
Data Management Policies and Scheduling in Grid Computing

MASSIMILIANO CARAMIA, STEFANO GIORDANI
Dipartimento di Ingegneria dell’Impresa

Università di Roma “Tor Vergata”
Via del Politecnico, 1 – 00133 Rome

ITALY

Abstract: - Grid computing is emerging as a new paradigm for solving large-scale problems and is becoming an
established technology for providing transparent access to large-scale distributed computational resources.
Resource allocation and application scheduling are two of the most important aspects of Grid computing. In
general, a grid application also requires datasets that may not be available at the local computing site where the
application has to be executed, and hence in this case the required data has to be fetched before running the
application. In this paper, we tackle with the local scheduling problem by means of a rectangle packing model
combined with different policies for dataset scheduling, with the aim of maximizing the system efficiency.

Key-Words: - Grid scheduling, dataset policies, rectangle packing, on-line algorithms, experimental analysis

1 Introduction
Recently, there has been an increasing interest in
availing distributed computer systems for very
large-scale computing purposes. Grid computing is
emerging as a new paradigm for solving large-scale
problems and is becoming an established technology
for providing transparent access to large scale
distributed computational resources. Grid
computing can be thought of as distributed and
large-scale cluster computing and as a form of
network-distributed parallel processing. Resources
site contains, in general, cluster commodity
computers consisting of PCs or workstations
interconnected by vendor-independent networks that
are connected to the processing elements through
PCI ports. In such a framework two of the most
important issues are the efficient allocation of
computational resources to user application and the
scheduling of such applications on the allocated
resources.

Grid computing has been extensively studied in
the past. In particular, many successful strategies
have been developed for scheduling applications on
the Grid: examples include the AppLeS project [1,
2, 3], and the GrADS project [4]. Moreover,
application tools for Grid program development
were also developed (e.g., see [5]).The typical
mechanism of Grid is as follows [6]: a user submits
an application (task) request. Grid plays the role of
finding and allocating feasible resources
(computers, storages) to satisfy the request of the
user. Then, it monitors the correct task processing,
and notifies the user when the results are available.

One of the most known Grid model is the one
introduced by Ranganathan and Foster in [7]. In this
architecture, users submit requests for application
execution from any one of a number of sites. At
each site, besides the local computing system, the
system model is composed by three components: an
External Scheduler (ES) responsible for determining
a particular site where a submitted task can be
executed; a Local Scheduler (LS), responsible for
determining the order in which tasks are executed at
that particular site; a Dataset Scheduler (DS),
responsible for determining if and when to replicate
data and/or delete local files.

In general, on receipt of a task request, the ES
interrogates the LSs to ascertain whether the task
can be executed on the available resources and meet
the user-specified due date. If this is the case, a
specific site in which executing that task is chosen.
Otherwise, the ES attempts to locate a LS of a site,
controlled by another ES, that can meet the task
processing requirements, through search
mechanisms. If a LS cannot be located within a
preset number of search steps, the task request is
either rejected or passed to a scheduler that can
minimize the due date failure depending on a task
request parameter. When a suitable site is located,
the task request is passed from the ES to this site
and is managed by the associated LS.

In this paper, we focus the attention on the local
scheduling problem and we extend the analysis of
the scheduling model and algorithm presented in [8]
to be addressed by each LS by considering also the
effect of some dataset policies adopted by a DS for
managing the dataset locally available. We suppose

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

that a group of applications (independent tasks)
have to be executed on a given local machine cluster
(site). The cluster is assumed to be formed by a
number of processing nodes and a limited storage.
Tasks are not known in advance by the LS, and are
assumed to be presented one by one to the LS
according to the over time paradigm. Therefore, the
task characteristics (e.g.: duration, number of
allocated (required) processing nodes, required
dataset) become known to the LS when the task is
presented to it.

We model the scheduling problem as (on-line)
rectangle packing (e.g. see [9]) consisting in
orthogonally packing a subset of a set of
rectangular-shaped boxes, without overlapping, into
a single bounding rectangular area, maximizing the
ratio between the area occupied by the packed boxes
and the area of the bounding rectangle. We provide
an on-line algorithm for the rectangle packing that
whenever a new box (task) arrives as to decide to
pack it in the rectangular bounding area or reject it
The algorithm is coupled with dataset policies.
Indeed, the effective duration of a task comprises
also the time needed to load the required dataset if it
is not present in the local site, therefore the dataset
policy adopted may affect the performance of the
system. We experiment different dataset policies
and evaluate the performance of the algorithm on
different Grid scheduling scenarios.

