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Abstract: - The double diffusive convection near a permeable horizontal cylinder of elliptic cross section with 
uniform wall temperature and concentration in a fluid-saturated porous medium are numerically studied. A 
coordinate transformation is employed to transform the governing equations into nondimensional nonsimilar 
boundary layer equations. The obtained boundary layer equations are then solved by the cubic spline collocation 
method. The influence of the transpiration parameter and the eccentricity on the heat and mass transfer 
characteristics near a permeable horizontal cylinder of elliptic cross section in a fluid-saturated porous medium 
is examined as the major axis of the elliptic cylinder is vertical (slender orientation) and horizontal (blunt 
orientation). Increasing the transpiration parameter tends to decrease the boundary layer thickness and thus 
enhances the heat and mass transfer rates between the fluid and the wall. Moreover, the heat and mass transfer 
rates of the cylinder with slender orientation are higher than those of the cylinder with blunt orientation. 
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1   Introduction 
Coupled heat and mass transfer driven by combined 
thermal and solutal buoyancy forces in a 
fluid-saturated porous medium is of great importance 
in geophysical, geothermal and industrial 
applications, such as the extraction of geothermal 
energy, the dispersion of chemical contaminants 
through water-saturated soil and the migration of 
moisture through air contained in fibrous insulations.  
     Bejan and Khair [1] used Darcy’s law to study the 
features of natural convection boundary layer flow 
driven by temperature and concentration gradients. 
Lai and Kulacki [2] studied the natural convection 
boundary layer along a vertical surface with constant 
heat and mass flux including the effect of wall 
injection. Yih [3] studied the heat and mass transfer 
characteristics in natural convection flow over a 
truncated cone subjected to variable wall temperature 
and concentration or variable heat and mass flux 
embedded in porous media. Cheng [4] uses integral 
approach to study the magnetic effects on heat and 
mass transfer by natural convection from a vertical 
plate in a fluid-saturated porous medium. 

Similarity solutions for natural convection heat 
transfer on a horizontal cylinder in a saturated porous 
medium have been presented by Merkin [5]. Fand et 
al. [6] examined experimentally the heat transfer 

characteristics by natural convection from a 
horizontal cylinder embedded in porous media. 
Yücel [7] studied the heat and mass transfer about a 
vertical cylinder with constant wall temperature and 
concentration in a porous medium. Yih [8] examined 
the heat and mass transfer by natural convection from 
a permeable horizontal cylinder in a porous medium 
with constant wall temperature and concentration. 
Merkin [9] studied the natural convection boundary 
layer flow on cylinders of elliptic cross section in a 
porous medium. Pop et al. [10] examined the natural 
convection heat transfer about cylinders of elliptic 
cross section in a porous medium.  

Motivated by the works above, this article 
applied the coordinate transformation and the cubic 
spline collocation method to analyze the heat and 
mass transfer by natural convection along a 
permeable horizontal cylinder of elliptic cross 
section embedded in fluid saturated porous media 
with constant wall temperature and concentration. 
The results obtained herein are compared with the 
similarity solutions for horizontal cylinders obtained 
by Merkin [5] and by Yih [8] to check the accuracy. 
The influence of the transpiration parameter and the 
eccentricity on the heat and mass transfer 
characteristics near a permeable horizontal cylinder 
of elliptic cross section in a fluid-saturated porous 
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medium is examined when the major axis is 
horizontal (blunt orientation) and vertical (slender 
orientation). 

 
 

2   Problem Formulation 
Consider the effect of transpiration on the combined 
heat and mass transfer by free convection near a 
buried horizontal cylinder of elliptic cross section 
with blunt orientation embedded in a homogeneous 
fluid-saturated porous medium, as shown in Fig. 1, 
where a is the length of semi-major axis and b is the 
length of semi-minor axis for the elliptical cylinder. 
In this figure, A represents the angle made by the 
outward normal from the cylinder with the downward 
vertical and B is the eccentric angle. It should be 
noted that for cylinders of elliptic cross section there 
are two orientations to consider: the orientation is 
blunt when the major axis is horizontal, as shown in 
Fig. 1, and the orientation is slender when the major 
axis is vertical. 

The surface of the cylinder is held at a constant 
temperature wT  which is higher than the ambient 
porous medium temperature ∞T . In addition, the 
concentration of a certain constituent in the solution 
that saturates the porous medium varies from  wC  on 
the fluid side of the surface of the cylinder to ∞C  
sufficiently far from the surface of the cylinder. The 
transpiration velocity is uniform. The fluid properties 
are assumed to be constant except for density 
variations in the buoyancy force term. 

With introducing the boundary layer and 
Boussinesq approximations, the equations governing 
the steady-state conservation of mass, momentum, 
energy and constituent for Darcian flow through a 
homogeneous porous medium near the surface of the 
horizontal cylinder of elliptic cross section can be 
written in two-dimensional Cartesian coordinates 
( ), yx  as [10] 
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The appropriate boundary conditions are: 
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Fig. 1. Physical model and coordinates for an elliptic 
cylinder of blunt orientation. 

