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Abstract: - Grid computing is emerging as a new paradigm for solving large-scale problems and is becoming an 
established technology for providing transparent access to large-scale distributed computational resources. 
Resource allocation and application scheduling are two of the most important aspects of Grid computing. In 
general, a grid application also requires datasets that may not be available at the local computing site where the 
application has to be executed, and hence in this case the required data has to be fetched before running the 
application. In this paper, we tackle with the local scheduling problem by means of a rectangle packing model 
combined with different policies for dataset scheduling, with the aim of maximizing the system efficiency. 
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1 Introduction 
Recently, there has been an increasing interest in 
availing distributed computer systems for very 
large-scale computing purposes. Grid computing is 
emerging as a new paradigm for solving large-scale 
problems and is becoming an established technology 
for providing transparent access to large scale 
distributed computational resources. Grid 
computing can be thought of as distributed and 
large-scale cluster computing and as a form of 
network-distributed parallel processing. Resources 
site contains, in general, cluster commodity 
computers consisting of PCs or workstations 
interconnected by vendor-independent networks that 
are connected to the processing elements through 
PCI ports. In such a framework two of the most 
important issues are the efficient allocation of 
computational resources to user application and the 
scheduling of such applications on the allocated 
resources.  

Grid computing has been extensively studied in 
the past. In particular, many successful strategies 
have been developed for scheduling applications on 
the Grid: examples include the AppLeS project [1, 
2, 3], and the GrADS project [4]. Moreover, 
application tools for Grid program development 
were also developed (e.g., see [5]).The typical 
mechanism of Grid is as follows [6]: a user submits 
an application (task) request. Grid plays the role of 
finding and allocating feasible resources 
(computers, storages) to satisfy the request of the 
user. Then, it monitors the correct task processing, 
and notifies the user when the results are available. 

One of the most known Grid model is the one 
introduced by Ranganathan and Foster in [7]. In this 
architecture, users submit requests for application 
execution from any one of a number of sites. At 
each site, besides the local computing system, the 
system model is composed by three components: an 
External Scheduler (ES) responsible for determining 
a particular site where a submitted task can be 
executed; a Local Scheduler (LS), responsible for 
determining the order in which tasks are executed at 
that particular site; a Dataset Scheduler (DS), 
responsible for determining if and when to replicate 
data and/or delete local files. 

In general, on receipt of a task request, the ES 
interrogates the LSs to ascertain whether the task 
can be executed on the available resources and meet 
the user-specified due date. If this is the case, a 
specific site in which executing that task is chosen. 
Otherwise, the ES attempts to locate a LS of a site, 
controlled by another ES, that can meet the task 
processing requirements, through search 
mechanisms. If a LS cannot be located within a 
preset number of search steps, the task request is 
either rejected or passed to a scheduler that can 
minimize the due date failure depending on a task 
request parameter. When a suitable site is located, 
the task request is passed from the ES to this site 
and is managed by the associated LS. 

In this paper, we focus the attention on the local 
scheduling problem and we extend the analysis of 
the scheduling model and algorithm presented in [8] 
to be addressed by each LS by considering also the 
effect of some dataset policies adopted by a DS for 
managing the dataset locally available. We suppose 
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that a group of applications (independent tasks) 
have to be executed on a given local machine cluster 
(site). The cluster is assumed to be formed by a 
number of processing nodes and a limited storage. 
Tasks are not known in advance by the LS, and are 
assumed to be presented one by one to the LS 
according to the over time paradigm. Therefore, the 
task characteristics (e.g.: duration, number of 
allocated (required) processing nodes, required 
dataset) become known to the LS when the task is 
presented to it. 

We model the scheduling problem as (on-line) 
rectangle packing (e.g. see [9]) consisting in 
orthogonally packing a subset of a set of 
rectangular-shaped boxes, without overlapping, into 
a single bounding rectangular area, maximizing the 
ratio between the area occupied by the packed boxes 
and the area of the bounding rectangle. We provide 
an on-line algorithm for the rectangle packing that 
whenever a new box (task) arrives as to decide to 
pack it in the rectangular bounding area or reject it 
The algorithm is coupled with dataset policies. 
Indeed, the effective duration of a task comprises 
also the time needed to load the required dataset if it 
is not present in the local site, therefore the dataset 
policy adopted may affect the performance of the 
system. We experiment different dataset policies 
and evaluate the performance of the algorithm on 
different Grid scheduling scenarios. 

The following sections are organized as follows. 
Section 2 describes the Grid scheduling framework; 
Section 3 the scheduling model and the algorithm. 
Finally, Section 4 reports on the data management 
policies and the experimental results. 
 