The following sections are organized as follows.
Section 2 describes the Grid scheduling framework;
Section 3 the scheduling model and the algorithm.
Finally, Section 4 reports on the data management
policies and the experimental results.

2 The Grid scheduling framework
We refer to the Grid scheduling framework
introduced in [7], that is depicted in Figure 1, in
which the scheduling logic is encapsulated in three
modules:

 Fig. 1. The Grid framework.

• External Scheduler (ES): Users submit tasks
to the ES they are associated with. The ES
decides to which site tasks must be sent. To
this aim a JobLocal discipline [7] is
considered, with which each task is
dispatched to the local site (domain) where it
was submitted by the user. Moreover, the ES
should manage the rejected tasks by a LS,
sending them to another one or deciding to
reject them definitely from the system.

• Local Scheduler (LS): Once a task is assigned
to a particular site (and sent to a queue), it is
then managed by the LS. Each LS manages
the set of processors (computing units) of the
relative site, within a given time window that
represents their availability. The LS attempts
to schedule each task dispatched to the site,
within the time window, otherwise it rejects it
and sends it back to the ES.

• Dataset scheduler (DS): The DS manages the
datasets locally available. Datasets are
preassigned to different sites, and dynamic
replication policy is in place. Data are fetched
from remote sites for a particular task, if the
required data is not available, in which case it
is cached. A cached dataset is then available
to the local site as a replica for the duration of
the task.

3 Scheduling model and algorithm
On the basis of the aforementioned framework we
consider the Grid composed by m clusters (sites).
Each site is modeled as a set of H identical
processors available for a time window of length W,
and the task j as the request of hj processors, and of
a dataset fj, for a certain processing time pj.

The local scheduling problem we consider is
therefore a multiprocessor task scheduling problem
where a set of H processors, and a set J of non
preemptive tasks are given; each task j ∈ J requires
hj processors for a certain time wj = pj + c(fj), where
c(fj) is the communication time (depending on the
dataset policy) for loading dataset fj, and the
objective is to schedule as many tasks as possible
without interruption within a deadline W,
maximizing the processor total busy time.

Assuming the processors being indexed and
organized as an array and restricting the subset of
processors assignable to a task j formed by hj
consecutive indexed processors, we model the
scheduling of task j as packing a box of width wj
and height hj on a bounding rectangular area of
width W and height H. Therefore the local

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

scheduling problem can be modeled as a rectangle
packing, that is the problem of orthogonally packing
a set of boxes into a bounded rectangular area
without overlapping such that the (efficiency) ratio ρ
between the size of the area occupied by the packed
boxes and the size W ⋅ H of the rectangular
bounding area is maximized.

We adopt the on-line algorithm PACK_R for
rectangle packing proposed by the authors in [8].
The algorithm packs incoming boxes one by one
into the smallest free rectangular subarea of the
bounding area, and rejects an incoming box if there
is no free rectangular subarea where that box can be
packed. For the algorithm’s details the reader is
referred to [8].

4 The data management policies and
the system performance
Experimental results presented have been conducted
fixing the following parameter values for all the
runs:

• Number of tasks n = 100;
• Maximum processing time for a task wmax =

300 seconds.
These parameters are required in the execution of

the GenPro algorithm which generates the
processing times for the tasks; moreover, in the
PACK_R scheduling algorithm further parameters
are needed to determine time windows, within
which tasks are scheduled, and the number of
processors (computing units) of a local computing
site (i.e., the width W and the height H of the
rectangular bounding area in the rectangle packing
problem). In particular,

• W = 1200 seconds, represents the width of
the schedule, i.e., the overall time windows
within which tasks must be scheduled;

• H = 80, is the number of identical parallel
processors that are available at a local site to
execute tasks;

• hmax = 30, is the maximum number of parallel
processors that a task requires for its
execution.

It is important to notice that the processor
number that each operation requires uniformly
varies in the interval [1, 30], and is determined by
the scheduling algorithm.

