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Abstract:- This paper presents the design and simulation of an intelligent fuzzy controller to control the flight 
movement of an airplane being present in the midst of targeted missiles. The objective is to have the in-flight 
airplane, when an imminent collision danger occurs, move in a direction so as to avoid being hit by any of the 
targeted missiles. The airplane senses the environment around it, acquiring the coordinates of the missiles, and 
determines the nearest missile forward. The airplane, then, alters its movement direction in order to escape that 
missile within a specified time step. The fuzzy controller is designed off-line and it can then be used on-line. 
This design is a data-driven one and it is accomplished using a previously developed learning algorithm for the 
modeling of Mamdani-type fuzzy controllers. This is done, however, after addressing and tackling some 
challenging issues related to the 3-D to 2-D conversion, data derivation method and time step determination. 
The obtained FLC is then simulated and tested in a complex scenario and its reliability is emphasized.   
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1  Introduction 
The problem of robot navigation among existing 
static or dynamic obstacles, where the robot is 
supposed to move from a start point to a target point 
while avoiding collision with the obstacles 
encountered along its travel path, has been addressed 
in various research studies [1-6]. Some of these 
studies have used classical approaches; such as path 
velocity decomposition [1,2], relative velocity 
paradigm [3] and potential field [4]. In order to 
improve the performance of the robot controllers 
obtained by the noted conventional methods, soft 
computing techniques have been used [5,6]. Yet, 
each of the above noted methods has suffered 
drawbacks mainly represented by the fact that it is 
either computationally extensive or limited to a 
particular type of problem or both. In order to reduce 
the computational burden and provide more natural 
solutions for the robot navigation problem, fuzzy 
inference based approaches have been suggested [7-
10].  
 The study in [10], which is actually a combined 
fuzzy-genetic one, has dealt with the off-line 
derivation of the fuzzy controller that can then be 

used on-line. Although it provided good testing 
results, this approach, however, required the 
determination of a different fuzzy controller for 
every specific number of moving obstacles and 
based on user-defined scenarios. These limitations 
have been dealt with in [11] by providing a data-
driven fuzzy approach to the problem of robot 
navigation among moving obstacles. While the robot 
controller design is still done off-line, this design is 
not performed based on user-defined scenarios but 
on numerical input-output data and an algorithm for 
the design of Mamdani-type fuzzy controllers 
introduced in [12]. In this manner, the designed 
controller turned out to be independent of the 
number of moving obstacles and, therefore, more 
general than the one obtained by the fuzzy-genetic 
approach [10]. It also provided collision-free paths, 
as in the indicated fuzzy-genetic study.                     

Due to the efficiency and generality of the 
provided robot navigation approach in [11], this 
study presents a data-driven fuzzy controller design 
approach for solving the motion planning problem of 
a flying airplane in the presence of targeted missiles. 
This approach consists of providing a method for the 
derivation of input-output data that is then used to 
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construct a fuzzy logic controller (FLC). The FLC is 
designed off-line using the advanced data-driven 
controller-modeling algorithm [12], and it can then 
be used on-line by the airplane to navigate among 
moving missiles. The role of the FLC is to enable 
the airplane to decide, at every specific time step, the 
movement direction so as to avoid being hit by any 
of the targeted missiles. Hence, the FLC uses data 
collected by sensory devices about the location of 
the targeted missiles as they map into the plane of 
flight. In fact, the collected data along with the 
estimated missile speeds are used to transform the 
problem from a 3-dimensional into a 2-dimensional 
one. In this manner, the 2-dimensional problem as 
formulated and solved in [11] regarding the robot 
navigation among moving obstacles becomes 
applicable to the airplane missile avoidance 
problem. But, this cannot be done without 
addressing and tackling first serious challenges as 
emphasized in the remainder of this section and 
done throughout the paper.   
 Knowing the location of each missile at some 
time instant, then the sphere within which the 
missile remains after an incremental time step can 
also be determined. Each of the missiles 
corresponding spheres is then to be used to 
determine the corresponding circle resulting from 
the cut between the sphere and plane of flight. It is 
then on the basis of the obtained circles and the line 
segment that is traveled by the airplane in the 
considered time step that the nearest missile forward 
(NMF) needs to be determined. Actually, it is the 
data pertaining to this NMF that needs to be used by 
the FLC to determine the new direction of flight 
movement. Furthermore, the numerical input-output 
data needed to construct the FLC can also be 
determined based on the noted 3D to 2D 
transformation. 
 In addition to the needed 3D to 2D resolution, it 
is also required to determine the time step during 
which the airplane is able to collect and process the 
data and also implement the necessary deviation for 
collision avoidance. It is to be noted here that the 
airplane can neither stop to do the sensing nor 
deviate while in place like the robot. Of course, the 
time step needs to be the smallest possible under the 
given situation. After resolving the above-noted 
challenges related to the 3D-2D conversion, data 
derivation and the time step issues, the FLC will be 
designed. The obtained FLC will then be tested in a 
specific complex scenario to show the success of the 
methodology in the sense of accomplishing 
collision-free airplane flight. It is worth being finally 
noted in this section that no solution of this or 
similar problems has been found in the published 
literature.   