 
2 The Grid scheduling framework 
We refer to the Grid scheduling framework 
introduced in [7], that is depicted in Figure 1, in 
which the scheduling logic is encapsulated in three 
modules:  
 

 Fig. 1. The Grid framework. 

• External Scheduler (ES): Users submit tasks 
to the ES they are associated with. The ES 
decides to which site tasks must be sent. To 
this aim a JobLocal discipline [7] is 
considered, with which each task is 
dispatched to the local site (domain) where it 
was submitted by the user. Moreover, the ES 
should manage the rejected tasks by a LS, 
sending them to another one or deciding to 
reject them definitely from the system. 

• Local Scheduler (LS): Once a task is assigned 
to a particular site (and sent to a queue), it is 
then managed by the LS. Each LS manages 
the set of processors (computing units) of the 
relative site, within a given time window that 
represents their availability. The LS attempts 
to schedule each task dispatched to the site, 
within the time window, otherwise it rejects it 
and sends it back to the ES. 

• Dataset scheduler (DS): The DS manages the 
datasets locally available. Datasets are 
preassigned to different sites, and dynamic 
replication policy is in place. Data are fetched 
from remote sites for a particular task, if the 
required data is not available, in which case it 
is cached. A cached dataset is then available 
to the local site as a replica for the duration of 
the task. 

 
 
3 Scheduling model and algorithm 
On the basis of the aforementioned framework we 
consider the Grid composed by m clusters (sites). 
Each site is modeled as a set of H identical 
processors available for a time window of length W, 
and the task j as the request of hj processors, and of 
a dataset fj, for a certain processing time pj.  

The local scheduling problem we consider is 
therefore a multiprocessor task scheduling problem 
where a set of H processors, and a set J of non 
preemptive tasks are given; each task j ∈ J requires 
hj processors for a certain time wj = pj + c(fj), where 
c(fj) is the communication time (depending on the 
dataset policy) for loading dataset fj, and the 
objective is to schedule as many tasks as possible 
without interruption within a deadline W, 
maximizing the processor total busy time. 

Assuming the processors being indexed and 
organized as an array and restricting the subset of 
processors assignable to a task j formed by hj 
consecutive indexed processors, we model the 
scheduling of task j as packing a box of width wj 
and height hj on a bounding rectangular area of 
width W and height H. Therefore the local 
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scheduling problem can be modeled as a rectangle 
packing, that is the problem of orthogonally packing 
a set of boxes into a bounded rectangular area 
without overlapping such that the (efficiency) ratio ρ 
between the size of the area occupied by the packed 
boxes and the size W ⋅ H of the rectangular 
bounding area is maximized. 

We adopt the on-line algorithm PACK_R for 
rectangle packing proposed by the authors in [8]. 
The algorithm packs incoming boxes one by one 
into the smallest free rectangular subarea of the 
bounding area, and rejects an incoming box if there 
is no free rectangular subarea where that box can be 
packed. For the algorithm’s details the reader is 
referred to [8]. 
 
 
4 The data management policies and 
the system performance 
Experimental results presented have been conducted 
fixing the following parameter values for all the 
runs:  

• Number of tasks n = 100; 
• Maximum processing time for a task wmax = 

300 seconds. 
These parameters are required in the execution of 

the GenPro algorithm which generates the 
processing times for the tasks; moreover, in the 
PACK_R scheduling algorithm further parameters 
are needed to determine time windows, within 
which tasks are scheduled, and the number of 
processors (computing units) of a local computing 
site (i.e., the width W and the height H of the 
rectangular bounding area in the rectangle packing 
problem). In particular, 

• W = 1200 seconds,  represents the width of 
the schedule, i.e., the overall time windows 
within which tasks must be scheduled; 

• H = 80, is the number of identical parallel 
processors that are available at a local site to 
execute tasks; 

• hmax = 30, is the maximum number of parallel 
processors that a task requires for its 
execution. 

It is important to notice that the processor 
number that each operation requires uniformly 
varies in the interval [1, 30], and is determined by 
the scheduling algorithm. 

In general, this parameter tends to affect the 
solution even though the penalty introduced by 
GenPro tries to minimize such effect, moving the 
attention on the data replication phase at the 
intermediate storage servers. 

The three policies of data replication considered 
are: 

1. PLAIN CACHING. There is only the primary 
server with a storage capacity equal to 3% of 
the overall files where files may be 
replicated; 

2. CASCADING REPLICATION. There is a 
primary and secondary storage server with a 
capacity equal to 3% and 20%, respectively; 

3. NO REPLICA SERVER. There are no 
storage servers in the path followed by files 
from the server containing the latter to the 
computing site. 