In general, this parameter tends to affect the
solution even though the penalty introduced by
GenPro tries to minimize such effect, moving the
attention on the data replication phase at the
intermediate storage servers.

The three policies of data replication considered
are:

1. PLAIN CACHING. There is only the primary
server with a storage capacity equal to 3% of
the overall files where files may be
replicated;

2. CASCADING REPLICATION. There is a
primary and secondary storage server with a
capacity equal to 3% and 20%, respectively;

3. NO REPLICA SERVER. There are no
storage servers in the path followed by files
from the server containing the latter to the
computing site.

The analysis is done on two different scenarios:
• The number N of repetitions of algorithm

GenPro, that is analyzing the n tasks that
arrive in the system when (N – 1) n tasks
have been scheduled. The interesting aspect
of this study is in the analysis of the servers
past records and in the files that are currently
replicated in the servers;

• The probability that files requested by tasks
for their execution are contained or not in the
cluster formed by the first five files (out of
100), i.e., in the cluster of files mostly
requested.

The performance indicators used in the
comparative analysis are:

• The average number of tasks rejected by the
systems, since the local scheduler could not
be able to allocate all the tasks;

• The efficiency ρ of the system.

4.1 Analyisis on the number of the GenPro
algorithm repetitions
The system at the N-th repetition has received (N –
1) n tasks to schedule. Based on the file that each
task has requested for its execution, the servers,
using the index NOA (number of access), can define
an ordered list of the files that have been most
frequently requested until the N-th algorithm
repetition. After that, the GenPro algorithm,
exploiting this ordered list, executes a scan in the
server and updates over time the latter copying and
deleting files (in case the storage limit is reached)
leaving an immediate availability to the user of only
those files with higher probability of being
requested by forthcoming tasks. Hence, based on the
data replication policy used, the present files in the
servers will be more or less exploited for the user
request execution.

We start our analysis by studying the impact of
the number of repetitions of the GenPro algorithm.
The performance measurement index used are the

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

average number of tasks rejected by the system and
the ratio between the occupied area for task
scheduling and the total available area. Note that in
this first analysis the probability of a specific file
request is 50%.

4.1.1 The impact of the number of repetitions on
the number of rejected tasks
Let us first analyze the impact on the average
number of rejected tasks. Experimental results are
shown in Figure 2, where, besides the table with the
values obtained by the different data replication
policies, we report the chart of the trends related to
such values.

Analysis on the repetitions (prob = 50%)

0

0,5

1

1,5

2

2,5

3

3,5

Number of algorithm repetitions

Average rejected
tasks

PLAIN CACHING
CASCADING REPLICATION
NO REPLICA SERVER

PLAIN CACHING 2,6 2,1 1 1,1 2,9

CASCADING REPLICATION 0,3 1,7 0,8 0,7 0

NO REPLICA SERVER 2,5 1,8 1,4 2,8 2,5

1 10 100 1000 10000

 Fig. 2. The impact of the number of repetitions on
the average number of rejected tasks.

Tests have been conducted with number of

repetitions N = 1, 10, 100, 1000, and 10000. As it
can be inferred by the chart, the Cascading
Replication policy is the one that gives the best
performance. In fact, yet when N = 1, the average
number of rejected tasks is less than 1, and in the
worst case such a value equals 1.7. This behavior
can be explained considering that the probability
used in the experimentation is quite high (50%) and
the introduction of data replication servers renders
processing times limited with respect to the other
policies. When N is sufficiently high (in our tests
equal to 10000), the number of rejected tasks with
the Cascading Replication policy is zero, meaning
that after a short transition period, the servers have
stored the most frequently requested files.

It is interesting to note that there is not a large
difference in terms of rejected tasks between the
Plain Caching policy and the absence of Data
Replication. In fact, for high values of N (i.e., N >
1000) it is not convenient the use of a replication
server.

4.1.2 The impact of the number of repetitions on
the efficiency of the system
As showed in Figure 3, the system efficiency related
to the Cascading Replication policy is clearly
superior than the other two policies. The system
efficiency is certainly related to the average number
of rejected tasks: indeed, if there are a huge number
of rejections, it is clear that the available area to
scheduling tasks will be not properly used and the
ratio between the used area and the total area will be
low.