2  Background Information and 
    Analysis 
Since the problem we are addressing is basically a 3-
D problem, then instead of using the polar 
coordinate system, we must now use the spherical 
one represented by (r, θ,φ ) coordinates. Also, the 
missiles and airplane speeds, the airplane banking 
turn, deviation time and other factors need to be 
considered. 
 Based on research done on the aviation and 
missiles industry, the following has been obtained: 
- Airplanes travel, in cruising mode, at a constant 
speed and altitude. If no deviation is necessary, the 
airplane movement is confined along a straight 
trajectory in its horizontal plane of flight. 
- Modern day rocket propelled missiles vary in size, 
speed, and range. Two categories of missiles should 
be considered: surface-to-air and air-to-air missiles. 
The latter class has superior supersonic speed 
capability.  
- Present day commercial airplanes lack the agility 
and maneuverability to escape targeting missiles. A 
typical commercial airliner has a top speed of about 
300m/s; about one third the speed of a modern day 
missile. Military aircrafts, though, possess a speed 
comparable to that of air missiles, reaching a 
velocity of around 1100m/s. 
 The massive amount of different airplane and 
missile types poses the problem of the compatibility 
of the controller we are designing with the variety of 
airplane-missile combinations that might be 
encountered. For that purpose, we have chosen the 
following values as the basis to start the resolution 
of our mentioned problems and the design of our 
controller knowing that these values can be changed 
and the analysis can be modified accordingly but its 
basis will remain unchanged: 
- Airplane speed = 850m/s  
- Maximum Missile Speed = 1000 m/s [13]. 
 
 The sensory data related to the position of each 
flying missile is obtained by a radar that is placed on 
the airplane. This radar has a range of 18.5 Km [14]. 
Once this data is obtained, the missile that forms the 
most possible collision danger is identified and 
labeled as the NMF (see Sections 1 and 5). The 
controller then decides on the appropriate deviation 
of the plane from its initial trajectory in order to 
escape the missile. Data acquisition time, processing 
time, and airplane deviation time constitute the time 
step that recurs continuously. By adopting this 
incremental approach, the airplane can avoid the 
obstacles that target it one missile per time step.   
 Therefore, the time step is calculated by adding 
the following factors: 
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Data Acquisition Time: The round trip time that a 
signal takes to reach the targeting missile and 
bounce back to the radar present on the airplane in 
order to acquire the coordinates of the nearby 
missile. This value is obtained by dividing the 
double of the maximum distance between an 
airplane and a surrounding missile by the speed of 
light. The resulting time was found to be equal to 
123µs.  
Processing Time: The time for the processor present 
on board the airplane to identify the (NMF) and 
calculate the necessary deviation it must apply in 
order to escape that missile. This value was 
estimated by comparing the time to process files of 
different sizes on different processors. The resulting 
time was taken to be: 3ms 
Deviation Time: The time needed for the airplane to 
implement the required deviation and avoid the 
NMF. This will be assessed based on the analysis 
given in Sections 3 and 4. It will be shown that the 
first two factors require relatively little time. The 
deviation time computation requires knowledge of 
the manner by which an airplane deviates. 
 