 
Here u  and v  are the volume-averaged velocity 

components in the x -direction and y -direction, 
respectively. T  and C  are the volume-averaged 
temperature and concentration, respectively. 
Property µ  is the dynamic viscosity of the fluid, K  
is the permeability of the porous medium, and ρ  is 
the fluid density. Furthermore, α  and D  are the 
equivalent thermal and mass diffusivity of the 
saturated porous medium, respectively. tβ  and cβ  
are the coefficients for thermal expansion and for 
concentration expansion of the saturated porous 
medium, respectively, and g  is the gravitational 
acceleration. wV  is the uniform transpiration 
velocity.  

After introducing the stream function ψ  to 
satisfy the relations: yu ∂∂= ψ and xv ∂∂−= ψ , 
we then define the nondimensional variables: 

ax /=ξ , ( ) 21Raay=η ,  ( )21Raαψψ = , 
( ) ( )∞∞ −−= TTTT wθ , ( ) ( )∞∞ −−= CCCC wφ . 

Equations (1)-(6) become the following equations: 
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In the above equations, )()( ανβ ∞−= TTgaKRa wt  
is the Darcy-Rayleigh number, DLe α=  is the 
Lewis number and [ ])()( ∞∞ −−= TTCCN wtwc ββ  
is the buoyancy ratio.  

A further transformation is needed for bodies 
with rounded lower ends because ξAsin  
approaches a constant value as ξ  approaches zero 
[10]. The new nondimensional variable is defined as 

( ) ψξηξ 1, −=f                                                      (12)                                                               
Substituting Eq. (12) into Eqs. (7)-(9), we obtain the 
following boundary-layer governing equations: 
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The boundary conditions are 
wff = , 1=θ , 1=φ  on 0=η                            (16)                                            

0=′f , 0=θ , 0=φ  as ∞→η                          (17)                                              
In terms of the new variables, the Darcian velocities 
in x- and y- directions can be expressed as  
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Here primes denotes partial derivation with respect to 
η . As 1/ =ab  , 0=N  and 0=wf , Eqs. (13)-(14) 
become the equations for the Darcy natural 
convection heat transfer near a horizontal circular 
cylinder in a fluid-saturated porous medium 
presented by Merkin [5]. ( ) 21RaaVf ww α−=  is the 
transpiration parameter. Note that 0<wf  when 

0>wV  (the case of blowing), and 0>wf  when 
0<wV  (the case of suction).  

Here ξ  and Asin  can be given in terms of the 
eccentric angle B  by the relations: 
 (1) For blunt orientation: 
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(2) For slender orientation: 
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Table 2. Comparison of values of RaNu  for 

0=N  and 1=a/b  between the present results with 
the solutions reported by Merkin [5] and Yih [8]. 

 
ξ  Merkin 

[5]  
Yih [8] Present 

results 
0 0.6276 0.6276 0.6276

0.2 0.6245 0.6245 0.6245

0.6 0.5996 0.5996 0.5997

1.0 0.5508 0.5508 0.5510

1.4 0.4800 0.4800 0.4804

1.8 0.3901 0.3899 0.3904

2.2 0.2847 0.2843 0.2849

2.6 0.1679 0.1677 0.1680

3.0 0.0444 0.0446 0.0444

 
 

( ) 21221 Bcose

BsinAsin
−

=                                     (23)                     

where e  denotes the eccentricity expressed as 
( ) 21221 abe −=  and b/a is the aspect ratio of the 

elliptic cylinder. When ξ  approaches zero, as shown  
In Eqs. (20)-(23), the value of ξAsin  approaches 
the aspect ratio ab /  for the elliptic cylinder with 
blunt orientation while the value of ξAsin  
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approaches the value of 22 ba  for the elliptic 
cylinder with slender orientation. 

The local Nusselt number can be written as 

( )0,21 ξθ ′−=
Ra
Nu                                                     (24)                          

The local Sherwood number can be given by 

),(
Ra

Sh 021 ξφ ′−=                                                    (25)                                                        

In Eqs. (24)-(25), khaNu =  and DjaSh =  where 
h  and j  are the local heat transfer coefficient and 
the local mass transfer coefficient, respectively. 

The average Nusselt number for the elliptic 
cylinder can be derived as: 
(1) For blunt orientation 
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(2) For slender orientation 

( )
( )∫

∫
−

−′
−= π

π

γγ

γγξθ

0

2122

0

2122

21
1

10

dcose

dcose),(

Ra
Num              (27) 

The average Sherwood number for the elliptic 
cylinder can be given by: 
(1) For blunt oriention 
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(2) For slender orientation 
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Note that kahNu mm =  and DajSh mm =  where 

mh  and mj  are the average heat transfer coefficient 
and the average mass transfer coefficient for the 
elliptic cylinder, respectively. 
  

 
3   Problem Solution 
The governing differential equations, Eqs. (14) and 
(15), and the appropriate boundary conditions, Eqs. 
(16) and (17), can be solved by the cubic spline 
collocation method [11, 12]. The Simpson’s rule for 
variable grids is used to calculate the value of f at 
every position from Eq. (13) and boundary 
conditions (16) and (17). Variable grids with 200 grid 
points are used in the η  direction. The minimum step 
size is 0.01. The value of the edge of the boundary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  Effects of transpiration parameter on the local 
Nusselt number.  