Analysis on the repetitions (prob. = 50%)

0

10

20

30

40

50

60

70

80

90

100

Number of algorithm repetitions

System efficency

PLAIN CACHING
CASCADING REPLICATION
NO REPLICA SERVER

PLAIN CACHING 81,1 76,3 81,5 83 72,9
CASCADING REPLICATION 90,4 82,2 85,2 85,8 98,4
NO REPLICA SERVER 78,4 81,1 82,4 81,6 75,7

1 10 100 1000 10000

Fig. 3. The impact of the number of repetitions on
the system efficiency.

Analyzing the trends of the curves in the chart,

we have the same situation occurred in Section
4.1.1. Also the trend of the Cascading Replication
policy, that in the transitory phase (for N < 10) is not
increasing, when N > 100 tends to increase, and for
N = 10000 the efficiency reaches 98.4%. Note that
the efficiency in the other two policies is not greater
than 83%.

4.2 Analysis of the performance when the
probability of dataset request varies
Let us now discuss the case in which the probability
that each task requires for its execution a dataset

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

contained in the cluster of the first five out of one
hundred sets, i.e., in the set of most requested
datasets.

In the problem of replicating data on
intermediate servers for distributed scheduling, we
note that the scenario analyzed in this sub-section
occurs very frequently in practice; in fact, the
hypothesis of introducing these servers along the
path between the computational site and the main
storage site is thought for those situations in which
tasks require for their execution a restricted number
of datasets, and that this latter are requested with a
certain frequency of the system that has to schedule
tasks with a defined probability.

4.2.1 The impact of the probability of specific
dataset requirement on the number of rejected
tasks
As it was quite foreseeable from what we said
before, since these policies were analyzed
specifically in the case of repeated requests of
specific datasets, the performance of the system in
the case when there are intermediate servers
(primary, secondary, or both) are much better than
for the case in which there are no storage sites.

Analysis on the probability of specific file request

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Probability

Average
Rejected

Tasks

PLAIN CACHING
CASCADING REPLICATION
NO REPLICA SERVER

PLAIN CACHING 1,6 1,3 0,2 0,9 0,3 0

CASCADING REPLICATION 1,8 1,4 0,5 0,4 0,1 0

NO REPLICA SERVER 2,7 2 2,3 1,4 4,1 1,9

0,1 0,3 0,5 0,7 0,9 1

Fig. 4. The impact of the probability of specific
dataset request on the average number of rejected

tasks.

As one can observe from the chart of Figure 4,
the trends of the curves related to Plain Cashing and
Cascading Replication are quite similar, even if the
the trend of the curve related to Cascading
Replication (i.e., double servers) is more regular.

When the probability of specific dataset requirement
tends to one, that is, all the user applications require
datasets contained in the group of the most popular
datasets, the number of rejected tasks tends to zero,
reaching this value in the extreme case.

When dataset replication policies are not
adopted, the average number of rejected task is
about 2.5, with peak values of about 4.1, which
appear to be too high over a number of one hundred
tasks (nearly 3% of rejected tasks).

4.2.2 The impact of the probability of specific
dataset requirement on the system efficiency
Previously from the analysis of the experimental
results, we have seen that varying the number of
repetitions the curves related to both two
performance indices follows a quite similar trend;
this is mainly due to the fact that there exists a tight
relation, as showed before, between the average
number of rejected tasks and the system efficiency
ρ.

Analysis on the probability of a specific file request

0

20

40

60

80

100

120

Probability

System efficiency

PLAIN CACHING
CASCADING REPLICATION
NO REPLICA SERVER

PLAIN CACHING 79 76,7 90,3 86,7 92,8 96,6

CASCADING REPLICATION 77,6 78,8 90,9 94 96,8 97,4

NO REPLICA SERVER 72,9 78,1 76,9 85,1 76,3 75,1

0,1 0,3 0,5 0,7 0,9 1

Fig. 5. The impact of the probability of specific
dataset request on the system efficiency.

Analogously to the previous considerations, we

may note that (see Figure 5) also if we only consider
the efficiency of the system as performance index,
the policies of Data Replication adopted (Plain
Caching and Cascading Replication) allow a task
scheduling with a very high system efficiency. In
fact, for high probability values (prob. > 0.7), we
obtain a system efficiency greater than 94% for the
Cascading Replication and greater than 87% for the
Plain Caching policy.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

In the case in which there is no intermediate
server for dataset replication, the average system
efficiency reaches 78%, with a minimum of less
than 73%.