3  Airplane Banking Turn 
Contrary to how the robot maneuvers in a 2-
Dimensional plane, the airplane does not turn left 
and right instantaneously. Instead, it moves 
continuously while still in motion, which requires 
the airplane to turn by tilting to the side to which the 
deviation is intended. The angle it makes by tilting is 
called the banking angle. The airplane makes the 
necessary turn while still moving at a constant 
speed. Figures 1 and 2 illustrate the way an airplane 
turns by tilting to its side. 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

Figure 1. The airplane turns by tilting to its side. 
 
 The airplane therefore deviates by moving on a 
circular trajectory that is tangential to the straight 
line direction on which it was initially moving. The 
banking angle that the airplane makes with the 
normal has a direct relation with the radius of the 
circular trajectory it follows when it deviates. In 

what follows is a derivation of the relationship 
between this radius and the banking angle [15]. 
 

 
 

Figure 2. Top View of an airplane making a 90º 
                        deviation. 
 
 Figure 2 represents a top view of an airplane 
turning to make a deviation of 90º, which is the 
measure of the arc of a quarter of a circle. Assuming 
that a banking angle α is applied in this case, we take 
a system of axes where the y-axis is the vertical line 
in Figure 2 and the x-axis is the horizontal line. Let:
  
FL = Lift Force that is normal to the airplane 
FS= Side Force 
α = The Banking Angle that the airplane makes 
Projecting on x-axis:  αsin×= LS FF  
Projecting on y-axis: gmFL ×=× αcos  

αcos
gmFL

×
=⇒  

Therefore, α
α
α tan

cos
sin

××=××= gmgmFS  

By Newton’s second law of motion, we have 
→→

×=∑ amF . This gives , amFS ×=
where  is the acceleration vector component that is 
normal to the circular trajectory and  

a

amgm ×=×× αtan . This gives αtan×= ga . 
Therefore, the relation between the radius of the 
airplane trajectory and the banking angle of the 
airplane is given by: 

αtan

22

×
==

g
V

a
VR , where V is the airplane 

velocity. 
 
 The radius of the circular trajectory made by the 
airplane is inversely proportional to the banking 
angle that the airplane makes. Therefore, the bigger 
the banking angle the airplane makes, the smaller the 
radius of the circular trajectory and the smaller the 
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distance that the airplane has to make in order to 
reach a certain angle.  
 
 Different airplane types have different 
capabilities. For example, the Airbus A320 makes a 
maximum banking angle of 67 degrees. Similar 
commercial airliners have comparable banking 
capacities. It is for this purpose that we opted for a 
more agile airplane for our design; with maximum 
banking angle capability of 89º, which allows the 
airplane to move at a circular trajectory of minimum 
radius 1.28686 Km. A military airplane has the 
ability to make a banking angle of 90º. This angle 
though, does not result in any deviation since a zero 
radius would be obtained.  
 The conclusion to draw from the relation 
obtained above is that with a larger radius (i.e. 
smaller banking angle), an airplane can achieve the 
same deviation angle as with a small radius. The 
difference though lies in the fact that a greater 
distance, and consequently greater time, must be 
covered with the large radius in order to achieve that 
same deviation. This fact plays a decisive role in the 
calculation of the time step of the controller and an 
equally important role in the algorithm or decision 
process as will be shown in the following sections.  
 
4 Deviation Time 
From the material presented in Section 3, we are 
now able to deduce the value of the deviation time, 
which is the amount of time required by the plane to 
make the deviation dictated by the controller in 
order to avoid collision with the NMF. The deviation 
of an airplane as previously illustrated occurs by 
moving on a circular trajectory of radius related to 
the airplane banking angle. An airplane can therefore 
embark on a circular trajectory of whichever 
allowable radius in order to deviate by a certain arc 
measure. 

The calculation of the deviation time, and 
consequently the time step, T, is subject to opposing 
limits. The lower limit states that any chosen 
deviation time must be enough for the airplane to 
make the maximum possible deviation required from 
it. The allotted deviation time must therefore be 
sufficient for the airplane to be able to make this 
kind of deviation. 

The upper limit on the time step states that this 
recurring time interval must be minimal in order for 
the controller to be able to handle the maximum 
possible number of missiles in the least time 
possible. Having the Time Step very large would 
result in undesired consequences as it would take a 
long time for the airplane to escape a single missile 
leaving ample time for other surrounding missiles, 

other than the (NMF), to approach the airplane or 
even possibly colliding with it.    
 
