on-line 
vision processing.  
This has motivated the design of specific computing 
architectures by different authors [1-10]. The 
implementation of real-time vision systems addresses 
different target fields and objectives: 

a. Real-time processing for embodied vision 
experiments. Nowadays, it has become clear 
that simple off-line simulations are not 
enough to understand the way that different 
tasks are concurrently performed in the visual 
cortex. Furthermore, there is a strong 
working hypothesis called “embodiment 
concept” which states that any realistic 
simulation of a biologically inspired 
processing system should be tested in the 
framework of a certain task. The way that 
this task is achieved can be used to validate 
the different parts in which is based the 

success of the system. The embodiment 
concept is based on the hypothesis that 
biology has developed the impressively smart 
systems in nature through evolution trying to 
optimize certain tasks that improve the 
individual survival and specie perpetuation.  

b. Active vision. The perception process is 
active. It combines sensori-motor capabilities 
in an integrative manner. Not only haptics 
but also vision is an active process in which 
intentional primitives drive certain 
mechanisms (such as fixation, smooth 
pursuing for stabilization, etc.) that enhance 
the accuracy of the system. Furthermore, it is 
also believed that attention is a useful 
mechanism in order to achieve very high 
performance with constrained processing 
resources. But active perception processes 
can only be studied in the framework a 
perception-action closed-loops. This 
specifically requires real-time processing and 
represents a strong motivation for developing 
high performance vision processing 
architectures. 

c. Understanding by building. From an 
engineering point of view, we only fully 
understand certain mechanisms if we are able 
to implement them. In the framework of 
computer vision systems, as engineers, trying 
to build efficient image processing 
architectures based on biological vision 
systems is a very interesting approach since 
we face the same limitations as nature also 
with constrained processing resources. 
According to the “neuromorphic 
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engineering” paradigm we adopt an 
opportunistic attitude in which we try to 
emulate schemes that seem to be efficient in 
the biological systems and we avoid other 
features that are more intrinsically related 
with the tissues in which they are based. 
Furthermore, not being limited by some 
biological restrictions (such as power or 
conductance and switching capability of 
neuron wiring and connections) we can take 
full advantage of certain outstanding 
characteristics of electrical technology, such 
as high communication bandwidth, high 
speed state switching, etc.  

d. Smart vision systems for real world 
applications. Real-time processing of local 
features, motion and stereo is interesting for a 
wide range of applications in real world 
scenarios. Therefore, the implementation of 
high-performance computing architectures 
has an interest in itself for solving real world 
problems. 

 
In this paper we present a system composed from 
deep pipelined datapaths for the computation of local 
features, stereo and motion. The implementation of 
computing architectures that efficiently take 
advantage of the large amounts of parallel computing 
resources of FPGA devices for vision schemes is not 
common. It requires a very well structured design 
strategy in order to arrive at datapaths delivering one 
image fearture estimation (for example disparity or 
local velocity) per clock cycle. Current FPGA 
devices include several millions of configurable gates 
that can be used to implement very efficient 
computing architectures.  
 
An efficient implementation of an algorithm in 
specific hardware requires modifying the original 
model (at least translating most of the computations 
to a custom arithmetic). This is done by bit cutting 
strategies that allow optimizing the hardware 
resources but also affect the accuracy of the system. 
Because of this, the final implemented circuit can be 
seen as a new model that needs to be evaluated with 
benchmark sequences to test the accuracy vs. 
efficiency trade-off of the system. 
 
The main purpose of the paper is to illustrate how 
different visual modalities can be processed in real-
time on the same chip using the currently available 
parallel resources of FPGA devices. Nevertheless, we 
want to highlight that despite the significant 
increment in computing power of these chips, taking 
full advantage of different visual modalities available 

on the same device is difficult since transmission 
bandwidth constraints limit the amount of data that 
can be transferred between different computing 
platforms (or chips). This technology limitation 
makes interesting to study efficient integration 
mechanisms that can be implemented on the same 
chip leading to sparse multimodal entities encoding 
the maximum information for higher visual stages 
towards scene understanding. The efforts to build a 
real-time vision machine using specific hardware 
require integration mechanisms leading to meaningful 
multimodal entities that can be efficiently transferred 
to other computing chips. These integration 
mechanisms need to be hardware friendly because 
they need to be included within the same chip in 
which the early visual primitives are extracted. 
  