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Fig. 3. Effects of transpiration parameter on the local 
Sherwood number. 
 
 
layer ∞η  is about 12. Moreover, a grid with 150 grid 
points is used in the ξ  direction. At every grid point, 
the iteration process continues until the convergence 
criterion for all the variables, 610− , is achieved. The 
present calculation for Eqs. (13)-(17) can be 
performed from the bottom up to the top of the 
elliptic cylinder without encountering a singularity.  
Here by using the cubic spline collocation method 
[11, 12], Eqs. (14) and (15) can be discretized by 
using the false transient technique, as 
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Note that ϑ  refers to θ  and φ , and the quantity 
nn τττ∆ −= +1  represents the false time step. 

 After some arrangement, Eqs. (30) and (31) can 
be written in the following spline approximation 
form: 

1
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The quantities F, G, and S are known coefficients 
evaluated at previous time steps (Table 1).   By using 
the cubic spline relations [11, 12], Eq. (33) may be 
written in the following tridiagonal form as  

jijijijijijiji DCBA ,1,,,,1,, =++ +− ϑϑϑ              (34) 
Here Eq. (34) can be easily solved by using the 
Thomas algorithm. 

In order to check the accuracy of the present 
method, the local Nusselt number 5.0/ RaNu  for 

1=ab  and 0=N  obtained in the current study 
under Darcian assumptions for a horizontal circular 
cylinder are compared with the solutions reported by 
Merkin [5] and Yih [8]. As shown in Table 2, the 
present results are found to be in excellent agreement 
with the results of Merkin [5] and Yih [8].  

Figs. 2 and 3 plot the variation of the local 
Nusselt number 5.0/ RaNu  and the local Sherwood 
number Sherwood number 5.0/ RaSh  as functions of 
the eccentric angle B of the elliptical cylinder for 
various transpiration parameters ( =wf -0.3, 0, 0.3), 
N=1, Le=6 and b/a=0.6. For the elliptical cylinder 
with blunt orientation, the local Nusselt number and 
the local Sherwood number first increase with 
distance from the stagnation point, reach a maximum, 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
  

Fig. 4. Effects of aspect ratio on the average Nusselt 
number.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Effects of aspect ratio on the average 
Sherwood number. 

 
and then decrease to zero at the top of the elliptical 
cylinder. For an elliptical cylinder with slender 
orientation, the local Nusselt number and the local 
Sherwood number decrease monotonically from the 
lower end of the cylinder to the upper end of the 
cylinder; that is due to the increase in boundary layer 
thickness.  

Comparing the curves in Figs. 2 and 3, we can 
deduce that increasing the transpiration parameter 
tends to decrease the boundary layer thickness and 
thus increases the heat and mass transfer rates 
between the fluid and the wall. The results show that 
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the use of blowing ( 0<wf  and 0>wV ) tends to 
decrease the heat and mass transfer rate while the use 
of suction ( 0>wf  and 0<wV ) increases the heat 
and mass transfer rate.  

Figs. 4 and 5 show the average Nusselt number 
5.0/ RaNum  and the average Sherwood number 

5.0/ RaShm  as a function of the aspect ratio b/a for 
3.0=wf , Le=6 and N=1. The average Nusselt 

number and the average Sherwood number of the 
elliptic cylinder with slender orientation are higher 
than those of the elliptical cylinder with blunt 
orientation for any aspect ratio b/a smaller than one. 
When the aspect ratio b/a is increased (i.e., the 
eccentricity is decreased), the average Nusselt 
number and the average Sherwood number for the 
elliptic cylinder of slender orientation tend to 
decrease while those for the elliptic cylinder of blunt 
orientation tend to increase, and finally the average 
Nusselt number and the average Sherwood number of 
slender orientation equal to those of blunt orientation 
when the aspect ratio b/a equals to one. Therefore, 
the elliptic cylinders of slender orientation are found 
to be superior to the elliptic cylinders of blunt 
orientation from the viewpoint of the heat and mass 
transfer rates in fluid-saturated porous media. 
 
 
4   Conclusion 
The coupled heat and mass transfer by natural 
convection of a permeable horizontal cylinder with 
elliptic cross section has been studied. Here a 
coordinate transformation is employed to transform 
the governing equations into nondimensional 
nonsimilar boundary layer equations. The obtained 
boundary layer equations are then solved by the cubic 
spline collocation method. The effects of the 
transpiration parameter and the aspect ratio on the 
Nusselt and Sherwood numbers for the permeable 
elliptical cylinders of blunt and slender orientations 
have been studied. The results show that increasing 
the transpiration parameter tends to decrease the 
boundary layer thickness and thus enhances the heat 
and mass transfer rates between the fluid and the wall. 
Moreover, the heat and mass transfer rates of the 
cylinder with slender orientation are higher than 
those of the cylinder with blunt orientation. 
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