  As in the case of a robot in a 2-dimensional 
environment, the airplane maximum deviation is 
90°, occurring almost exclusively when the 
approaching missile circular cut with the flight plane 
is extremely close or is engulfing the position of the 
airplane. This implies that a deviation of 90° is 
required only when the airplane is moving on its 
minimal radius. The time needed for this 90° 
deviation to take place at the minimum radius (i.e. 
maximum banking angle) is equal to 2.378 seconds.  

The cumulative time interval that constitutes the 
time step T is therefore estimated to be 3 seconds. 
We note here that some large angles to be made on 
circular trajectories with larger radii than the 
minimum radius may need more time than the 
allocated 3 seconds. This will be taken care of in the 
safety margin analysis given in Section 6. 
 
5 Three Dimensional/Two Dimensional 
   Mapping 
Taking into account the values adopted at the start of 
this analysis, an airplane traveling at constant speed 
moves a distance of 850T meters in one time step, T. 
During this time interval, the targeting missile would 
have traveled 1000T meters. The direction in which 
the missile moves in its 3-dimensional space is 
unknown. The possible positions that a missile 
occupies in one time step could, therefore, be 
represented by a sphere of radius 1000T. The 
decision as to whether the missile surrounding an 
airplane poses an eminent threat on which the 
airplane must deviate depends first of all on whether 
the sphere of the missile intersects with the plane on 
which the targeted airplane is traveling.  

The intersection, whenever it occurs, between the 
flight plane and the sphere whose radius is equal to 
the distance traveled by the missile in time T results 
in a circle. In our analysis we assume that the radar 
located at the plane is the center of the coordinate 
system. This installed radar gives us the spherical 
coordinates of the missile (r,θ ,φ ). 

Now, in order to facilitate our analysis we 
transform the spherical coordinates obtained by the 
radar to Cartesian coordinates: 

θφ sincos ××= ra , 
θφ sinsin ××= rb , 

θcos×= rc . 
The equation of the sphere of the missile in one time 
step is: 
( ) ( ) ( ) 2222

SRczbyax =−+−+−  
where the radius of the sphere, RS, is equal to 1000T.  
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The plane of flight is the x-y plane has the 
equation . The intersection between the 
sphere and the plane equations yields:  

0=z

( ) ( ) 2222 )0( SRcbyax =−+−+− . This gives  

( ) ( ) )( 22
S

22 cRbyax −=−+− . 
Hence, the intersection is a circle with center (a,b) 
and radius:  

)( 22 cRr Sc −= . 
The radius of the circle rc depends on the altitude 

c. At c=0 we have rc=Rs and the circle will have a 
maximum value i.e. the intersection will occur at the 
center of the sphere. As c increases, the intersection 
would move further from the center of the sphere 
towards the extremity and hence rc decreases 
accordingly. 

The outcome of this analysis is the mapping of 
the 3-dimensional problem into a manageable 2-
dimensional one that can be handled in the following 
manner. A missile is judged eminently dangerous if 
its representing sphere first intersects with the flight 
plane and second intersects with the line segment 
that the airplane would travel in that plane of flight 
in T seconds. If more than one missile fulfills this 
condition, then the one considered closer to the 
current position of the airplane is regarded as the 
NMF. Upon locating the circle representing the 
NMF, the airplane controller will then decide on the 
appropriate deviation and execute it. Next we 
consider a case study to better explain the noted 
ideas and how the necessary deviation is determined.  

 
6 Safety Margin analysis 
We consider the case of an approaching missile of 
Cartesian coordinates (0,4.5,2) in Km. The missile is 
represented be a sphere of radius 1000T= 3km. The 
intersection of this sphere with the flight plane is 
represented by a circle of coordinates (0,4.5) and 
radius 2.236 Km. The missile is clearly intersecting 
with the trajectory of the airplane that is represented 
by the traveled line segment on the y-axis of length 
2.55Km (Figure 3). Therefore a deviation from the 
initial trajectory of the airplane is in order.  

As Figure 3 shows, the deviation occurs by 
creating the banking angle corresponding to the 
circle tangential to the one representing the missile. 
The figure also reveals that the distance that the 
airplane needs to cover in order to reach the point 
tangential to the missile circle is 3.1542 Km, which 
can not be covered in one time step since the 
airplane can only travel a distance of 2.55 Km in 3 
seconds. This leaves the airplane 0.6042 Km short 
from the safety point since it reaches a position 
where it would be in danger of collision with the 
missile in the next 3-second time step.   