The analysis is done on two different scenarios: 
• The number N of repetitions of algorithm 

GenPro, that is analyzing the n tasks that 
arrive in the system when (N – 1) n tasks 
have been scheduled. The interesting aspect 
of this study is in the analysis of the servers 
past records and in the files that are currently 
replicated in the servers; 

• The probability that files requested by tasks 
for their execution are contained or not in the 
cluster formed by the first five files (out of 
100), i.e., in the cluster of files mostly 
requested. 

The performance indicators used in the 
comparative analysis are: 

• The average number of tasks rejected by the 
systems, since the local scheduler could not 
be able to allocate all the tasks; 

• The efficiency ρ of the system. 
 
4.1 Analyisis on the number of the GenPro 
algorithm repetitions 
The system at the N-th repetition has received (N – 
1) n tasks to schedule. Based on the file that each 
task has requested for its execution, the servers, 
using the index NOA (number of access), can define 
an ordered list of the files that have been most 
frequently requested until the N-th algorithm 
repetition. After that, the GenPro algorithm, 
exploiting this ordered list, executes a scan in the 
server and updates over time the latter copying and 
deleting files (in case the storage limit is reached) 
leaving an immediate availability to the user of only 
those files with higher probability of being 
requested by forthcoming tasks. Hence, based on the 
data replication policy used, the present files in the 
servers will be more or less exploited for the user 
request execution.  

We start our analysis by studying the impact of 
the number of repetitions of the GenPro algorithm. 
The performance measurement index used are the 
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average number of tasks rejected by the system and 
the ratio between the occupied area for task 
scheduling and the total available area. Note that in 
this first analysis the probability of a specific file 
request is 50%. 
 
4.1.1 The impact of the number of repetitions on 
the number of rejected tasks  
Let us first analyze the impact on the average 
number of rejected tasks. Experimental results are 
shown in Figure 2, where, besides the table with the 
values obtained by the different data replication 
policies, we report the chart of the trends related to 
such values. 
 

Analysis on the repetitions  (prob = 50%)
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3,5

Number of algorithm repetitions

Average rejected 
tasks

PLAIN CACHING
CASCADING REPLICATION
NO REPLICA SERVER

PLAIN CACHING 2,6 2,1 1 1,1 2,9

CASCADING REPLICATION 0,3 1,7 0,8 0,7 0

NO REPLICA SERVER 2,5 1,8 1,4 2,8 2,5

1 10 100 1000 10000

 Fig. 2. The impact of the number of repetitions on 
the average number of rejected tasks. 

 
Tests have been conducted with number of 

repetitions N = 1, 10, 100, 1000, and 10000. As it 
can be inferred by the chart, the  Cascading 
Replication policy is the one that gives the best 
performance. In fact, yet when N = 1, the average 
number of rejected tasks is less than 1, and in the 
worst case such a value equals 1.7. This behavior 
can be explained considering that the probability 
used in the experimentation is quite high (50%) and 
the introduction of data replication servers renders 
processing times limited with respect to the other 
policies. When N is sufficiently high (in our tests 
equal to 10000), the number of rejected tasks with 
the Cascading Replication policy is zero, meaning 
that after a short transition period, the servers have 
stored the most frequently requested files. 

It is interesting to note that there is not a large 
difference in terms of rejected tasks between the 
Plain Caching policy and the absence of Data 
Replication. In fact, for high values of N (i.e., N > 
1000) it is not convenient the use of a replication 
server. 
 
4.1.2 The impact of the number of repetitions on 
the efficiency of the system  
As showed in Figure 3, the system efficiency related 
to the Cascading Replication policy is clearly 
superior than the other two policies. The system 
efficiency is certainly related to the average number 
of rejected tasks: indeed, if there are a huge number 
of rejections, it is clear that the available area to 
scheduling tasks will be not properly used and the 
ratio between the used area and the total area will be 
low. 
 

Analysis on the repetitions   (prob. = 50%)
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Fig. 3. The impact of the number of repetitions on 
the system efficiency. 

 
Analyzing the trends of the curves in the chart, 

we have the same situation occurred in Section 
4.1.1. Also the trend of the Cascading Replication 
policy, that in the transitory phase (for N < 10) is not 
increasing, when N > 100 tends to increase, and for 
N = 10000 the efficiency reaches 98.4%. Note that 
the efficiency in the other two policies is not greater 
than 83%. 
 
4.2 Analysis of the performance when the 
probability of dataset request varies 
Let us now discuss the case in which the probability 
that each task requires for its execution a dataset 
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contained in the cluster of the first five out of one 
hundred sets, i.e., in the set of most requested 
datasets. 