Furthermore, the necessity of “scene understanding” 
into the chips fits well with the technology trends. 
Current reconfigurable devices include (hard and 
soft) processors which are a more suitable hardware 
choice for extracting the meaningful data computed at 
the early vision stages. As it occurs in the brain, the 
system requires high parallelism in early stages where 
primary rear data is processed and less computing 
speed is required for more sequential tasks involved 
in other layers dealing with information of higher 
abstraction levels.  
 
2   Systems description 
The presented system includes different visual 
modalities (as illustrated on Fig. 1). In the results 
section we indicate the hardware resources consumed 
by each visual modality and the necessity of the 
integration module to reduce the output transference 
bandwidth. Fig.2 shows the parallel datapaths 
designed for each visual modality. 
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Fig. 1. Full system on chip. It only requires external 
memory resources (not shown in the Figure) for 
temporal variables. 
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2.1 Local features 
We have implemented a system to extract the local 
structure of the images [3]. We have used steerable  
filters (based in second order Gaussian derivatives) to 
compute the magnitude, phase and orientation of each 
pixel.  
 

(3.a) 

 

(3.b) 
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Fig.3. Local features extracted with the hardware 
system from a synthetic spiral image. 

 

See Fig. 3 for some results (only hardware results are 
shown to illustrate the output data streams of the 
system). We use the results computed out of a 
synthetic image to facilitate their visual evaluation. 
Fig. 3 shows how the results are accurate despite the 
restricted computation precision. 
 
2.2 Motion processing system 
We have designed a superpipelined motion 
processing system with an outstanding computing 
power. We have implemented in specific hardware 
the Lucas & Kanade algorithm [11] with the 
modifications suggested by Brandt [12]. Fig. 4 shows 
some qualitative results. Note that there is no 
significant degradation in the hardware results due to 
the restricted computation precision of the circuits 
that use fixed point arithmetic. Details about the 
hardware implementation of the optic flow system 
can be found in [1]. 
 

(4.a) 

 

(4.b) 

 

(4.c) 

 
Fig. 4. Qualitative optic flow results. Overtaking 
sequence from the rear view mirror. a) Original 
sequence frame. b) Software results. c) Hardware 
results. 
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2.3 Stereo Processing system 
We have implemented a superpipelined datapath that 
efficiently computes a hardware friendly phase-based 
stereo algorithm [13]. Details about the hardware 
implementation of the stereo system can be found in 
[2]. Fig. 5 shows some qualitative results. Note that 
the only difference between the software and 
hardware results is an increase in the salt and pepper 
noise in areas without structure due to the restriction 
in precision of the hardware-based computations. 
This artefact is easy to filter using structure-based 
confidence measures. 
 

(5.a) 

 

(5.b) 

 

(5.c) 

 
Fig. 5. Stereo processing qualitative results. a) 
Original image. b) Software results. c) Hardware 
results. Depth is encoded in grey levels. 

 
 
 

3   Results 
Different modalities can be processed in parallel on 
the same chip using similar spatio-temporal 
convolution kernels.  
 
We focus on the following visual modalities: 

• Local features (magnitude, phase and 
orientation). 

• Motion. 
• Stereo. 

 
Fig. 6 shows the hardware resources consumed by 
each visual modality (note that all of them fit into the 
same chip). It shows the amount resources of 
different kinds: general purpose logic (slices), 
embedded memory (EMB) and embedded multipliers 
(E_Mult).   Intputs circuits include the video frame-
grabber, VGA output for visualization, memory 
management units as well as user interface for 
parameter adaption. 
 