 
Figure 3.  AutoCAD plot representing the deviation 

                     trajectory of an airplane. 
 

A simple addition of extra time after the airplane 
has reached the position indicated above will not 
solve our problem, since in this added time interval 
the missile would also have moved into a position 
possibly closer to the airplane than before resulting 
in possible collision. The problem we face can only 
be solved in one way: To allow the airplane a time 
margin of 1.5 seconds in which the controller would 
predict the worst position of the missile circle after 
that margin and start the deviation beforehand. The 
value of 1.5 seconds was taken based on a study of 
the different time margins needed in different cases 
where deviation is required. With the aid of Figure 
4, we explain this procedure in more details. 
 
 
 

 
Figure 4.  AutoCAD plot representing the deviation 
                trajectory of an airplane with time margin. 

 
We note first that, in 1.5 seconds, the missile 

travels a distance of 1500 m. When the airplane 
detects the coordinates of the missile and determines 
the circular cut of its sphere represented by the 
highest circle in Figure 4, it predicts the worst 
position of this circle after 1.5 seconds. This is 
represented by the circle directly below the highest 
one in Figure 4. The controller then calculates the 
deviation from the missile based on the knowledge 
of its future position after 1.5 seconds.  

The advantage of this approach is that the 
airplane can now succeed in avoiding the missile if it 
moved for an extra time needed to reach the safety 
point on the new trajectory. In the considered case 
(Figure 4), the time needed to cover the distance of 
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3.1542 Km between the position of the airplane and 
the safety point is in fact less than the allocated 4.5 
seconds. The 4.5 seconds is the maximum time 
within which all cases can be accommodated. 

We note here that the circular cut radius, rc, and 
the length of the line segment traveled by the 
airplane in a time step are still to be calculated based 
on 3 seconds. The extra 1.5 seconds are only used to 
determine the predicted worst position of the circular 
cut and on the basis of which we obtain the 
necessary deviation. 
 
7 FLC Design 
After addressing and resolving the challenges of the 
problem, numerical input-output data representing a 
good number of missiles positions and their required 
deviation angles are obtained. These data can then 
be used to construct a fuzzy logic controller whose 
role is to provide the airplane with the required 
banking angle to avoid being hit by a missile.  

With the aid of AutoCAD, we have collected the 
data necessary in order to construct the FLC by 
computing the different banking angles required for 
many missile positions. The data acquired was 
distributed in a grid-like fashion so as to have as 
many as possible cases of missile positions covered. 
Also, more values have been collected at positions 
where the missiles were extremely close to the 
airplane as these cases are more critical than others 
and therefore require more accuracy. The table at the 
end of this paper shows a sample of the obtained 
data.  

The data points collected have been used to 
construct a Mamdani’s type fuzzy logic controller 
with the help of [2]. This controller design 
methodology has the ability to learn the rules of the 
fuzzy system form the provided data. The 3 inputs of 
the FLC are the distance, the angle and the radius in 
the 2D plane. The distance input is denoted by d and 
it is the length measure from the airplane sensor to 
the center of the circular cut of the sphere 
surrounding the missile position with the plane of 

flight. d is therefore given by ( ) θsin22 rba =+ . 
The angle Ф is taken as the angle between the 

direction perpendicular to the airplane flight (y-
direction) and straight line joining the sensor 
position (airplane) and the center of the circular cut 
of the missile sphere with the plane of flight. Hence, 
Ф = φ . As for the radius, it is symbolized by rc 
(refer to Section 3) and it varies according to the 
altitude component c. It is to be noted here that the 
formulas for d, Ф, and rc are only applicable when 
the sphere surrounding the missile position and of 
radius Rs has a circular cut with the plane of flight. 
That is, when Rsrc <= θcos . If this condition is 

not satisfied for any of sensor detected missiles, then 
the system will consider this case as if there are no 
missiles and therefore no alternation of the flight 
direction will be necessary. 