In the problem of replicating data on 
intermediate servers for distributed scheduling, we 
note that the scenario analyzed in this sub-section 
occurs very frequently in practice; in fact, the 
hypothesis of introducing these servers along the 
path between the computational site and the main 
storage site is thought for those situations in which 
tasks require for their execution a restricted number 
of datasets, and that this latter are requested with a 
certain frequency of the system that has to schedule 
tasks with a defined probability. 
 
4.2.1 The impact of the probability of specific 
dataset requirement on the number of rejected 
tasks  
As it was quite foreseeable from what we said 
before, since these policies were analyzed 
specifically in the case of repeated requests of 
specific datasets, the performance of the system in 
the case when there are intermediate servers 
(primary, secondary, or both) are much better than 
for the case in which there are no storage sites. 
 

Analysis on the probability of specific file request
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NO REPLICA SERVER 2,7 2 2,3 1,4 4,1 1,9

0,1 0,3 0,5 0,7 0,9 1

 

Fig. 4. The impact of the probability of specific 
dataset request on the average number of rejected 

tasks. 
 

As one can observe from the chart of Figure 4, 
the trends of the curves related to Plain Cashing and 
Cascading Replication are quite similar, even if the 
the trend of the curve related to Cascading 
Replication (i.e., double servers) is more regular. 

When the probability of specific dataset requirement 
tends to one, that is, all the user applications require 
datasets contained in the group of the most popular 
datasets, the number of rejected tasks tends to zero, 
reaching this value in the extreme case. 

When dataset replication policies are not 
adopted, the average number of rejected task is 
about 2.5, with peak values of about 4.1, which 
appear to be too high over a number of one hundred 
tasks (nearly 3% of rejected tasks). 
 
4.2.2 The impact of the probability of specific 
dataset requirement on the system efficiency  
Previously from the analysis of the experimental 
results, we have seen that varying the number of 
repetitions the curves related to both two 
performance indices follows a quite similar trend; 
this is mainly due to the fact that there exists a tight 
relation, as showed before, between the average 
number of rejected tasks and the system efficiency 
ρ. 

Analysis on the probability of a specific file request
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Fig. 5. The impact of the probability of specific 
dataset request on the system efficiency. 

 
Analogously to the previous considerations, we 

may note that (see Figure 5) also if we only consider 
the efficiency of the system as  performance index, 
the policies of Data Replication adopted (Plain 
Caching and Cascading Replication) allow a task 
scheduling with a very high system efficiency. In 
fact, for high probability values (prob. > 0.7), we 
obtain a system efficiency greater than 94% for the 
Cascading Replication and greater than 87% for the 
Plain Caching policy. 
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In the case in which there is no intermediate 
server for dataset replication, the average system 
efficiency reaches 78%, with a minimum of less 
than 73%. 
 
4.3 Some technical-economic considerations 
We conclude the analysis making some 
considerations on the trade-off between the cost of 
installing and maintaining the servers for data 
replications and the Grid system performance. 

An aspect that comes in evidence from the 
analysis of the results is that analog considerations 
may be done both for the case in which we consider 
the number of rejected tasks and for the case in 
which we consider the system efficiency as 
performance measures. 

We restrict the analysis varying the probability 
of specific dataset request for task execution. We 
note from the charts of Figures 4 and 5 that the 
trends of the curves related to Plain Caching and 
Cascading Replication are quite similar; in fact, for 
a value sufficiently high of this parameter the 
performance of PACK_R, with respect to both the 
number of rejected tasks and system efficiency, are 
quite good. In this situation, the average number of 
rejected tasks tends to zero and the system 
efficiency reach 97%. Therefore, in the case we are 
interested in guaranteeing an high system 
performance, it seems better to adopt a single 
dataset replication server instead of two servers. 
Also in the case in which we concern with cost 
minimization, the Plain Caching policy seems to be 
the best one because with no dataset replication the 
system efficiency goes down noticeably to 75% and 
the average number of rejected tasks goes up to 4%. 
 
 
5 Conclusion 
In this paper, we experimented an on-line 
scheduling algorithm based on rectangle packing for 
scheduling task in computing sites of a Grid system. 
The algorithm is experimented taking into account 
different dataset replication policies and storage 
server configurations: Plain Caching, i.e., there is 
only the primary server with a storage capacity 
equal to 3% of the overall files; Cascading 
Replication, i.e., there is a primary and secondary 
storage server with a capacity equal to 3% and 20%, 
respectively; No Replica Server, i.e., there are no 
storage servers in the path followed by files from 
the database containing the latter to the computing 
site. 
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