4.3 Some technical-economic considerations
We conclude the analysis making some
considerations on the trade-off between the cost of
installing and maintaining the servers for data
replications and the Grid system performance.

An aspect that comes in evidence from the
analysis of the results is that analog considerations
may be done both for the case in which we consider
the number of rejected tasks and for the case in
which we consider the system efficiency as
performance measures.

We restrict the analysis varying the probability
of specific dataset request for task execution. We
note from the charts of Figures 4 and 5 that the
trends of the curves related to Plain Caching and
Cascading Replication are quite similar; in fact, for
a value sufficiently high of this parameter the
performance of PACK_R, with respect to both the
number of rejected tasks and system efficiency, are
quite good. In this situation, the average number of
rejected tasks tends to zero and the system
efficiency reach 97%. Therefore, in the case we are
interested in guaranteeing an high system
performance, it seems better to adopt a single
dataset replication server instead of two servers.
Also in the case in which we concern with cost
minimization, the Plain Caching policy seems to be
the best one because with no dataset replication the
system efficiency goes down noticeably to 75% and
the average number of rejected tasks goes up to 4%.

5 Conclusion
In this paper, we experimented an on-line
scheduling algorithm based on rectangle packing for
scheduling task in computing sites of a Grid system.
The algorithm is experimented taking into account
different dataset replication policies and storage
server configurations: Plain Caching, i.e., there is
only the primary server with a storage capacity
equal to 3% of the overall files; Cascading
Replication, i.e., there is a primary and secondary
storage server with a capacity equal to 3% and 20%,
respectively; No Replica Server, i.e., there are no
storage servers in the path followed by files from
the database containing the latter to the computing
site.

References:
[1] F. Berman, R. Wolski, S. Figueira, J. Shopf and

G. Shao, Application-level scheduling on
distributed heterogeneous networks, Proc. of
Supercomputing '96, 1996.

[2] H. Casanova, G. Orbetelli, F. Berman and R.
Wolski, The AppLeS parameter sweep
template: user-level middleware for the Grid,
Proc. of Supercomputing '00, 2000.

[3] A. Su, F. Berman, R. Wolski and M.M. Strout,
Using AppLeS to schedule simple SARA on
the computational Grid, International Journal
of High Performance Computing Application,
Vol. 13, 1999, pp. 253-262.

[4] H. Dail, H. Casanova and F. Berman, A
decoupled scheduling approach for the GrADS
program development environment, Proc. of
the 2002 ACM/IEEE Conf. on Supercomputing,
Baltimore, Maryland, USA, November 16-22,
2002, CD-ROM. ACM. 2002.

[5] F. Berman, A. Chien, K. Cooper, J. Dongarra,
I. Foster, D. Gannon, L. Johnsson, K. Kennedy,
C. Kesselman, J. Mellor-Crummey, D. Reed, L.
Torczon and R. Wolski, The GrADS project:
software support for high-level Grid application
development, Internat. J. of Supercomputer
Application, Vol. 15, 2001, pp. 327-344.

[6] I. Foster and C. Kesselman, The Grid:
blueprint for a new computing infrastructure,
Morgan Kaufmann, 1999.

[7] K. Ranganathan and I. Foster, Decoupling
computation and data scheduling in distributed
data-intensive applications, Proc. of the 11th
IEEE International Symposium on High
Performance Distributed Computing (HPDC-
11), Edinburgh, Scotland, July 23-26, IEEE
Computer Society, 2002, pp. 352-358.

[8] M. Caramia, S. Giordani, A. Iovanella, Grid
Scheduling by On-Line Rectangle Packing,
Networks, Vol. 44, 2004, pp. 106-119.

[9] Y.L. Wu, W. Huang, S.C. Lau, C.K. Wong and
G.H. Young, An effective quasi-human based
heuristic for solving the rectangle packing
problem, European J. of Operations Research,
Vol. 141, 2002, pp. 341-358.

Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, Elounda, Greece, August 18-20, 2006 (pp28-33)