The role of the FLC is to enable the airplane to 
decide, at every specific time step, the movement 
direction so as to avoid being hit by any of the 
targeted missiles. Therefore, the output of the FLC is 
the banking angle α (refer to Section 3) that is 
needed by the airplane in order to move on a circular 
trajectory of a certain radius. The FLC as a system, 
the membership functions of the FLC inputs and 
output are respectively shown in Figures 5, 6 and 7. 
The inference rules are given in Table 1.  
 

 
Figure 5. Fuzzy System representation. 

 

 

 

Figure 6. Input membership functions used in learning. 
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Figure 7. Output membership functions used in learning. 
 

 
Figure 8. Control Surface for a missile with circle radius 
                rc= 3Km. 
 
 

Table1.  Fuzzy system rules obtained by learning. 
 

Angle  T1 T2 T3 T4 T5 T6 T7 
 Radius        
Distance         
D1 r3 O5 O5 O5 O5 O5 O5 O5 
D2 r3 O1 O1 O1 O6 O7 O5 O5 
D3 r3 O1 O1 O1 O1 O4 O7 O7 
D4 r3 O1 O1 O1 O1 O3 O4 O6 
D5 r3 O1 O1 O1 O1 O1 O1 O1 
D1 r2 O5 O5 O5 O5 O5 O5 O5 
D2 r2 O1 O1 O1 O4 O5 O5 O5 
D3 r2 O1 O1 O1 O1 O3 O6 O7 
D4 r2 O1 O1 O1 O1 O3 O6 O7 
D5 r2 O1 O1 O1 O1 O1 O1 O1 
D1 r1 O5 O5 O5 O5 O5 O5 O5 
D2 r1 O1 O1 O1 O4 O6 O7 O5 
D3 r1 O1 O1 O1 O1 O8 O6 O7 
D4 r1 O1 O1 O1 O1 O1 O7 O7 
D5 r1 O1 O1 O1 O1 O1 O1 O1 

 
8  Simulation and Results 
In this simulation case, 7 missiles aimed at the 
airplane are considered and the airplane is required 
to reach the target or the destination point while 
avoiding the missiles one after another based on the 
NMF concept. From the coordinates of the missiles, 
we derive the input data (d,Ф,rc) in order to be used 
by the controller to calculate the required banking 
angle. This banking angle determines the radius of 

the circular trajectory the plane should move on. 
Figure 9 illustrates the way the airplane deviates 
from the missiles around it while traveling to its 
destination.  

 
Figure 9. Path traveled by airplane using the designed 
                FLC. 
 

The first missile encountered by the airplane is 
located at a distance of 5.8137 Km and at an angle 
58˚. The radius of its circular cut with the plane of 
flight is 3 Km. The controller output issues a 
banking angle of 85˚. The airplane therefore deviates 
by moving on the circular trajectory corresponding 
to this banking angle for the time interval of 4.5 
seconds. In the second time interval, the NMF 
detected by the controller is the same as the one 
detected in the first time interval. Only, in its new 
position (i.e. new coordinates (6.96Km,90˚,2.5Km) ) 
no deviation is required as an output of zero banking 
angle is obtained from the controller. We note here 
that the trajectory of this missile, as shown in Figure 
9, is not in the plane of flight. Consequently, the 
circular cut of the missile sphere with this plane 
changes in each sampling time. The third time 
interval requires no deviation as well, since the 
coordinates of the NMF result in zero banking angle. 

The second missile requiring deviation occurs at 
the fourth time interval. It is located at (5.5009Km, 
68˚,2Km) from the airplane and results in a banking 
angle of 86.1˚. The third deviation occurs with the 
missile located at (4.8351 km, 53˚,2.5Km) and the 
deviation issued is at a banking angle of 85.1˚. The 
fourth case is at (4.7905 km, 76˚,1.5Km) and results 
in a banking angle of 87.2˚. The fifth case is at 
(5.9595 km, 69˚,2.8Km) and the plane deviates by a 
banking angle of 86˚. The sixth missile requiring 
deviation is located at (4.4541 km, 12˚,3Km). In this 
case, the banking angle applied is 88.3˚. 