Table 1 includes results about the performance in 
terms of computing speed (Kpps stands for Kpixels 
per second). We have constrained all the circuits to 
process at 45500 Kpps (the datathroughput of 
limiting circuit which is the motion core). Since the 
three cores are fed by an on-chip frame-grabber that 
can be particularized for each modality. It may be 
desirable to process motion at more frames per 
second (than the standard 30 fps of conventional 
cameras) if we use specific oversampled sensors. On 
the other hand, stereo and the local features may 
benefit of a higher spatial resolution (temporal 
aliasing does not affect these pure spatial modalities).  
 
Table 1. System performance and output data 
bandwidth with an input image resolution of 
1000x1000 pixels. (* indicates that we also include 8 
bits of bitwidth of the input image that are also 
transferred in the output data bandwidth).  
 
  Computing 

speed (Kpps) 
Output bitwidths 

(bits) 
Output data 
bandwidth 

(MB/s) 
Motion 45500 12(Vx)+12(Vx) 133.3 
Stereo 45500 12 (Disparity) 95.2 

Local features 45500 9(M)+9(P)+8(O) 179.3 
Full system  70* 388.8* 
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Fig. 6. Hardware resources consumption. We 
indicate the different types of hardware resources 
of a Virtex II XC2V6000-4 [14] consumed by 
each visual modality. All of them fit together into 
a single chip. 

 
4  Conclusion 
This paper has illustrated how different visual 
modalities can now be efficiently computed on a 
single chip. This is of high interest for certain 
applications in which a specific vision modality can 
be crucial for solving a real-world application (for 
instance motion for car overtaking scenarios [15, 
16]). But on the other hand, although with similar 
primitives (spatio-temporal convolution kernels) can 
extract different vision modalities on the same chip 
they are of little interest if communication bandwidth 
constraints limit their transference to other computing 
platforms. Even if they could be transferred the 
receiving computing platform would be overloaded 
just retrieving such a large amount of data. Therefore, 
in this framework hardware friendly integration 
schemes that allow clustering all this information into 
sparse multimodal entities becomes of extreme 
interest. In fact, this kind of schemes should be 
embedded into the same chip in which the visual 
primitives are extracted.  
 
The main conclusion of this paper is that although 
specific hardware is of high interest to efficiently 
extract early and dense visual primitives a 
multimodal vision system represents such a diverging 
data structure in which on-chip convergence 
(multimodal integration mechanisms) becomes 
necessary. There are already compacting schemes 
that use integration mechanisms to cluster the 
different visual modalities into specific multimodal 

entities [17]. In the close future work we will 
investigate how to implement these schemes also in 
the same chip to overcome the inter-chip bandwidth 
limitations. It is important to note that although high 
performance I/O resources (for instance Rocket I/O in 
Xilinx devices) provide very high bandwidth if the 
data transferred needs to be further processed on 
other platforms it will easily overload the receiving 
system. In our case we are working with PCI 
platforms, with advanced PCI express ports (several 
channels) we would be able to carry all the output 
data stream but the PC receiving the data would get 
overloaded and therefore further processing in real 
time is not possible unless we include compacting 
schemes on-chip. 
 
This problem also leads to stand-alone systems where 
the problem and its solution are addressed into the 
same device, for example in the framework of 
intelligent vehicles [15, 16]. In the case of many 
stand-alone systems they only deliver specific alarm 
signals when detecting concrete situations. In this 
way the bandwidth is significantly reduced, using 
only output basic command and data transmission. 
 
While we talk about early cognitive vision, middle 
vision and high level cognitive vision layers to refer 
to the processed information of different abstraction 
level. Technology limitations make a strong 
difference, not only in the abstraction level of the 
information that is being treated but also on the 
amount of data that each layer handles. In this paper, 
it has become clear that while early cognitive vision 
modalities should be as dense (stereo, motion, local 
features)  as the local structure allows higher visual 
layers need to efficiently handle a large amount of 
data, therefore integration mechanisms become of 
extreme interest. This should also hold true for 
biological systems in which as we go to higher 
abstraction vision layers information becomes more 
concrete and sparse. While early cognitive vision 
deals with pixels as input stream higher layers shall 
deal with multimodal vision entities.  
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