The airplane priority is to avoid the missiles 
detected in the radar range of 18.5 km. If, at any 
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time interval, the radar detects no missiles in its 
visible spectrum, the airplane uses this free time to 
redirect itself towards its target. The airplane 
therefore moves on a circular trajectory of minimum 
radius and exits that trajectory, tangentially, when its 
position is facing the target point. The airplane then 
resumes its path while surveying its surroundings for 
other missiles. In Figure 9, after the avoidance of the 
sixth object, the airplane detects another missile in 
its surroundings. The output of the controller at that 
time interval is a deviation of zero banking angle. In 
the following time interval, the airplane radar detects 
no missiles within its 18.5 Km scope. The controller, 
therefore, issues a command for the airplane to 
redirect itself by making a maximum banking angle 
and then exiting the resulting circular trajectory 
when it is facing the target. Table 2 summarizes the 
simulation case.  
 
Table 2. Inputs/Outputs of controller in each time interval 
              shown in the simulation of Figure 9. 
 

NMF INPUT OUTPUT Time 
Interval Distance Angle Radius Banking 

Angle 
1 5.8137Km 58˚ 3Km 85˚ 
2 6.96Km 0˚ 2.5Km 0˚ 
3 11.04Km 73˚ 2.5Km 0˚ 
4 5.5009Km 68˚ 2Km 86.1˚ 
5 14.04Km 53˚ 2.5Km 0˚ 
6 9.40Km 50˚ 2.5Km 0˚ 
7 4.8351Km 53˚ 2.5Km 85.1˚ 
8 16.567Km 81˚ 2.25Km 0˚ 
9 10.578Km 80˚ 2.05Km 0˚ 
10 4.7905Km 76˚ 1.5Km 87.2˚ 
11 12.103Km 76˚ 2.5Km 0˚ 
12 5.9595Km 69˚ 2.8Km 86˚ 
13 11.53Km 90˚ 2.85Km 0˚ 
14 4.4541Km 12˚ 3Km 88.3˚ 
15 13.936Km 43˚ 2.53Km 0˚ 
16 13.134Km 28˚ 1.62Km 0˚ 
17 - - - 89˚ 
18 - - - 0˚ 
19 - - - 0˚ 
20 - - - 0˚ 

 
9 Conclusion 
This study presented a data-driven approach for the 
design of a fuzzy logic controller that can be used in 
airplanes to avoid being hit by targeted missiles. 
Although the approach extends a previously 
published study for robot navigation among moving 
obstacles, it involved serious challenges that needed 
to be tackled and resolved. The first challenge was 
the passage from the 3D to the 2D problem and the 
resulting increased FLC structure complexity and 
data derivation method. The second was the 
assessment of the incremental time step during 
which the airplane needs to collect and process data 
and also to execute the necessary deviation on 
varying circular paths for collision avoidance. The 
designed FLC turned out to give collision-free flight 

and this reliability has been verified through a 
simulated case study involving seven targeted 
missiles moving in different 3D directions.  

The designed FLC should prove to be useful in 
unmanned flights operating in hostile environments 
or even in manned ones to relieve or help pilots in 
their missions. The study can also be used after 
minor modifications to come up with FLC’s that can 
be used to help civilian aircrafts avoid static objects; 
such as tall buildings, flying balloons, etc., and thus, 
saving human lives. 
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Distance 
d (Km) 

 
Angle Ф 
(Degrees) 

Obstacle 
Radius rc 

(Km) 

Angle To 
Reach 

Tangent To 
Obstacle 
(Degrees) 

 

Radius Of 
The 

Tangent 
Circle 
(Km) 

Corresponding 
Banking Angle 

(Degrees) 

Time Needed To Reach 
   Tangential Point 

(Seconds) 
 

3 90 3 90 1.286866 88.99999981 2.378123 
3.5 90 3 90 1.286866 88.99999981 2.378123 
4 90 3 90 1.286866 88.99999981 2.378123 

4.5 90 3 90 1.286866 88.99999981 2.378123 
5 90 3 90 1.286866 88.99999981 2.378123 
6 90 3 67 1.875 88.54313765 2.192569873 
7 90 3 57 3.5417 87.24964425 4.145195987 
8 90 3 0 Infinity 0 0 

10 90 3 0 Infinity 0 0 
12 90 3 0 Infinity 0 0 

Table 3. Sample of the data obtained through AutoCAD for different distance values, angle  90 and rc=3Km. 

Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, Greece, August 21-23, 2006 (pp39-47)


